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There are tens of thousands of man-made chemicals in the
environment; the inherent safety of most of these chemicals is
not known. Relevant biological platforms and new computational
tools are needed to prioritize testing of chemicals with limited
human health hazard information. We describe an experimental
design for high-throughput characterization of multidimensional
in vivo effects with the power to evaluate trends relating to com-
monly cited chemical predictors. We evaluated all 1060 unique
U.S. EPA ToxCast phase 1 and 2 compounds using the embryonic
zebrafish and found that 487 induced significant adverse biologi-
cal responses. The utilization of 18 simultaneously measured end-
points means that the entire system serves as a robust biological
sensor for chemical hazard. The experimental design enabled us
to describe global patterns of variation across tested compounds,
evaluate the concordance of the available in vifro and in vivo phase
1 data with this study, highlight specific mechanisms/value-added/
novel biology related to notochord development, and demonstrate
that the developmental zebrafish detects adverse responses that
would be missed by less comprehensive testing strategies.

Key Words: developmental; high-throughput screening; Tox21;
ToxCast.

The U.S. National Research Council issued Toxicity Testing
in the 21st Century: A Vision and a Strategy in 2007 to chal-
lenge traditional approaches for toxicity testing. The report
described the need to refocus toxicity testing on relevant human
doses and on identifying the early molecular response path-
ways that are perturbed to produce toxicity. Application of this
approach would replace reliance on primarily high-dose, gross
phenotypic responses in high-cost, low-throughput mammalian
models. The goal in focusing on molecular and cellular path-
ways that are targets for chemicals is to gain insights into toxic
mechanisms underlying apical endpoints. To directly address
this need and to help prioritize chemicals for testing, in 2008,
the U.S. EPA National Center for Computational Toxicology
(NCCT), National Toxicology Program, and National Human
Genome Research Institute’s NIH Chemical Genomics Center

developed a partnership, “Tox21” (http://epa.gov/ncct/Tox21/),
to test a larger set of compounds (10 000) that were broadly
characterized and may have toxicological concerns. In 2010,
the U.S. Food and Drug Administration joined the partnership
to bring together expertise in experimental toxicology, compu-
tational toxicology, high-throughput technologies, and animal
models of human diseases.

As an additional effort, the EPA-NCCT developed the
ToxCast program in 2007 to assess a large number of chemicals
in a diverse set of in vitro assays. The long-term goal was to
predict the potential toxicity of chemicals and to develop cost-
effective approaches to prioritize the thousands of chemicals
that have little to no hazard safety information. As a “Proof of
Concept,” phase 1 of the ToxCast program was completed in
2009 and consisted of approximately 300 well-studied chemi-
cals with existing toxicity information run across approxi-
mately 600 high-throughput in vitro assays (Judson et al.,
2010). Phase 1 consisted primarily of pesticides, many having
over 30 years of data from traditional toxicology methods and
definitive toxicity endpoint(s) (ie, target organ, reproductive, or
developmental). The ToxCast program established multidimen-
sional, multiassay signatures to predict animal toxicity using
the traditional toxicity data to gauge accuracy. Phase 2 is cur-
rently ongoing and consists of approximately 700 chemicals
from a broad range of sources such as industrial and consumer
products, food additives, “green” products, cosmetic-related
chemicals, and failed pharmaceutical drugs. The traditional
toxicity data are lacking in phase 2, but human clinical data
and other toxicology studies are available to assess and test the
performance of predictive models developed in phase 1.

Although there is a growing effort to utilize molecular and
pathway-focused assays in toxicology, it has proven difficult
to translate in vitro data to predict whole animal toxicity. The
high-throughput screening (HTS) assays used in the ToxCast
program included both biochemical and cell-based systems
that investigated protein function or binding, transcriptional
activity, fundamental cellular processes, and systemic readouts.
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Cultured cells lack biological complexity; they express limited
gene products and intrinsically represent an artificial biological
environment for testing. These inherent limitations have tem-
pered some of the enthusiasm for the Tox21 initiatives.

The zebrafish is a small complex organism that is amena-
ble to large-scale in vivo genetic and chemical studies (Pardo-
Martin et al., 2010). Zebrafish have a short generation time and
rapid development and short life cycle (Kimmel et al., 1995).
The embryos develop externally and are transparent for the first
few days of life, and due to their small size, only a small quan-
tity of chemical is needed for a full evaluation of biological
response. There is significant physiological and genetic homol-
ogy between humans and zebrafish (70% gene homology), and
approximately 84% of human genes known to be associated
with human diseases are also present in zebrafish (Howe et al.,
2013). The versatility of zebrafish makes it an ideal model
to address Toxicity Testing for the 21st century, providing an
essential bridge between in vitro and mammalian data. By com-
bining the utility of the embryonic zebrafish as the first tier to
identify potential toxicity and the application of HTS in vitro
assays to gain insight into toxicity mechanisms, we can begin
to address the paradigm shift in toxicity testing.

