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Abstract
Functional principal component analysis (FPCA) has become the most widely used dimension
reduction tool for functional data analysis. We consider functional data measured at random,
subject-specific time points, contaminated with measurement error, allowing for both sparse and
dense functional data, and propose novel information criteria to select the number of principal
component in such data. We propose a Bayesian information criterion based on marginal
modeling that can consistently select the number of principal components for both sparse and
dense functional data. For dense functional data, we also developed an Akaike information
criterion (AIC) based on the expected Kullback-Leibler information under a Gaussian assumption.
In connecting with factor analysis in multivariate time series data, we also consider the
information criteria by Bai & Ng (2002) and show that they are still consistent for dense
functional data, if a prescribed undersmoothing scheme is undertaken in the FPCA algorithm. We
perform intensive simulation studies and show that the proposed information criteria vastly
outperform existing methods for this type of data. Surprisingly, our empirical evidence shows that
our information criteria proposed for dense functional data also perform well for sparse functional
data. An empirical example using colon carcinogenesis data is also provided to illustrate the
results.
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1 Introduction
Advances in technology has made functional data (Ramsay and Silverman, 2005)
increasingly available in many scientific fields, such as many longitudinal data in medical,
biological research, electroencephalography (EEG) and functional magnetic resonance
imaging (fMRI) data. There is tremendous research interest in functional data analysis
(FDA) for the past decade. Among the newly developed methodology, functional principal
component analysis (FPCA) has become the most widely used dimension reduction tool for
functional data analysis. There is some existing work on selecting the number of functional
principal components, but to the best of our knowledge, none of them were rigorously
studied either theoretically or empirically. In this paper, we consider functional data that are
observed at random, subject-specific observation times, allowing for both sparse and dense
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functional data. We propose novel information criteria to select the number of principal
components, and investigate their theoretical and empirical performance.

There are two main streams of methods for FPCA, kernel based FPCA methods including
Yao, Müller and Wang (2005a), Hall, Müller and Wang (2006), and spline based methods
including Rice and Silverman (1991), James and Hastie (2001), and Zhou, Huang and
Carroll (2008). Some applications of FPCA include Functional Generalized Linear Models,
(Müller and Studtmüller, 2005; Yao, Müller and Wang, 2005b; Cai and Hall, 2005; Li,
Wang and Carroll, 2010) and Functional Sliced Inverse Regression (Li and Hsing, 2010a).

At this point, the kernel based FPCA methods are better understood in terms of theoretical
properties. This is due to the work of Hall and Hosseini-Nasab (2006), who proved various
asymptotic expansions of the estimated eigenvalues and eigenfunction for dense functional
data, and by Hall et al. (2006) who provided the optimal convergence rate of FPCA in sparse
functional data. An important result of Hall et al. (2006) was that, although FPCA is applied
to the covariance function estimated by a two dimensional smoother, when the bandwidths
were properly tuned, estimating the eigenvalues is a semiparametric problem and enjoys a
root n convergence rate, and estimating the eigenfunctions is a nonparametric problem with
the convergence rate of a one dimensional smoother.

In the work on FDA mentioned above, functional data were classified as (a) dense functional
data where the curves are densely sampled so that passing a smoother on each curve can
effectively recover the true sample curves (Hall et al., 2006); and (b) sparse functional data
where the number of observations per curve is bounded by a finite number and pooling all
subjects together is required to obtain consistent estimates of the principal components (Yao
et al., 2005a; Hall et al., 2006). There has been a gap in methodologies for dealing with
these two types of data. Hall et al. (2006) showed that when the number of observations per
curve diverges to ∞ with a rate of at least n1/4, the pre-smoothing approach is justifiable and
the errors in smoothing each individual curve are asymptotically negligible. However, in
reality it is hard to decide when the observations are dense enough. In some longitudinal
studies it is possible that we have dense observations on some subjects and sparse
observations on the others. In view of these difficulties, Li and Hsing (2010b) studied all
types of functional data in a unified framework, and derived a strong uniform convergence
rate for FPCA, where the number of observations per curve can be of any rate relative to the
sample size.

