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ABSTRACT Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and
quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their
own or relatives’ performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who
attributed much of his understanding to Wright, and formalized in Fisher’s infinitesimal model. Analysis at the level of individual loci
and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular
information is being used to enhance response with “genomic selection” is occurring. The predictions of breeding value still utilize
multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assump-
tions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues
to have major spin-offs into ideas and applications in other areas.

THE success of breeders in effecting immense changes in
domesticated animals and plants greatly influenced Dar-

win’s insight into the power of selection and implications to
evolution by natural selection. Following the Mendelian re-
discovery, attempts were soon made to accommodate within
the particulate Mendelian framework the continuous nature
of many traits and the observation by Galton (1889) of
a linear regression of an individual’s height on that of a rel-
ative, with the slope dependent on degree of relationship. A
polygenic Mendelian model was first proposed by Yule
(1902) (see Provine 1971; Hill 1984). After input from Pear-
son, Yule again, and Weinberg (who developed the theory
a long way but whose work was ignored), its first full expo-
sition in modern terms was by Ronald A. Fisher (1918) (bi-
ography by Box 1978). His analysis of variance partitioned
the genotypic variance into additive, dominance and epi-
static components. Sewall Wright (biography by Provine
1986) had by then developed the path coefficient method
and subsequently (Wright 1921) showed how to compute
inbreeding and relationship coefficients and their conse-

quent effects on genetic variation of additive traits. His ap-
proach to relationship in terms of the correlation of uniting
gametes may be less intuitive at the individual locus level
than Malécot’s (1948) subsequent treatment in terms of
identity by descent, but it transfers directly to the correla-
tion of relatives for quantitative traits with additive effects.

From these basic findings, the science of animal breeding
was largely developed and expounded by Jay L. Lush (1896–
1982) (see also commentaries by Chapman 1987 and Ollivier
2008). He was from a farming family and became interested
in genetics as an undergraduate at Kansas State. Although his
master’s degree was in genetics, his subsequent Ph.D. at the
University of Wisconsin was in animal reproductive physiol-
ogy. Following 8 years working in animal breeding at the
University of Texas he went to Iowa State College (now
University) in Ames in 1930. Wright was Lush’s hero: ‘I wish
to acknowledge especially my indebtedness to Sewall
Wright for many published and unpublished ideas upon
which I have drawn, and for his friendly counsel” (Lush
1945, in the preface to his book Animal Breeding Plans).
Lush commuted in 1931 to the University of Chicago to
audit Sewall Wright’s course in statistical genetics and con-
sult him. Speaking at the Poultry Breeders Roundtable in
1969: he said, “Those were by far the most fruitful 10 weeks
I ever had.” (Chapman 1987, quoting A. E. Freeman). Lush
was also exposed to and assimilated the work and ideas of
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R. A. Fisher, who lectured at Iowa State through the sum-
mers of 1931 and 1936 at the behest of G. W. Snedecor.

Here I review Lush’s contributions and then discuss how
animal breeding theory and methods have subsequently
evolved. They have been based mainly on statistical meth-
odology, supported to some extent by experiment and pop-
ulation genetic theory. Recently, the development of
genomic methods and their integration into classical breed-
ing theory has opened up ways to greatly enhance rates of
genetic improvement. Lush focused on livestock improve-
ment and spin-off into other areas was coincidental; but
he had contact with corn breeders in Ames and beyond
and made contributions to evolutionary biology and human
genetics mainly through his developments in theory (e.g.,
Falconer 1965; Robertson 1966; Lande 1976, 1979; see also
Hill and Kirkpatrick 2010). I make no attempt to be com-
prehensive, not least in choice of citations.

J. L. Lush and the Science of Livestock Improvement

Lush was interested in practical application and in how to
make the most rapid improvement. “Heritability” is an old
word and evolution of its use is discussed by Bell (1977),
who includes a long letter from Lush. He was first to adopt
heritability in the narrow quantitative genetics sense as the
ratio of additive genetic to phenotypic variation, and there-
fore also the square of Wright’s correlation of (additive)
genotypic and phenotypic value, and to use “accuracy” of
a predictor of breeding value to compare alternative selec-
tion schemes. Crucially Lush developed what has become
known as the “breeder’s equation” for predicting response
in terms of selection differential, R = h2S. The expression is
implicit in his book Animal Breeding Plans (first edition
1937, third and last edition 1945, of which my 1962 copy
is the eighth printing). He writes, “for each unit which the
selected parents average above the mean [. . .], their off-
spring will most probably average about sH

2=ðsH
2 þ sE

2Þ as
far above. This would be literally true if all genes act addi-
tively” (Lush 1937, p. 84; Lush 1945, p. 100). Here sH

2 is the
total genetic (genotypic) variance, but he clarifies in a foot-
note, “This formula would be more nearly correct if the
numerator were only the additive genetic portion of the
variance but that is a slight understatement of the case since
a proportion of the epistatic variance belongs in the numer-
ator.” This comment has a subtlety I discuss later.