Here, we describe a rapid in vivo approach to discover chem-
ical hazard potential using embryonic zebrafish. We examined
all 1078 ToxCast phase 1 and 2 chemicals (1060 unique chemi-
cals) for developmental and neurotoxicity in the embryonic
zebrafish. Each chemical was tested in a broad concentration
range spanning 4 orders of magnitude (6.4nM to 64uM) with
multiple replicates at each concentration (n = 32). Simultaneous
evaluation of 22 endpoints identified distinct patterns of chemi-
cal response that can help identify mechanistic pathways. By
utilizing the zebrafish as a biological sensor, and these data as a
reference set, we are better positioned to build predictive toxic-
ity frameworks and accelerate chemical testing.

MATERIALS AND METHODS

Chemicals. The chemical library consisted of 1078 EPA ToxCast phase 1
and 2 chemicals. There were 1060 unique chemicals from various sources, with
9 sets of embedded, blinded triplicate identifiers. The chemical library chemi-
cals, quality control (QC) analysis, and structure data format files are available
at http://www.epa.gov/NCCT/toxcast/chemicals.html. Stock solutions of all
chemicals were provided in 100% dimethyl sulfoxide (DMSO) at a concentra-
tion of 20mM in 96-well plates.

Chemical preparation. For every 8 chemicals, 2 dilution plates were
made. Dilution plate 1 consisted of the 8 chemicals diluted to 10mM with
100% DMSO and placed into columns 1 and 7 of a 96-well plate. A total of
5 chemical dilutions were made in the same plate (10-fold serial dilution) in
columns 2-5 and 8-11. Dilution plate 2 was a 1:15 dilution of plate 1, with a
concentration range of 0.064—640uM in 6.4% DMSO. This dilution plate was
made using standard embryo medium (EM) (Westerfield, 2000). All dilution
plates were stored at —20°C until 30 min prior to exposure.

Zebrafish husbandry. Tropical 5D wild-type adult zebrafish were housed
in at an approximate density of 1000 per 100 gallon tank at the Sinnhuber
Aquatic Research Laboratory, Oregon State University, Corvallis, OR. Each
tank was kept at standard laboratory conditions of 28°C on a 14-h light/10-h
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dark photoperiod in fish water consisting of reverse osmosis water supplemented
with a commercially available salt (Instant Ocean). Spawning funnels were
placed into the tanks the night prior, and embryos were collected and staged
(Kimmel et al., 1995). To increase bioavailability, the chorion was enzymati-
cally removed using pronase (63.6 mg/ml, > 3.5U/mg, Sigma-Aldrich: P5147)
at 4 hours post fertilization (hpf) using a custom automated dechorionator
(Mandrell et al., 2012).

Chemical exposures. Six hpf dechorionated embryos were placed 1
embryo per well in a 96-well plate prefilled with 90 pl of EM using auto-
mated embryo placement systems (AEPS) (Mandrell ef al., 2012). Ten micro-
liters of each row of dilution plate 2 was added to 2 exposure plates. The final
DMSO concentration used was 0.64% (vol/vol). Thirty-two embryos were also
exposed to S5uM trimethyltin chloride (positive control). Plates were sealed to
prevent evaporation and foil covered to reduce light exposure and kept in a
28°C incubator. Embryos were statically exposed until 120 hpf.

At 24 hpf, embryos were assessed for photomotor response using a custom
photomotor response analysis tool (PRAT) and for 4 developmental toxicity
endpoints (MO24: mortality at 24 hpf, DP: developmental progression, SM:
spontaneous movement, and NC: notochord distortion) (Truong et al., 2011).
At 120 hpf, locomotor activity was measured using Viewpoint Zebralab (Saili
et al., 2012; Truong et al., 2012) and assessed for 18 endpoints (Truong et al.,
2011). Zebrafish acquisition and analysis program (ZAAP), a custom program
designed to inventory, acquire, and manage zebrafish data, was used to col-
lect developmental endpoints as either present or absent (ie, binary responses
were recorded). If mortality occurred for an embryo (at either 24 or 120 hpf),
the nonmortality endpoints were not measured. The experimental approach is
summarized in Figure 1.

Analysis.  All statistical analysis was performed using code developed in
R (R Development Core Team 2013). The data used were binary incidences
recorded for each endpoint from ZAAP (as described above), plus associated
plate and well-location information. This information was used to test for con-
founding plate, well, and chemical effects across all controls and to identify
outliers. Considering controls (concentration = 0), there were no statistically
significant effects by plate or well location. There were slight differences in
control incidence by endpoint and chemical, which were accounted for in our
analysis method (described below). Outliers were defined as chemicals having
an incidence rate greater than 3 SDs from the mean rate in controls across mul-
tiple endpoints. A total of 20 chemicals (out of 1078 unique substance identi-
fiers) were identified as outliers and rerun. No significant batch effects were
found when these rerun data were merged with the rest of data.