A common finding in the aforementioned work is that higher order principal components are
much harder to estimate and harder to interpret. Because seeking sparse representation of the
data is at the core of modern statistics, it is reasonable in many situations to model the high
order principal components as noise. Therefore, selecting the number of principal
components is an important model selection problem in almost all practical contexts of
FDA. Yao et al. (2005a) proposed an AIC criterion for selecting the number of principal
components in sparse functional data. However, so far there is no theoretical justification for
this approach, and whether this criterion also works for dense functional data or the types of
data in the grey zone between sparse and dense functional data remains unknown. Hall and
Vial (2006) included theoretical discussion about the difficulty of selecting the number of
principal components using a hypothesis testing approach. The bootstrap approach proposed
by Hall and Vial provides a confidence lower bound υ̂q for the “unconfounded noise
variance”, and can provide some guidance in selecting the number of principal components.
However, their approach is not a real model selection criterion, and one needs to watch the
decreasing trend of υ̂q and decide the cut point subjectively. The minimum description
length (MDL) method by Poskitt and Sengarapillai (2011) is similar to Yao’s AIC in that
each principal component is counted as one parameter, although of course the criteria are
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numerically different. We emphasize that, in reality, each principal component consists of
one variance parameter and one nonparametric function. A main point of our paper is to
justify how much penalty is needed in a model selection criterion, when selecting the
number of nonparametric components in the data.

We approach this problem from three directions, with all approaches built upon the
foundation of information criteria. In the marginal modeling approach, we focus on the
decay rate of the estimated eigenvalues and develop a Bayesian Information Criterion (BIC)
based selection method. The advantages of this approach include that it only uses existing
outcomes from FPCA, namely the estimated eigenvalues and the residual variance, and that
it is consistent for all types of functional data. As an alternative, we find that, with some
additional assumptions, a modified Akaike Information Criterion (AIC) based on conditional
likelihood could produce superior numerical outcomes. A referee pointed out to us that
when the data are observed densely on a regular grid, where no kernel smoothing is
necessary, there is some existing work in the econometrics literature based on a factor
analysis model (Bai and Ng, 2002) to select the number of principal components. We study
this class of information criteria in our setting and find out that they are still consistent if a
specific undersmoothing scheme is carried out in the FPCA method. In addition, we also
provide some discussion for the case that the true number of principal components diverges
to infinity.

The remainder of the paper is organized as follows. In Section 2, we describe the data
structure and the FPCA algorithm. In Sections 3.1 and 3.2, we propose and study the new
marginal BIC and conditional AIC criteria, and we investigate the information criteria by
Bai and Ng in Section 3.3. The proposed information criteria are tested by simulation studies
in Section 4, and applied to an empirical example in Section 5. Some concluding remarks
are given in Section 6, where we also provide discussion for the case that the true number of
principal components diverges. All proofs are provided in the Supplementary Material.

2 Functional principal component analysis
2.1 Data structure and model assumptions

Let X(t) be functional data defined on a fixed interval T = [a, b], with mean function μ(t) and
covariance function R(s, t) = cov{X(s), X(t)}. Suppose the covariance function has the eigen-

decomposition , where the ωj are the nonnegative eigenvalues
of R(·,·), which, without loss of generality, satisfy ω1 ≥ ω2 ≥ ⋯ > 0, and the ψj are the
corresponding eigenfunctions.

Although, in theory, the spectral decomposition of the covariance function consists of
infinite number of terms, to motivate practically useful information criteria, it is sensible to
assume that there is a finite dimensional true model. Due to the nature of spectral
decomposition, the higher order terms are less reliably assessed and their estimates tend to
have high variation. Consequently, even though one could assume that there are an infinite
number of components, unless the data size is very large, sensible variable selection criteria
will still select a relatively small number of components – the first several that can be
reasonably assessed. This phenomenon is reflected by the numerical outcomes reported in
Table S.7 of the Supplementary Material, in which a much-improved performance of BIC is
observed when the sample size increases to 2000. The performance of BIC is mostly
determined by the accuracy of detecting non-zero eigenvalues and that this detection can be
difficult for higher order terms. For the rest of the paper, except for Section 6.2, we assume
that the spectral decomposition of R ends at a finite p terms, i.e. ωj = 0 for j > p. Then the
Karhunen-Loève expansion of X(t) is

Li et al. Page 3

J Am Stat Assoc. Author manuscript; available in PMC 2014 December 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

where ξj = ∫ψj(t) {X(t) − μ(t)}dt has mean zero, with cov(ξj, ξj′) = I(j = j′)ωj. Let p0 be the
true value of p.

Suppose we sample from n independent sample trajectories, Xi(·), i = 1, ⋯, n. It often
happens that the observations contain additional random errors and instead we observe

(2)

where Uij are independent zero-mean errors, with  and the Uij are also
independent of Xi(·). Here the (tij) are random, subject-specific observation times. Suppose
tij has a continuous density f1(t) with support T. We adopt the framework in Li and Hsing
(2010b) so that mi can be of any rate relative to n. The only assumption on mi is that all mi ≥
2, so that we can estimate the within-curve covariance matrix. In other words, we allow mi
to be bounded by a finite number as in sparse functional data, or diverging to ∞ as in dense
functional data.