Lush addressed what proportion of the variation in
production traits in livestock was genetic, the resource for
genetic progress. His first major article on quantitative
genetic applications in animal breeding was on “Factors af-
fecting birth weights of swine” (Lush et al. 1934). He saw
the need to obtain estimates of parameters such as the her-
itability free of confounding by environmental covariances
and proposed using daughter dam within sire regression to
avoid bias by herd effects (Lush 1940). He considered prac-
tical questions such as the relative accuracy of selection on
a cow’s own performance vs. that of her progeny mean (Lush

1935). Together with his colleague L. N. Hazel, Lush devel-
oped selection index principles to make best use of the data.
In the plant breeding context, Smith (1936) had derived
a discriminant function, i.e., a selection index, and thanks
“Fisher for guidance and inspiration. [. . .] section I [. . .] is
little more than a transcription of his suggestions.” Hazel
(1943) introduced the idea of genetic correlations and
showed how to use these to compute multitrait selection
indices, and Lush (1947) derived how best to weight an
index of records on an individual and its sibs. He and col-
leagues recognized also that rates of progress should be
maximized per year rather than per generation and consid-
ered the tradeoff between the high accuracy of a progeny
test and the shorter generation time by selecting on own
performance (Dickerson and Hazel 1944).

Lush’s research was closely focused on practical problems
of short-term improvement, mainly on how to select the best
animals to breed the next generation. Over such a time scale
of a few generations, issues of finite population size, size of
gene effects, and epistasis are not important, so Lush could
just as well be following Fisher as Wright. Further, he dis-
cusses in Animal Breeding Plans (Lush 1945, Chap. 11) how
selection can change variability in a population: he argues
that, although the selected individuals are phenotypically
and somewhat genetically less variable, most will recover
variation in subsequent generations, and so an assumption
of multiple loci and of near constancy of response is a reason-
able approximation in the medium term. (This was formal-
ized later by Bulmer, discussed below.)

Nevertheless Lush shows the influence of his mentor
Wright, who had participated in multigeneration selection
experiments for his Ph.D. with Castle and subsequently
undertook breeding experiments at U.S. Department of
Agriculture (USDA) and analyzed pedigree records of
Shorthorn cattle, all of which took him to the shifting-
balance theory (Wright 1931, 1932). Summarizing later: “It
was apparent, however, from the breeding history of Short-
horn cattle [. . .] that their improvement had actually oc-
curred essentially by the shifting balance process rather
than by mere mass selection. There were always many herds
at any given time, but only a few were generally perceived
as distinctly superior [. . .]. These herds successively made
over the whole breed by being principal sources of sires”
(Wright 1978, pp. 1198–9). Still in chapter 11, Lush (1945)
discusses selection for epistatic effects and presents a two-
dimensional “peaks of desirability” and a contour diagram of
Wright’s adaptive landscape (from Wright 1932). Lush con-
cludes the chapter with practical advice: “Only rarely is mass
selection completely ineffective, as when selection is for a het-
erozygote, when selection has already carried the popula-
tion into stable epistatic peak, or when selection is within an
entirely homozygous line. Often, however, the rate of prog-
ress by mass selection is slow and could be made more rapid
by a judicious use of relatives and progeny or by more care-
ful control of the environment.” Later in the book, after de-
scribing how to increase selection responses, he considers
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inbreeding, assortative mating, and the like and returns to
some of the epistatic themes.

As clearly shown in Animal Breeding Plans, Lush (1945)
had both a practical insight and a deep understanding of the
quantitative genetic principles and statistical ideas behind
both Wright’s and Fisher’s work. More theory and detailed
argument is given in Lush’s lecture notes “The genetics of
populations,” issued as mimeo and dated 1948 (Lush 1948).
They were somewhat modified subsequently but, I judge,
rather little. Although not then formally published, the notes
were influential because so many students took Lush’s course
and because they cover so much basic population and quan-
titative genetics and the relevant statistics. After his death they
were retyped and published (Lush 1994), edited by A. B.
Chapman and R. R. Shrode with comments by J. F. Crow.