To characterize responses for each chemical endpoint, we computed a lowest
effect level (LEL) in micromolars as the concentration at which the incidence
exceeded a significance threshold over the background (control) incidence rate.
Because the endpoints are binary and replicates are measured in separate wells,
the 0/1 responses for each chemical-endpoint-concentration-replicate combina-
tion translate to a series (n = 32) of Bernoulli trials, or “coin-flips.” Therefore,
the LEL significance threshold was estimated using a binomial test, which pro-
vided a straightforward method to adjust for plate and/or chemical effects and
the pooling/separation of controls. Given the experimental design, the binomial
maximized power versus a typical logistic/curve-fit approach by accounting for
the falsely “nonmonotonic” responses occurring when the MORT endpoint led
to missing specific endpoint measurements at higher concentrations. Because
background incidence rate varied slightly across chemicals and endpoints, the
significance threshold (x) was determined independently from the binomial
distribution function for each chemical-endpoint pair as:

F(x;n,,,p..)=P(X > x)<0.05,

where n., = number of controls (trials) for this chemical, for this endpoint;
p.,= observed incidence (positive responses) in controls for this chemical, for
this endpoint.

As illustrated in Figure 2, the recorded LEL was the lowest concentration
at which the observed incidence exceeded the significance threshold (p < .05)
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FIG. 1. Experimental approach for screening developmental and neurotoxicity for 1078 ToxCast chemicals. Embryos were dechorionated at 4 hours post
fertilization (hpf), and plated at 6 using automated embryo placement systems. After which, 1 chemical was added to 2 plates, at 6 concentrations (0.0064—64uM,
10-fold serial dilution), n = 16 per plate x 2 plates. The embryos were statically exposed to chemical until 120 hpf. At 24 hpf, photomotor response data were
collected, and 4 developmental endpoints were assessed. At 120 hpf, larval behavior and 18 morphological and behavioral endpoints were assessed. Abbreviation:
DMSO, dimethy] sulfoxide.
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FIG.2. Estimation of LEL from concentration-response data. The concen-
tration-response plots for 3 endpoints { MORT, YSE, AXIS} are shown for the
chemical ziram. The horizontal axis shows the 6 concentrations tested (0 = con-
trol). For each concentration, the incidence (number of responses = 1) across
all 32 replicates is plotted as stacked points. The points exceeding the binomial
significance threshold for each endpoint are colored red. Abbreviation: LEL,
lowest effect level.

defined above. Figure 2 also illustrates the situation in which high MORT inci-
dence reduced the number of specific endpoint measurements at coincident
concentrations.

The chemical-physical properties, the log of the octanol/water partition
coefficient (Log K ) and bioconcentration factor (BCF), were estimated using
EPISuite v4.11 (http://www.epa.gov/opptintr/exposure/pubs/episuite.htm). The
SMILES notation was inputted into EPISuite, which returned estimates for 919
chemicals. Standard regression and ¢ tests were performed to assess the associa-
tion between these properties and assay activity across the entire chemical set.

The publicly available in vitro and in vivo ToxCast phase 1 data (http://
www.epa.gov/ncct/toxcast/data.html) were used to evaluate concordance with
zebrafish results. Both absolute counts of agreement and Cohen’s kappa sta-
tistic (Cohen, 1960) were used to quantify the concordance between each
zebrafish endpoint and ToxCast in vitro assays or ToxRefDB (http://www.epa.
gov/ncct/toxrefdb/) in vivo results. (The set of 293 chemicals in the compari-
son set varied because not all chemicals were tested for each endpoint.) In
addition to the individual zebrafish endpoints, all concordance analyses include
results for the aggregate ANY_ZF _ENDPOINT and ANY_ZF_ENDPOINT _
EXCEPT_MORT vectors.

RESULTS

Using Embryonic Zebrafish in a High-Throughput Manner

To evaluate the entire ToxCast phase 1 and 2 chemical set
in a high-throughput manner with multiple replicates (n = 32)
and 6 concentrations (6.4nM to 64uM, 10-fold serial dilution),
the embryonic zebrafish testing paradigm was streamlined and
automated. Adult zebrafish (approximately 2000) were housed
inlarge 100 gallon tanks allowing for easy spawning and embryo
collection (approximately 30 000/day). Embryos were enzy-
matically dechorionated using pronase on an automated decho-
rionator at 4 hpf and placed into individual wells of a 96-well
plates using AEPS (15min/plate) as described in Mandrell
et al. (2012). Chemicals were added using an automated liquid
handler to ensure efficiency, accuracy, and precision. Exposed
chemical plates were barcoded, sealed, and covered with alu-
minum foil to reduce evaporation and light exposure and kept
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at 28°C, the optimal temperature for zebrafish development, for
the duration of the experiment.

Embryonic zebrafish were continuously exposed to each
of the 1078 ToxCast chemicals from 6 to 120 hpf. At 24 hpf,
embryos were assessed for viability, developmental delay, axial
bends, and for the asynchronous tail movement response to a
pulse of bright, visible light (Kokel et al., 2010) using PRAT
and again at 120 hpf, for locomotor activity, using Viewpoint
Zebrabox, and 18 developmental effects (MORT: mortality at
120 hpf, YSE: yolk sac edema, AXIS: bent body axis, EYE: eye,
SNOU: snout, JAW: jaw, OTIC: otic, PE: pericardial edema,
BRALI: brain, SOMI: somite, PFIN: pectoral fin, CFIN: caudal
fin, CIRC: circulation, PIG: pigmentation, TRUN: trunk length,
SWIM: swim bladder, NC: notochord distortion, and TR: altera-
tions in touch response) (Fig. 1). To conduct QC and efficiently
manage the data, a customized program, ZAAP, was created,
which allowed for real time record keeping of each exposure
plate (barcode), databasing of all acquired data using MySQL,
and the ability to QC the data immediately after evaluation.
Implementation of ZAAP considerably reduced data recording
time, streamlined data entry, and reduced the chance of human
error. Barcodes for exposed plates were developed to match the
identity of the master chemical plate as another means of non-
bias testing and inventoried in ZAAP to provide the ability to
match barcodes to chemical IDs after all data were collected.