2.2 Functional principal component analysis
The functions μ(·) and R(·,·) can be estimated by local polynomial regression, and then ψk(·),

ωk and  can be estimated using the functional principal component analysis method
proposed in Yao, et al. (2005a) and Hall, et al. (2006). We now briefly describe the method.
We first estimate μ(·) by a local linear regression, μ̂(t) = â0 where

, K(·) is
a symmetric density function and hμ is the bandwidth for estimating μ. Define CXX (s, t) =
E{X(s)X(t)} and Mi = (mi − 1)mi. We denote the bandwidth for estimating CXX(·,·) by hC and
let ĈXX (s, t) = b̂0, where (b̂0, b̂1, b̂2) minimizes

Then R̂(s, t) = ĈXX (s, t) − μ̂(s)μ̂(t). In addition, (ωk) and {ψk(·)} can be estimated from an
eigenvalue decomposition of R̂(·,·) by discretization of the smoothed covariance function,
see Rice and Silverman (1991) and Capra and Müller (1997). Let

, and , where, with a given bandwidth, hσ,

(ĉ0, ĉ1) minimizes . One

possible estimator if  is

(3)

Define ω̂k and ψ̂k(·) to be the kth eigenvalue and eigenfunction of R̂(s, t), respectively. Rates

of convergence results for μ̂(·), R ̂(·), ,  and ψ̂k(·) are described in the Supplementary
Material, Section S.1.
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3 Methodology
3.1 Marginal Bayesian Information Criterion

In a traditional regression setting with sample size n, parameter size p, and normally

distributed errors of mean zero and variance , BIC is commonly defined as

Considering the model equations (1) and (2), linking the current setup for each subject and
then marginalizing over all subjects, we consider a generalized BIC criterion of the structure
of

(4)

where  is an estimate of  by marginally pooling error information from all subjects and
Pn(p) is a penalty term. Even though the concept behind our criterion has been motivated by
the traditional BIC in regression setting, there are some marked differences. For example,
the ξj in model (1) are random. As a result, marginally, there are not np parameters. Further,
unlike the traditional regression problems, we do not need to estimate/predict ξj.
Consequently, the number of parameters in a marginal analysis is not determined by the
degrees of freedom of these unknown ξj. Inspired by standard BIC, we let the penalty be of
the form Pn(p) = Cn,pp and then determine the rate of Cn,p.

Let  be the estimator of  based on the residuals after taking into account of the first p
principal components. Define

If p is the true number of principal components, then R[p](s,t) = R(s,t). Since 

for all k, we can estimate  by

(5)

Replacing  by  in (4), the new BIC criterion is given by

(6)

That is, instead of estimating  from the estimated residuals, we will estimate it from a
‘marginal’ approach by pooling all subjects together. This way, we avoid estimating the
principal component scores and dealing with the estimation errors in them.

Denote ∥·∥ as the L2 functional norm, and define , which is the kth

harmonic mean of the mi’s. When mi = m for all i, we have that γn1 = m and γn2 = m2. For
any bandwidth h, define
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We make the following assumptions.

(C.1) The observations time tij ~ f1(t), (tij, tij′) ~ f2(t1, t2), where f1 and f2 are
continuous density functions with bounds 0 < mT ≤ f1(t1), f2(t1, t2) ≤ MT < ∞ for
all t1, t2 ∈ T. Both f1 and f2 are differentiable with bounded (partial) derivatives.

(C.2) The kernel function K(·) is a symmetric probability density function on [−1, 1],

and is of bounded variation on [−1, 1]. Denote .

(C.3) μ(·) is twice differentiable and its second derivative is bounded on [a, b].

(C.4) All second-order partial derivatives of R(s, t) exist and are bounded on [a, b]2.

(C.5) There exists C > 4 such that E(|Uij|C) + E{supt∈[a,b] |X(t)|C} < ∞.

(C.6) hμ, hC, hσ, δn1(hμ), δn2(hC), δn1(hσ) → 0 as n → ∞.

(C.7) We have ω1 > ω2 > ⋯ > ωp0 > 0 and ωk = 0 for all k > p0.

Let p̂ be the minimizer of BIC(p). The following theorem gives a sufficient condition for p̂
to be consistent to p0.

Theorem 1—Make assumptions (C.1)-(C.7). Recall that Pn(p) is the penalty defined in (6),

and define . Suppose the following conditions hold

i. for any p < p0, pr[limsupn→∞ {Pn(p0) − Pn(p)} ≤ 0] = 1;

ii. for any p > p0, .

Then limn→∞pr(p̂ = p0) = 1.

By Theorem 1, there is a large range of penalties that can result in a consistent BIC criterion.
For example, let N = Σi mi and recall that the penalty term Pn(p) = Cn,pp. If we let

, it is easy to verify that the conditions in Theorem 1 are satisfied.