Lush had many very able colleagues in Ames, both in
animal science and statistics. Among the latter was O.
Kempthorne, who had worked at Rothamsted, was a great
admirer of Fisher, and took an interest in genetics. Inter alia
he extended Fisher’s partition of variance for multiple-allele
and -locus epistatic effects and published a book on genetic
statistics (Kempthorne 1957). The many graduate students
at Iowa State were therefore exposed both to Lush’s use of
the path diagram approach of Wright and to Kempthorne’s
emphasis on the variance component approach of Fisher.
Lush commented in a letter to Bell (1977), however: “Leav-
ing it in variance components, rather than as fractions of
those, seems to have certain technical advantages when
one is concerned only with statistical significance. Fisher and
Snedecor were stressing unduly the testing for significance in
the early 1930s [. . .]. I merely mention that as part of the
explanation for the widespread preference for expressing our
findings in variance components, rather than to express them
as fractions of variance.”

Lush was an outstanding communicator to students,
scientists, and breeders. He had 126 Ph.D. and 26 M.S.
students (Chapman 1987), including C. R. Henderson. In
1963, between master’s and Ph.D., I was briefly a student of
Kempthorne at Ames where there was a great aura of practical
inquiry and activity. I took part in Lush’s course, albeit then
becoming a little dated. I have never found path diagrams
useful, but others have done so, not least economists. Indeed
most subsequent developments have been undertaken in
terms of variances and covariances rather than their ratios.

Developments in Quantitative Genetic and Breeding
Prediction Theory

Quantitative genetic principles as applied to breeding were
being adopted and developed elsewhere in the 1940s for
plants and for animals. K. Mather and colleagues at
Birmingham (United Kingdom) focused mainly on design and
interpretation of crosses of plants and on inferences about the
individual parental lines. They wrote in Biometrical Genetics
(Mather 1949, subsequent editions with Jinks) and were
rather little influenced by Lush’s work. Comstock and Robinson

at Raleigh were concerned also with plants but gave more
emphasis to variation within lines. The work on design of
breeding programs was concerned particularly with line-
cross improvement, which had more limited impact in live-
stock breeding, with the notable exception of reciprocal
recurrent selection (RRS) proposed by Comstock et al. (1949).

I. M. Lerner and E. R. Dempster at the University of
California, Berkeley, undertook both theoretical and exper-
imental studies, using poultry as both a model and com-
mercial species. They proposed and tested experimentally
the use of part-year laying records on sibs to replace progeny
testing of males so as to reduce generation interval and
increase selection intensity. In Population Genetics and Animal
Improvement, subtitled “As illustrated by the inheritance of
egg production in poultry,” Lerner (1950) outlines the popu-
lation and quantitative genetic principles and practice, and he
specifically acknowledges his indebtedness to Wright and to
Lush. His interests extended well beyond poultry breeding,
however, including genetic homeostasis (Lerner 1954).

In part to apply the new operational research techniques
to animal breeding, a group was brought together in
Edinburgh after World War II. Early theoretical work was
immediately relevant to animal improvement in the Lush
tradition. Notably, Rendel and Robertson (1950) provided
general formulae for rates of progress for overlapping gen-
erations with different strengths of selection in male and
female parents. They used these to contrast possible rates
of progress in dairy cattle for traditional within-herd selec-
tion and for the new opportunity provided by progeny test-
ing bulls by artificial insemination (AI) with daughters in
many herds. Robertson was a chemist by training, but spent
some months with Wright and with Lush prior to coming to
Edinburgh. He developed the “contemporary comparison”
method for genetic evaluation of sires used in AI, which
was important until superseded by Henderson’s best linear
unbiased prediction (BLUP)methodology. (I was a Ph.D. stu-
dent and subsequent colleague of Alan Robertson, whose
personal input and coffee sessions were a great source of
questions, insight, and debate. I apologize for any Edinburgh-
centric bias in coverage.)

Lerner also spent a sabbatical leave at Edinburgh before his
1950 book was published, but interactions were wider. The
Ames and Berkeley groups both advised a Californian poultry
breeder in the late 1940s, and a unique collection of talent
worked on the genetic improvement of threshold traits, such as
survival of poultry, using the model originally formulated by
Wright (1934) for polydactyly in guinea pigs. Articles were
authored by combinations of Lush, Hazel, Lerner, Dempster,
and Robertson (e.g., Dempster and Lerner 1950, which includes
an appendix by Robertson deriving the well-known relationship
between heritability on the binary and continuous scales).