Global Response Patterns

To summarize the concentration response data for each end-
point, the LELs for all chemical-endpoint combinations are
presented in graphical form in Supplementary Figure 1 and
recorded in tabular form in Supplementary Table 1. An LEL is
only recorded for those chemical endpoints considered a “hit”
(see Materials and Methods section for details of identifying
active compounds). Ziram is a graphical example of a chemical
that was a hit for 3 endpoints (Fig. 2). Across all chemicals,
304 caused significant responses in at least 1 specific zebrafish
endpoint (Fig. 3).

The endpoint-endpoint correlation across all chemicals is
illustrated in Figure 4. Among endpoints with high numbers
of observed hits, mortality response was the only one not
highly correlated to any other endpoint. The endpoint-wise
co-occurrences are given in Supplementary Table 2 with the
observed number of positive responses for each endpoint along
the diagonal. Principal components analysis showed that much
of the salient variance was the separation between chemicals
that either induced no response, caused only mortality, or were
associated with multiple endpoints (Fig. 5). This result was
due, in part, to the predilection for some endpoints to positively
influence the observation of others. Interendpoint correlation
underscored the utility of the assay system as a comprehen-
sive sensor, where such correlations benefit assay sensitiv-
ity. Beyond these first 3 axes of variation, clusters of specific
endpoint responses emerged such as notochord distortion and
lower axial bend.
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Chemicals causing at least one specific ZF endpoint (304)
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FIG.3. Bicluster heat map of chemicals with at least 1 hit in a specific developmental endpoint. The responses were clustered using Ward’s method by Euclidean
distance between LELs. The heatmap is colored so that increasingly potent LEL responses are darker shades of blue, with inactive responses having no color. Many
of the 304 chemicals hitting at least 1 specific endpoint also caused embryonic lethality, indicated by the black sidebar. Abbreviation: LEL, lowest effect level.

Developmental Zebrafish Assay System as a Comprehensive
Bioactivity Sensor

In this analysis, the LEL for a particular chemical may
occur as mortality in the absence of specific endpoints, mor-
tality plus specific endpoints, specific endpoints followed by
mortality at higher doses, or specific endpoints only (Fig. 6).
This conditional display of LELs showed that assessing
multiple endpoints in conjunction with mortality was neces-
sary to identify the most potent adverse effect(s) for a given

chemical. Mortality alone was insufficient; there were chemi-
cals where the LEL occurred at a sublethal dose or exhib-
ited no observed lethality. Specific endpoints alone were also
insufficient, as several LELs were established based upon
mortality. Moreover, LELs are observed for all specific end-
points, rather than being unique to a particular developmental
endpoint. These specific LELs may be early sensors (red out-
lined triangles at low doses in Fig. 6) for serious developmen-
tal effects.
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FIG. 4. Correlation between endpoints. The 2 halves of the endpoint-endpoint correlation plot show the linear correlation between -log(LEL) results. The
upper panel shows the correlation, r, with increasingly large font as the value increases. The lower panel plots the results summarized in the upper panel.

Abbreviation: LEL, lowest effect level.

Zebrafish Assay Performance Against In Vivo Animal

Toxicity

Concordance analysis with in vivo animal toxicity data cap-
tured in ToxRefDB and our data identified mortality as having
the greatest concordance with developmental rat or rabbit mater-
nal-related effects (> 85 chemicals, DEV_rat/rabbit_Maternal_
GeneralMaternal/General_Maternal_Systemic). When the
analysis was completed for “any” zebrafish endpoint, there
were 190 chemicals that were highly concordant (Table 1A).

Of these 8 highly concordant ToxRefDB endpoints, develop-
mental maternal rabbit studies (both general and systemic) had
a high percentage of concordance (approximately 60%). The
pregnancy-related rabbit studies had the lowest concordance of
the 8 endpoints with 46% concordance. Zebrafish “any” devel-
opmental endpoint (including mortality) was concordant with
liver endpoints for chronic mouse and rat (CHR_Mouse/Rat)
reproductive and multigenerational rat reproductive studies
(MGR_rat). There was a high concordance (25-68 chemical
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FIG. 5. Sources of variation visualized by PCA. PCA was performed on the LEL matrix of all 1060 chemicals. Plotting symbols annotate chemicals into
activity categories: mortality only (empty triangle), mortality plus specific endpoint(s) (black triangle with red filling), specific endpoint(s) only (red solid circle),
or inactive (hollow red circle). The points are scaled according to how many specific endpoint LELs are associated with each chemical. Abbreviations: LEL, lowest

effect level; PCA, principal components analysis.

incidences, > 60% concordance) for liver hypertrophy, necro-
sis, tumors, and preneoplastic lesions and kidney pathology,
and “any lesions” (Table 1B).