We now derive a data-based version of Pn(p) that satisfies condition (i) and (ii). By Lemma
S.1.1 in the Supplementary Material,  is actually the L2 convergence rate of R̂(·,·), which
by Lemma S.1.3 in the Supplementary Material is also the bound for the null eigenvalues,
{ω̂k; k > p0}. In reality, ∥R̂ − R∥ not only depends on  but also on unknown constants
depending on the true function R(·,·) and the distribution of W. To make the information
criterion data-adaptive, we propose the following penalty

(7)

Justification for (7) is given in the Supplementary Material, Section S.2.

3.2 Akaike Information Criterion based on conditional likelihood
The marginal BIC criterion can be computed by using outcomes from FPCA directly and it
is consistent. However, its performances heavily rely on the precision in estimating ωj,
particularly when j is near the true number of principle components, p0. It is known that the
estimation of ωj can deteriorate when j increases. In this subsection, we propose an
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alternative approach that, by having some additional conditions, allows us to take advantage
of the use of likelihood. We consider the principal component scores as random effects, and
proposed a new AIC criterion based on the conditional likelihood and estimated principal
component scores. Such an approach is referred as conditional AIC in linear mixed models,
see Claeskens and Hjort (2008). In an alternative context, Hurvich et al. (1998) proposed an
AIC criterion for choosing the smoothing parameters in nonparametric smoothing. The
FPCA method is to project the discrete longitudinal trajectories on some nonparametric
functions (i.e. the eigenfunctions), and can thus be considered as simultaneously smoothing
n curves. The AIC in the FPCA context is connected to that for the nonparametric
smoothing problem, but the way of counting the effective number of parameters in the
model will be different. Therefore, the penalty in our AIC will also be very different from
that of the nonparametric smoothing problem.

Define Wi = (Wi1, …, Wi,mi)
T, μi = {μ(ti1), ⋯, μ(ti,mi)}

T and ψik = {ψk(ti1), ⋯, ψk(ti,mi)}
T.

Under the assumption that there are p non-zero eigenvalues, denote

, and Xi,[p] = {Xi,[p](ti1), …, Xi,[p](ti,mi)}
T = μi + Ψi,[p]ξi,[p],

where Ψi,[p] = (ψi1, …, ψip) and ξi,[p] = (ξi1, …, ξip)T. Under a Gaussian assumption, the
conditional log likelihood of the observed data {Wi} given the principal component scores is

(8)

where N = Σi mi and .

Following the method proposed by Yao et al. (2005a), we estimate the trajectories by

(9)

where μ̂(·) and ψ̂j(·) are the estimators described in Section 2. The estimated principal
component scores, ξ̂ij, are given by the principal component analysis through the conditional
expectation (PACE) estimator by Yao et al. (2005a). Under the Gaussian model, the best

linear unbiased predictor (BLUP) for ξi,[p] is , where Λ[p] =

diag(ω1, …, ωp),  and . To estimate ξ̂i,[p], the

PACE estimator requires a pilot estimator of , for which we can use the integral estimator

 defined in (3). The PACE estimator is given by

(10)

where μ̂i, Λ̂[p] and Ψ̂i,[p] are the estimates using the FPCA method described in Section 2,

and .

To choose p, Yao et al. (2005a) proposed the pseudo AIC

(11)
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where X ̂[p] is the estimated value of X[p] by interpolating the estimated trajectories defined
in (9) on the subject-specific times. By adding a penalty p to the estimated conditional
likelihood, Yao et al. essentially counted each principal component as one parameter.

To motivate our own AIC criterion, we consider dense functional data satisfying

(12)

We follow the spirit of the derivation of Hurvich and Tsai (1989), and define the Kullback-
Leibler information to be

(13)

for any fixed X ̂[p] and σ̂2, where F is the true normal distribution given the true curves {Xi(·),
i = 1, …, n}. Using similar derivations as in Hurvich and Tsai (1989), for any fixed

parameters  and σ̂2, we have

(14)

By substituting in the FPCA and PACE estimators, the estimated variance under the model
with p principal components is given by

Then the Kullback-Leibler information for these estimators is

(15)

where .

To derive the new AIC criterion, we need the following theoretical results to evaluate the
expected Kullback-Leibler information. As discussed in Hurvich et al. (1998, page 275), in
derivation of AIC, one needs to assume that the true model is included in the family of
candidate models, and any model bias is ignored. For example, Hurvich et al. (1998) ignored
the smoothing bias when developing AIC for nonparametric regressions. Following the
same argument, we will ignore all the biases in μ̂(·) and ψ̂k(·), and only take into account the
variation in the estimators.

