Skip to main content
. 2014 Jan-Feb;68(1):77–85. doi: 10.5014/ajot.2014.008698

Table 4.

Logistic Regression to Determine Driving Errors as Predictors of On-Road Pass–Fail Outcomes

graphic file with name 77tbl4.jpg

Driving Errors OR CI: Lower CI: Upper Significance
Visual scanning 6.486 1.657 25.391 .007
Signaling 5.758 1.445 22.952 .013
Vehicle positioning 5.005 1.291 19.408 .020
Speed regulation 3.404 1.166 9.934 .025
Adjustment to stimuli 3.456 0.795 15.036 .098
Gap acceptance 2.621 0.325 21.159 .366
Lane maintenance 2.472 0.966 6.324 .059
Yielding 1.826 0.612 5.450 .280
Total errors 0.208 0.063 0.689 .010
Model summary −2 log likelihood = 41.554, Nagelkerke R2 =.771, p = .064 Hosmer & Lemeshow χ2 = 5.997, N = 99, p = .648

Note. CI = 95% confidence interval; OR = odds ratio.