Concordance With Published Phase 1 Zebrafish Results

Analysis of our results for concordance with the zebrafish
assay carried out at EPA on the phase 1 data (Padilla et al.,
2012) identified endpoints with the highest concordance counts
as mortality, yolk sac edema, and axis and jaw malformations
(95,59, 54, and 50, respectively, Supplementary Table 3B). Our
zebrafish “any” developmental endpoint (including mortality)
had the highest concordance count with the EPA screen, with
131 chemicals called positives in both screens. The present
assay calls a similar number of chemicals positive for the phase
1 data set (60% in this study vs 62% in the EPA zebrafish data),
with 75% positive concordance.

Concordance With In Vitro ToxCast Phase I Results

‘We compared our results with the existing EPA in vitro Phase
I data. Across all chemicals, the in vitro data assays show-
ing the highest level of concordance were ATG_PXRE_CIS,

CLZD_CYP2B6_48, CLM_CellLoss_72hr, CLZD_
CYP2B6_24, CLZD_CYP2B6_6, ATG_NRF2_ARE_CIS,
CLZD_CYP3A4_48, BSK_Sag_Proliferation_down, BSK_
hDFCGF_Proliferation_down, and ATG_PPARg_TRANS
compared with “any” zebrafish endpoint hit. Toxcast assays with
the highest percentage of concordance (> 90%) were NVS_TR _
hDAT, NVS_TR_rVMAT2, CLM_Hepat_Apoptosis_48hrm,
NVS_GPCR_h5HT6, NCGC_HEK293_Viability, and NVS_
GPCR_hAdra2C. ATG_PXRE_CIS had the highest concord-
ance count (14/18) with specific zebrafish endpoints (Table 2).

Cohen’s kappa concordance results indicate a statistically
significant relationship (p values < .05) between intermediate
(developmental endpoints) or terminal (mortality) in vivo end-
points and specific in vitro targets (Supplementary Table 3A). We
found that 10 active ingredients of pesticides 3-iodo-2-propynyl-
N-butylcarbamate, chlorothalonil, dicofol, emamectin benzoate,
fluazinam, milbemectin, oryzalin, thiodicarb, triclosan, and tri-
phenyltin hydroxide that caused an increase of cell loss at 1, 24,
and 72h in the ToxCast assays (CLM_CellLoss_1hr/24hr/72hr)
were significantly concordant with mortality in the developing
zebrafish.


http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kft235/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kft235/-/DC1
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Lowest Effect Level (LEL) by Endpoint
Potency for each endpoint scaled as -log10(dose in uM): 1 =64,2=6.4, 3 =0.64, 4 = 0.064, 5 = 0.0064
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FIG. 6. Analysis of lowest effect level (LEL) by endpoint. The minimum LEL for each condition was computed for each concentration (plotted in order of
increasing 10-fold potency, from 64 to 0.0064puM, notated 1-5) and endpoint (18 total). The vertical axis counts the number of chemicals meeting each concentra-
tion-condition-endpoint. Four LEL conditions were evaluated: mortality only (empty triangle), a specific endpoint LEL then mortality at a higher dose (red empty
triangle), a specific endpoint only (red circle), or mortality and a specific endpoint occurring (black triangle with red filling).

Analysis of the ToxCast NVS_ADME assays probing human
or rat cytochrome P450 (CYP) inhibition revealed that 15 CYPs
(human: 1A2, 2B6, 2C18, 2C19, 2C9, 3AS5; rat: 2A1, 2A2, 2B1,
2C11, 2C13, 2C6, 2D2, 3A1, 3A2) had significant concordance
with several zebrafish endpoints. Interestingly, for all except
2C19, there was no significant concordance with mortality. This
suggested that the zebrafish system may be an effective sensor
for bioactive chemicals causing sublethal developmental toxicity.

Specific Developmental Malformation Endpoint: Notochord
Distortion and Lower Axial Bend

Defects in the notochord and lower axial bend are 2 malfor-
mations that occur only during development. Nineteen chemi-
cals in the ToxCast chemical library induced these specific
malformations (Table 3) and fell into 2 use categories: drugs
(disulfiram, busulfan, clofibrate, 4-(2-methylbutan-2-yl)phenol,
trans-retinoic acid, 6-{2-[4-(12-benzothiazol-3-yl)piperazin-
1-yl]ethyl}-448-trimethyl-34-dihydroquinolin-2(1H)-one
methanesulfonate, Tris(13-dichloro-2-propyl)phosphate) or
pesticides (dazomet, tributyltin chloride, sodium(2-pyridlthio)-
N-oxide, acibenzolar-S-methyl, thiram, ziram, 2-mercaptoben-
zothiazole, maleic hydrazide, sodium dimethyldithiocarbamate,
aldicarb, thiodicarb, abamectin).