Proposition 1—Under assumptions (C.1)-(C.7), condition (12) and the additional

assumption that n (hμ + hC) → ∞, , where the χij

are independent  random variables and . As a

result,  in probability as n → ∞
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The next proposition gives the asymptotic expansion for E{An(p0)}.

Proposition 2—Under the same conditions as in Proposition 1, E{An(p0)} = N + 2np0 +
o(n).

Thus, the expected Kullback-Leibler information is

. This justifies defining AIC as

(16)

When mi → ∞ and p is fixed, an intuitive interpretation for the proposed AIC in (16) is to
consider FPCA as a linear regression on the observed data Wi − μi against covariates (ψi1,
…, ψip) for subject i, and consider the principal component scores as the subject-specific
coefficients. By pooling n independent curves together and by adding up the individual AIC,
we have a total of np regression parameters and the AIC in (16) coincides with that of a
simple linear regression. The biggest difference between our AIC and that of Yao et al. in
(11) is the way we count the number of parameters in the model.

3.3 Consistent information criteria
As pointed out by a referee, functional principal component analysis is closely related to
factor models in econometrics, where there are some existing information criteria to choose
the number of factors consistently (Bai and Ng, 2002). We stress that the data considered in
the econometrics literature are multivariate time series data observed on regular time points,
while we consider irregularly spaced functional data. The estimator and criteria proposed by
Bai and Ng were based on matrix projections, while our FPCA method relies heavily on
kernel smoothing and operator theory. As a result, deriving consistent model selection
criteria for our problem is technically much more involved.

Inspired by Bai and Ng (2002), we consider two classes of information criteria:

(17)

(18)

where  is the error variance estimator used in our AIC (15) and gn is a penalty. The

estimator  in Bai and Ng (2002) was a mean squared error based on a simple regression,
while our estimator is based on the PACE method involving kernel smoothing and BLUP.

For any p ≤ p0, denote ψ[p](t) = (ψ1, …, ψp)T (t), ψ[p+1:p0] = (ψp+1, …, ψp0)T (t), and define
the inner product matrices

 and

. Put Λ[p+1:p0] = diag(ωp+1, …, ωp0), and

(19)

Theorem 2—Suppose τp defined at (19) exists and is positive for all 0 ≤ p < p0. Let p̂ be
the minimizer of the information criteria defined in (17) or (18) among 0 ≤ p ≤ pmax with
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pmax > p0 being a fixed search limit, and define

. Under the assumptions (C.1) - (C.7) and

condition (12), limn→∞ pr(p̂ = p0) = 1 if the penalty function gn satisfies (i)  and (ii)

.

In the factor analysis context, the penalty term in the information criteria proposed by Bai

and Ng (2002) converges to 0 with a rate slower than , where Cn = min(m1/2, n1/2)
translating to our notation. Their rate shows a sense of symmetry in the roles of m and n.
Indeed, when the curves are observed on a regular grid, the data can be arranged into a n × m
matrix W, the factor analysis can be carried out by a singular value decomposition of W, and
hence the roles of m and n are symmetric. For the random design that we consider, we apply
nonparametric smoothing along t, not among the subjects. Therefore, m and n play different
roles in our rate. Not only does the smoothing make our derivation much more involved, but
the fact the within-subject covariance matrices are defined on subject specific time points
poses many theoretical challenges. Our proof uses many techniques from perturbation
theory of random operators and matrices.

The following corollary shows that when the bandwidths are chosen properly, penalties
similar to those in Bai and Ng (2002) can still lead to consistent information criteria.

Corollary 1—Suppose all conditions in Theorem 2 hold, and hμ ≍ max(n,m)−c1, hC ≍
max(n,m)−c2, hσ ≍ max(n,m)−c3, where 1/4 ≤ c1, c2 ≤ 1, 1/4 ≤ c3 ≤ 3/2. Then p̂ that

minimizes PC(p) or IC(p) is consistent if (i)  and (ii) , where Cn =
min(n1/2, m1/2) as defined in Bai and Ng (2002).

Bai and Ng (2002) proposed the following information criteria that satisfy the conditions in
Corollary 1,

(20)

where  is a pilot estimator for . In our setting, we can use  defined at (3) in place

of , and replace m by either the arithmetic or the harmonic mean of mi’s. Under the
undersmoothing choices of bandwidths described in Corollary 1, all information criteria in
(20) are consistent. One can easily see the similarity between the ICp criteria and the AIC
proposed in (16). In general, the ICp criteria impose greater penalties to over-fitting than
AIC. By comparing AIC with the conditions in Theorem 2 and other consistent criteria we
developed, we can see the penalty term in AIC is a little bit small and that explains the non-
vanishing chance of overfitting witnessed in our simulation studies, see Section 4.