Association Between Zebrafish Endpoints and Common
Bioavailability Predictors

We evaluated the association between zebrafish results and 2
widely accepted predictors of aquatic bioavailability: the Log

K., and the BCF, which is a critical factor for fish immersed in
chemical solution (Gobas and Morrison, 2000; Landis et al.,
2011). We found that neither Log K nor BCF was entirely
predictive of response or the potency (LEL). However, for
some zebrafish endpoints, the mean Log K and BCF of active
chemicals were slightly higher (Student’s ¢ test, p < .05) than
inactives (Fig. 7), although the mean differences were minimal.
The generally weak associations between these bioavailability
predictors and our results may reflect the dechorionation step
(removal of acellular barrier) or nonapplicability of these pre-
dictors for the broad chemical set tested.

Ability of Zebrafish Developmental Endpoints to Detect
Neurotoxicants

To determine the sensitivity of the embryonic zebrafish assay
to detect known zebrafish neurotoxicants in the ToxCast data
set, a list of 18 chemicals identified in the literature as zebrafish
neurotoxicants covering several modes of action was com-
piled (Table 4). This developmental assay system was capable
of detecting 78% (14/18) of neurotoxicants identified in the
literature. The 4 chemicals that were not detected in this sys-
tem were chlorpyrifos (nonoxon), atrazine, valproic acid, and
acrylamide.

DISCUSSION

We have presented a high-throughput design for screening a
comprehensive battery of zebrafish developmental morphology
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TABLE 2
Most Concordant ToxCast Assays for Each ZF Endpoint

Concordance
Zebrafish Endpoint Count ToxCast assay Description Assay Target
MORT 94 ATG_PXRE_CIS PXR response element Xenobiotic response genes
YSE_ 53 transcription
AXIS 47
EYE_ 31
SNOU 43
JAW_ 42
OTIC 17
PE__ 46
SOMI 14
PFIN 22
SWIM 15
TR__ 30
ANY_ZF_ENDPOINT 130
ANY_ZF_ENDPOINT_ 76
EXCEPT MORTALITY
BRAI 21 ATG_PXRE_CIS PXR response element Xenobiotic response genes
transcription

CLM_CellLoss_72hr Cell loss Cell loss
CFIN 20 CLZD_CYP2B6_6 Expression of Cyp2B6 Drug metabolism
PIG_ 13 ATG_PXRE_CIS PXR response element Xenobiotic response genes

transcription

CLM_CellLoss_72hr Cell loss Cell loss

CLZD_CYP2B6 Expression of Cyp2B6 Drug metabolism
CIRC 8 NVS_ADME_hCYP2C19 Inhibition of Cyp2C19 Drug metabolism
TRUN 22 CLZD_CYP2B6_24 Expression of Cyp2B6 Drug metabolism
NC__ 5 BSK_BE3C_uPAR_up 1 in uPAR expression Collagen/plasmin formation

BSK_hDFCGF_CollagenlII_
down
BSK_hDFCGF_PAIl_down
BSK_SAg_CD40_down
BSK_SM3C_Proliferation_

| in CollagenlII expression

| in PAI1 expression
1 in CD40 expression
| in proliferation

and immune and
inflammatory responses

down

Notes. Eighteen specific endpoints and 2 aggregate (ANY_ZF_ENDPOINT and ANY_ZF_ENDPOINT_EXCEPT_MORALITY) were statistically evaluated
for concordance using Cohen’s kappa test for all in vivo ToxCast assays. The highest concordance count for each endpoint-ToxCast in vitro assay is illustrated

along with the assay target.

and neurotoxicity endpoints in vivo. We demonstrated that the
embryonic zebrafish is an outstanding biological sensor to iden-
tify bioactive chemicals. It is an efficient and flexible experi-
mental platform that can be used to assign meaningful hazard
ranks to the vast diversity of potential and current consumer
and pharmaceutical chemicals. Most importantly, as more
chemicals are screened, the expanding reference database can
be ever more deeply mined for cellular targets and for compar-
ing other in vivo, in vitro, and in silico data. We demonstrated
that reliance on mortality as the key determinant of chemical
hazard resulted in a high rate of false negatives, and only by
screening a wider variety of endpoints can this be rectified.
Although the developmental zebrafish is perhaps the best
vertebrate model for such screens, it is only as good as the
experimental design. The global toxic response patterns to
the chemicals pointed to high correlation among endpoints.
However, there were several chemicals that caused very spe-
cific developmental responses. For instance, exposure to

certain pesticides (thiram, ziram, and sodium dimethyldithi-
ocarbamate) known to disrupt normal notochord development
(Teraoka et al., 2006; Tilton et al., 2006; Tilton and Tanguay,
2008) is not a commonly reported toxicity endpoint. In our
screen, a large portion of the embryos exposed to the 19 chemi-
cals that affected notochord development or somitogenesis did
not exhibit other effects.

Comparison with previously published EPA zebrafish screen-
ing results (Padilla ef al., 2012) showed that for Phase I chemi-
cals, 75% of the chemicals called hits in the present assay were
hits in both zebrafish assays. Discord in the results between
this multidimensional screen and previously published EPA
zebrafish screening results is likely due to differences in study
design and goals. Several major attributes of our experimental
approach include (1) removal of the embryo chorion prior to
exposure, (2) use of static chemical exposures requiring far less
embryo manipulation, (3) rearing embryos at the ideal 28°C,
(4) expanded evaluation to 22 endpoints versus 6 in the EPA
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TABLE 3
Chemicals Affecting Notochords or Lower Axial Bend.
Testsubstance_ Testsubstance_ Category
Chemical Structure CASRN Chemicalname Use
CH3 533-74-4 Dazomet Algaecide, a
/ bacteriostat,
/_N and a
S > microbicide
>—N
7\
S CHs
CH3 1461-22-9 Tributyltin chloride Biocide
Cl
— 3811-73-2 Sodium Biocide
N a"‘ s (2-pyridylthio)-N-oxide
N\ //
N
\ -
(0]
H.C CH CH 97-77-8 Disulfiram Drug:
3 /—’ 3 3 alcoholism
N <
S N
)5,
S s—( CH,
S
H3C\ o 55-98-1 Busulfan Drug: cancer
H,C =
3\ _O s~
IINTN N \
_S o)
0~ \\
637-07-0 Clofibrate Drug: lipid-
Cl @) CHj; lowering
H3C agent
\O
0]
CHs3
135158-54-2 Acibenzolar-S-methyl Fungicide
7~
H;C
S
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TABLE 3—Continued

Testsubstance_ Testsubstance_ Category
Chemical Structure CASRN Chemicalname Use
CH 137-26-8 Thiram Fungicide
/ \ )k
T
CHj
-30- iram ungicide
3 137-30-4 Zi Fungicid
S N—CH,
s;/< S
N—CH, S
H;C
S 149-30-4 2-Mercaptobenzothiazole Fungicides
)
N
() 123-33-1 Maleic hydrazide Herbicide
HN \
\
N
N
(0]
128-04-1 Sodium Herbicide
+ - / dimethyldithiocarbamate
Na S
HsC
CH 3 80-46-6 4-(2-Methylbutan-2-yl) High produc-
phenol tion volume
HO phenol
CH; CH;
CH 3 116-06-3 Aldicarb Insecticide
N—O CH
S\CH ks
3 NH
O
59669-26-0 Thiodicarb Insecticide

CHs

CH3

\x/T\/T\x/




ZEBRAFISH TOXICITY SCREENING 229

TABLE 3—Continued

Testsubstance_ Testsubstance_ Category
Chemical Structure CASRN Chemicalname Use
CH 3 71751-41-2 Abamectin insecticide
H
L Metabolite of
H3C CH3 CH3 CH3 O| 302-79-4 trans-Retinoic acid vitamin A
M OH
CHj
N/A
CHj 676116-04-4 6-{2-[4-(12-benzothiazol-
H 3-yl)piperazin-1-yl]
(|3H3 0 N ethyl }-448-trimethyl-34-
0=S=0 dihydroquinolin-2(1H)-
| one methanesulfonate
OH N/\
N— s
. . Triester
Cl 13674-87-8 Tri s}(1 1 3—(311cthloro—2—propyl) organophos-
phosphate phate flame
retardants
Cl
i
o— ﬁ—O

(0]

Cl Cl
Cl Cl

Notes. Chemical structure, CAS, chemical name, and category use are illustrated for chemicals affecting notochord/lower axial bend.
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FIG. 7. Histogram of Log K_ by biological activity and Log K_ . Separate histograms are plotted for chemicals classified as “Hits” (pink) or “Negatives”
(blue), with Log K along the horizontal axis. The purple shading represents overlap between the 2 distributions.

study, (5) dose-concentration range tested, and (6) number of
replicates. We enzymatically removed the chorion from all
embryos to remove a potential barrier to test chemicals. The
use of a static exposure schedule, where the embryos remain
essentially undisturbed following the chemical dosing until the
120 hpf evaluation, simulates an acute developmental exposure
and ensuing metabolic removal and chemical lability. There are
valid rationales for using either static or chronic renewal expo-
sures; however, to maximize throughput and minimize handling
damage, we chose static bath exposure. Developing zebrafish
embryos are sensitive to temperature (Kimmel et al., 1995) with
a well-documented developmental optimum at 28°C (Kimmel
et al., 1995). We screened and entered binary scores for 22 end-
points into the ZAAP. Our goal was to maximize throughput
while collecting as much information as practical in a single
pass. The EPA zebrafish screen scored some malformations in
binary fashion, whereas others were scored by relative degree
(0 = present, 4 = severe), then an aggregated malformation index

was computed (Padilla ef al., 2012). Additionally, we exposed
the developing embryos to concentrations ranging from 6.4nM
to 64uM (10-fold serial dilution), whereas the EPA study used
InM to 80uM with 5-fold serial dilution. A key difference
between the experimental designs is the number of replicate
animals. In order to reduce false positives and sensitivity, we
utilized 32 embryos per concentration, whereas the EPA study
used far fewer replicates. In Padilla er al. (2012), toxicity inci-
dence and potency were found to be correlated with hydro-
phobicity (logP) across the phase 1 chemicals. Based on our
zebrafish assay run across all 1060 unique phase 1 and phase 2
chemicals, we did not find this same correlation for the devel-
opmental zebrafish endpoints. This could be due to the differ-
ences in the experimental approach or the characteristics of the
expanded, more diverse chemical set tested here. The combina-
tion of the number of dechorionated embryos exposed statically
to chemicals and the scoring methodology undoubtedly affected
the results and the concordance between the 2 zebrafish studies.
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TABLE 4
Zebrafish Neurotoxicants Identified by Literature