4 Simulation Studies
4.1 Empirical performance of the proposed criteria

To illustrate the finite sample performance of the proposed methods, we performed various
simulation studies. Let T = [0, 1], and suppose that the data are generated from the model (1)
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and (2). Let the observation time points Tij ~ Uniform [0, 1], mi = m for all i and

.

We consider the following five scenarios.

Scenario I: Here the true mean function is μ(t) = 5(t − 0.6)2, the number of principal
components is p0 = 3, the true eigenvalues are (ω1, ω2, ω3) = (0.6, 0.3, 0.1), the variance

of the error is  and the eigenfunctions are ψ1(t) = 1, ,

. The principal component scores are generated from independent

normal distributions, i.e. ξij ~ Normal(0, ωj). Here .

Scenario II: The data are generated in the same way as in Scenario I, except that we

replace the third eigenfunction by a rougher function  so that the
covariance function is less smooth, and we let the principal component scores follow a
skewed Gaussian mixture model. Specifically, ξij has 1/3 probability of following a

 distribution, and 2/3 probability of following

, for j = 1, 2, 3.

Scenario III: Set μ(t) = 12.5(t − 0.5)2 − 1.25, ϕ1(t) = 1, ,

, and (ω1, ω2, ω3, σ2) = (4.0, 2.0, 1.0, 0.5). The principal component

scores are generated from a Gaussian distribution. Here .

Scenario IV: The mean function, eigenvalues, eigenfunction and noise level are set to
be the same as in Scenario III, but the ξij’s are generated from a Gaussian mixture
model similar to that in Scenario II.

Scenario V: In this simulation, we set p0 = 6, the true eigenvalues are (4.0, 3.5, 3.0, 2.5,

2.0, 1.5) and . We assume that the principal component scores are normal
random variables and let the eigenfunctions be

In each simulation, we generated n = 200 trajectories from the models above, and compared
the cases with m = 5, 10 and 50. The cases m = 5 and m = 50 may be viewed as representing
sparse and dense functional data, respectively, whereas m = 10 represents scenarios between
the two extremes. For each m, we apply the FPCA procedure to estimate

, then use the proposed information criteria to choose p. The
simulation was then repeated 200 times for each scenario.

The performance of the estimators depends on the choice of bandwidths for μ(t), C(s, t) and

, and the optimal bandwidths vary with n and m. We picked the bandwidths that are
slightly smaller than those minimizing the integrated mean squared error (IMSE) of the
corresponding functions, since undersmoothing in functional principal component analysis
was also advocated by Hall et al. (2006) and Li and Hsing (2010b).

We consider Yao’s AIC, MDL by Poskitt and Sengarapillai (2011), the proposed BIC and
AIC in (6) and(16), and the criteria by Bai and Ng in (20). Yao’s AIC is calculated using the
publicly available PACE package (http://anson.ucdavis.edu/mueller/data/pace.html), where
all bandwidths are data-driven and selected by generalized cross-validation (GCV). The
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empirical distribution of p̂ under Scenarios I to IV are summarized in Tables 1-3. Since the
true number of principal components p0 is different in Scenario V, the distribution of p̂ is
summarized in a separate Table 4.

The proposed BIC method is based on the convergence rate results on the eigenvalues, and
does not rely much on the distributional assumptions for X and U. From Tables 1-3, we see
that BIC picks the correct number of principal components with high percentage in almost
all scenarios, except for the cases where the data are sparse, i.e. m = 5. This phenomena is as
expected, because it is harder to pick up the correct number of signals from sparse and noisy
data.

Compared to BIC, the performance of the proposed AIC method is even more impressive.
Although BIC is designed to be a consistent model selector, the AIC method selects the right
number of principal component with a higher percentage in most of the cases we considered.
This is partially due to the fact that AIC makes more use of the information from the
likelihood. Even though the data are non-Gaussian in Scenario II and IV, the AIC still
performs better than the BIC, and it shows that both the PACE method and the AIC method
are quite robust against mild violation of the Gaussian Assumption. Even though the
motivation and theoretical development for the AIC method described in Section 3.2 are for
dense functional data, it performs surprisingly well for sparse data, such as the case m = 5.

There are six criteria in (20), and we find that the PCp’s and the ICp’s tend to perform
similarly. To save journal space, we only provide the results for PCp1 and ICp1, and the
results for the remaining criteria in (20) can be find in the expanded versions of Tables 1-4
in the Supplementary Material. As we can see, these criteria behave similar to the AIC, and
they tend to do better only in a few occasions when AIC overestimates p.