Testsubstance_ Testsubstance_ Developmental Toxicity Reference on Zebrafish
CASRN Chemicalname Detection Status Neurotoxicity
79-06-1 Acrylamide - Parng et al. (2007)
1912-24-9 Atrazine - Ton et al. (2006)
82657-04-3 Bifenthrin + DeMicco et al. (2010)
80-05-7 Bisphenol A + Saili et al. (2012)
58-08-2 Caffeine + Guo (2009)

2921-88-2 Chlorpyrifos - Selderslaghs et al. (2010)
5598-15-2 Chlorpyrifos oxon + Selderslaghs er al. (2010)
2392-39-4 Dexamethasone sodium phosphate + Rihel et al. (2010)
60-57-1 Dieldrin + Ton et al. (2006)
115-29-7 Endosulfan + Stanley et al. (2009)
120068-37-3 Fipronil + Stehr et al. (2006)
52-86-8 Haloperidol + Rihel et al. (2010)
72-43-5 Methoxychlor + D’ Amico et al. (2008)
54-11-5 Nicotine + Rihel et al. (2010)
1763-23-1 Perfluorooctane sulfonic acid + Huang et al. (2010)
709-98-8 Propanil + D’ Amico et al. (2008)
83-79-4 Rotenone + Bretaud et al. (2004)
99-66-1 Valproic acid - Cowden et al. (2012)

Notes. Chemical CAS, name, and literature citation.

Our Phase I concordance analysis sought to qualify the com-
plementarity of the developmental zebrafish outcomes reported
here with in vitro outcomes in xenobiotic metabolism and CYP
inhibition assays, and developmental rat or rabbit maternal and
pregnancy studies. The strong correlation between the embry-
onic zebrafish and developmental rat/rabbit studies could be
readily anticipated as zebrafish is widely documented to rival
or exceed the utility of rodents for the modeling of a growing
list of human diseases (Lieschke and Currie, 2007; Santoriello
and Zon, 2012; Scholz, 2013). The concordance of xenobiotic-
related in vitro assays and morphologically abnormal embry-
onic zebrafish was also somewhat anticipated as zebrafish have
a total of 94 CYP genes found in mammals, 32 of which are
direct orthologs of human CYPs (Goldstone et al., 2010). There
may be a causal relationship between the CYP inhibition (as
inferred from chemicals perturbing in vitro CYP assays) and
developmental endpoints in zebrafish. This high concordance
between the developmental zebrafish endpoints and in vitro cel-
lular metabolism suggested that the embryonic zebrafish was
an effective biosensor for developmental toxicants impacting
xenobiotic metabolism.

The chemicals and endpoints lacking concordance with
ToxCast Phase I results may indicate toxicity pathways or
chemical classes requiring more attention in future phases.
Instances where discordance is observed between the develop-
mental zebrafish and mammalian responses to the same com-
pound class can only serve to refine our estimates of ultimate
hazard prediction with zebrafish. By assessing a comprehen-
sive developmental endpoint set in the embryonic zebrafish,
other classes of hazard may be detected. For example, we

demonstrated solid power (78%) to flag neurotoxicants across
these endpoints. Notably, only the oxon form of chlorpyrifos
was positive (across several endpoints) in this assay, highlight-
ing the importance of considering metabolic capacity. Although
subsets of the developmental endpoints measured here are cor-
related, these collective data are highly valuable when the pri-
mary goal is to detect hazardous chemicals. The relationships
between endpoints can be used to infer mechanisms and under-
lying toxicological pathways.

When utilizing multiple measures, the entire system serves
as a robust biological sensor providing foresight into chemicals
that have the potential to cause adverse effects. The power and
value of ToxCast can be enhanced by integrating the develop-
ing zebrafish into the existing in vitro high-throughput assays to
identify potentially hazardous chemicals. To accomplish this,
the zebrafish would serve as the “tier 17 of the hazard identi-
fication schema where all chemicals are assessed and all those
with potential to cause adverse effects will be further screened
in the battery of in vitro tests and evaluated in the predictive
models already developed. Having a whole-organism system as
the first tier provides the ability to detect endpoints that may be
missed in a screen using in vitro assays, such as metabolism and
pathway sensors. The sensitivity to detect hazardous chemicals
will greatly improve with integration of this powerful model
and the current mechanistic-focused in vitro assays. This data
set is a powerful resource that can be used in conjunction with
data sets from other biological platforms. Together, we will be
positioned to accelerate chemical testing into the 21st century
and identify potential hazardous chemicals prior to their release
in the environment.
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Supplementary data are available online at http://toxsci.
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