For almost all scenarios considered, Yao’s AIC hardly ever picks the correct model, with the
exception of Scenario V, m = 5, which will be discussed in more detail below. When the true
number of principal components is 3, Yao’s AIC will normally chose a number greater than
5. This phenomenon becomes more severe when the data are dense. For example, when m =
50, Yao’s AIC almost always pick the maximum order considered, which is 15 in our
simulations. The behavior of the MDL by Poskitt and Sengarapillai (2011) is similar to
Yao’s AIC, and hence these results are only provided in Tables S.2 - S.5 in the
Supplementary Material.

Scenario V, Table 4 is specially designed to check the performance of the proposed
information criteria under the situations where we have a relatively large number of
principal components. The proposed criteria worked reasonably well for m = 10 and 50, and
performed much better than Yao’s AIC. The case of m = 5 under Scenario V is the only case
in all of our simulations that Yao’s AIC picks the correct model more often than our criteria.
With a closer look at the results, we find an explanation. The true covariance function under
Scenario V is quite rough, and the GCV criterion in the PACE package chose a large
bandwidth so that the local fluctuations on the true covariance surface are smoothed out. In
other words, high frequency signals are smoothed out and treated as noise. In a typical run,
the PACE estimates for the eigenvalues are (4.1736, 2.1350, 1.6697, 1.0009, 0.3978,
0.0476) which are far from the truth, (4.0, 3.5, 3.0, 2.5, 2.0, 1.5), and the estimated error

variance is 6.519 in contrast to the truth . It is the combination of seriously
underestimating the high order eigenvalues and small penalty in AIC that makes Yao’s
criterion pick the correct number of principal components. Switching to our undersmoothing
bandwidths, these estimates are improved but then Yao’s AIC will choose much larger
values for p. This case also highlights the difficulty of FPCA when p is large but the data are
sparse. Unless we have a very large sample size, estimation of these principal components is
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very difficult, and comparing the model selection procedures in such a case would not be
meaningful.

4.2 Further Simulations
The Supplementary Material, Section S.4 contains further simulations, including (a)
Expanded results with other model selectors in Tables S.2-S.5; (a) an examination of the
sensitivity of the results to the bandwidth (Supplementary Table S.6); (c) the behavior of
BIC with much larger sample size (Supplementary Table S.7); and (c) results when the value
of m is not constant, i.e., mi ≠ m for all i (Supplementary Table S.8).

5 Data analysis
The colon carcinogenesis data in our study have been analyzed in Li, Wang et al. (2007,
2010) and Baladandayuthapani et al. (2008). The biomarker of interest in this experiment is
p27, which is a protein that inhibits cell cycle. We have 12 rats injected with carcinogen and
sacrificed 24 hours after the injection. Beneath the colon tissue of the rats, there are pore
structures called ‘colonic crypts’. A crypt typically contains 25 to 30 cells, lined up from the
bottom to the top. The stem cells are at the bottom of the crypt, where daughter cells are
generated. These daughter cells move towards the top as they mature. We sampled about 20
crypts from each of the 12 rats. The p27 expression level was measured for each cell within
the sampled crypts. As previously noted in the literature (Morris et al. 2001, 2003), the p27
measurements, indexed by the relative cell location within the crypt, are natural functional
data. We have m = 25-30 observations (cells) on each function. As in the previous analyses,
we consider p27 in the logarithmic scale. By pooling data from the 12 rats, we have a total
of n = 249 crypts (functions). In the literature, it has been noted that there is spatial
correlation among the crypts within the same rat (Li et al., 2007, Baladandayuthapani et al.,
2008). In this experiment, we sampled crypts sufficiently far apart so that the spatial
correlations are negligible, and thus we can assume that the crypts are independent.

We perform the FPCA procedure as described in Section 2, with the bandwidths chosen by
leave one curve out cross-validation. The estimated covariance function is given in the top
panel of Figure 1. The estimated variance of measurement error by integration is σ̃u,I =
0.103. In contrast, the top 3 eigenvalues are 0.8711, 0.0197 and 0.0053. Let kn = max{k; ω̂k
> 0}, then the percentage of variation explained by the kth principal component is estimated

by . The percentage of variation explained by the first 7 principal components
are (0.966, 0.022, 0.006, 0.003, 0.002, 0.001, 0.000).

We apply the proposed AIC, adaptive BIC, the Bai and Ng criteria (20) and Yao’s AIC to
the data. All of the proposed methods lead to p = 3 principal components, for which the
corresponding eigenfunctions are shown in the middle panel Figure 1. As we can see, the
first principal component is a constant over time, and the second and third eigenfunctions
are essentially linear and quadratic functions. Eigenfunction 4 to 7 are shown in the bottom
panel of Figure 1, and they are basically noises and are hard to interpret. We therefore can
see that the variation among different crypts can be explained by random quadratic
polynomials. Yao’s AIC, on the other hand, picked a much large number of principal
components, with p = 9. This is due to the fact that a much smaller penalty is used in Yao’s
AIC criterion. We have repeated the data analysis using other choices of bandwidths, and
the results are the same.
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6 Summary
6.1 Basic Summary

Choosing the number of principal components is a crucial step in functional data analysis.
There have been some data-driven procedures proposed in the literature that can be used to
choose the number of principal components, but these procedures have not been studied
theoretically, nor were they tested numerically as extensively as in this paper.

To promote practically useful model selection criteria, we have assumed that there exists a
finite dimensional true model. We found that the consistency of the model selection criteria
depends on both the sample size n and the number of repeated measurements m on each
curve. We proposed a marginal BIC criterion that is consistent for both dense and sparse
functional data, which means m can be of any rate relative to n. In the framework of dense
functional data, where both n and m diverge to infinity, we proposed a conditional Akaike
information criterion, which is motivated by an asymptotic study of the expected Kullback-
Leibler distance under Gaussian assumption.

Following the standard approach of Hurvich et al. (1998), we ignored smoothing biases in
developing AIC. Our intensive simulation studies also confirm that bias plays a very small
role in model selection. In our simulations in Section 4.2, we tried a wide range of
bandwidths and thus increase or decrease the biases in the estimators, but the performance of
AIC is almost the same. Intuitively, the models under different numbers of principal
components are nested, for a fixed bandwidth the smoothing bias exists in all models that we
compare, and therefore variation is a more decisive factor in model selection.

In view of the connection of FPCA with factor analysis in multivariate time series data, we
revisited the information criteria proposed by Bai and Ng (2002). Even though our setting is
fundamentally different, since we assumed that the observational times are random, and the
FPCA estimators depend heavily on nonparametric smoothing and are much more complex
than those in Bai and Ng, we show essentially similar information criteria can be
constructed. Using perturbation theory of random operators and matrices, and under an
under-smoothing scheme prescribed in Section 3.3, we showed that these information
criteria are consistent when both n and m go to infinity.

6.2 Discussion of the case p0 → ∞
Some processes considered as functional data are intrinsically infinite dimensional. In those
cases, the assumption of p0 being finite is a finite sample approximation. As the sample size
n increases, we can afford to include more principal components in the model and data
analysis. It is helpful to consider that the true dimension p0n increases to infinity as a
function of n. This setting was considered in the estimation of a functional linear model (Cai
and Hall, 2006). To the best of our knowledge, no information criteria have been previously
studied under this setting.

While allowing p0n → ∞, the convergence rates for μ̂(t) and R ̂(s, t) remain the same as those
given in Lemma S.1.1 in the Supplementary Material, but the convergence rates for ψ̂j(t) are
affected by the spacing of the true eigenvalues. Following condition (4.2) in Cai and Hall
(2006), we assume that for some positive constants C and α,

(21)
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To ensure that , we assume that α > 1. Define the distances between the
eigenvalues, δj = mink≤j(ωk − ωk+1), which is no less than C−1j−1−α under condition (21). By
the asymptotic expansion of ψ̂j(t), see (2.8) in Hall and Hosseini-Nasab, 2006, one can show

that the convergence rate of ψ̂j is  times those in Lemma S.1.2 in the Supplementary
Material, i.e.

Assume that n, m, p0n → ∞, , and . Following the proof
of Theorem 2, while taking into account the increasing estimation error in ψ̂j(t) as j increases
and the increasing dimensionality of the design matrix Ψi, we can show that

(22)

where τp ≍ tr(Λ[p+1:p0n]) is analogous to (19) and ϱn is as defined in Theorem 2. Since the
eigenvalues are decaying to 0, the size of the signal τp ≍ p−α as p increases to p0n. In order
to have some hope of choosing p0n correctly, we need τp to be greater than the size of the

estimation error, which implies that .

Now, consider the class of information criteria in Section 3.3. Suppose that p0n increases

slowly enough so that , and that the penalty term satisfies τp/(pgn) →

∞ for p < p0n and  for p > p0n. Then we can show that the p̂
which minimizes PC(p) or IC(p) is consistent. These conditions translate to

(23)

If p0n = {min(m, n)}β where 0 < β < 1/(2α+3), one can see that the criteria in (20) do not
satisfy the conditions in (23) automatically and hence are not guaranteed to be consistent.
An information criterion satisfying condition (23) requires a priori knowledge of the decay
rate of the eigenvalues. Developing a data-adaptive information criterion that does not
require such a priori knowledge is a challenging topic for future research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Functional principal component analysis for the colon carcinogenesis p27 data. Top panel:
estimated covariance function; middle panel: the first 3 eigenfunctions; lower panel:
eigenfunctions 4-7.
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