These ideas were extended later by D. S. Falconer at
Edinburgh who developed a simple method for estimating
heritability of threshold traits by adapting the breeder’s
equation rather than using variance components (Falconer
1965), work that attracted much attention in the human
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genetic community as a model for genetic study of disease.
Falconer also did much to expand the use and understand-
ing of quantitative genetics and its applications through his
book Introduction to Quantitative Genetics (Falconer 1960a
and subsequent editions).

Theory developed for livestock populations by Lush and
others has also had an important influence on evolutionary
ideas and theory. Breeders appreciated that Lush’s breeder’s
equation R= h2S applied only to the trait on which selection
was practiced, even if evolutionary biologists did not. The
equation was generalized, however, by Lande (1979) in terms
of selection gradients consequent on fitness differences. In the
breeders’ world, the equivalent would be described as a ret-
rospective index, asking after the event what the selection
was actually on, but both apply only to traits that are actually
recorded. In an analysis of culling theory in dairy cattle,
Robertson (1966) showed that changes in traits equaled
their genetic covariance with fitness (i.e., the hidden index),
in what has become known as the secondary theorem of
natural selection. It was subsequently generalized by Price
(1970) and is also known as the Price or Robertson–Price
equation. Further discussion of impacts of animal breeding
on evolutionary theory is given elsewhere (Hill and Kirkpatrick
2010). Indeed, for a discussion on this and any other issues on
selection and beyond, see completed sections of the magnum
opus by Walsh and Lynch (2009).

Lush and colleagues at Ames mainly utilized field data on
livestock, with estimates of genetic parameters needed for
maximizing short-term response in terms of rate and di-
rection. He had sufficient understanding of the theory and
models that he had expounded and on the results of early
experiments to be confident that responses would continue
at similar rates. Neither he nor most of his colleagues undertook
selection experiments to check whether predictions from
theory actually worked in practice, however. These were
undertaken elsewhere and I turn to them later.

Simple Polygenic Models: The Infinitesimal Model

Fisher (1918) had introduced a genetic model with “a great
number of different factors, so that s [standard deviation] is
large compared to every separate a [gene effect] (Fisher
1918, p. 402),” the so-called “infinitesimal model.” It was
formalized by Bulmer (1971, 1980), so properties of the
normal distribution could be used: “normal theory presup-
poses an effectively infinite number of unlinked loci with
infinitesimal effects; in consequence a finite change in the
mean can be brought about by an infinitesimal change in gene
frequencies” (Bulmer 1980, p. 150). The variance among se-
lected individuals is less than in the population as a whole,
but in the infinitesimal model the variance contributed at
each locus, and thus the genic variance, can be assumed to
remain constant despite the selection. Changes in variance
under selection result not from gene frequency change but
from gametic disequilibrium among loci, which is transient
as a consequence of recombination.

An important feature of the infinitesimal model is that
theory for multivariate normality can proceed, exactly or to
good approximation, in the quantitative genetic context.
Variances and covariances among relatives for single and
multiple traits in the next generation are predictable solely
from the standard methods of multiple regression and linear
models dating back to Pearson (1903). Regression theory
enables computation of the reduction in the phenotypic var-
iance in a mass selected group, the variance in their breed-
ing value, and thus the variance between families in the next
generation. This reduction, the “Bulmer effect,” is due to
gametic phase disequilibrium between loci that affect the
trait induced by the selection (Bulmer 1971, 1980). The
Mendelian sampling variance, which comprises the genetic
variance within families, remains unchanged because, with
free recombination, gametic equilibrium for unlinked loci
within families is recovered. The departure from normality
caused by truncation selection has little impact on the
change predicted from the normal distribution in subse-
quent generations (Turelli and Barton 1994). The Mende-
lian sampling variance component declines predictably in
proportion to the mean inbreeding coefficient of the parents.

Effects are necessarily additive within loci and, if all n loci
are contributing, their individual effects must decline ap-
proximately in proportion to 1=

ffiffiffi

n
p

as n / N. With direc-
tional dominance, however, it is not possible to specify
a model whereby both additive variance and inbreeding de-
pression remain finite as n increases. Epistasis is formally
excluded, but additive 3 additive terms can be accommo-
dated provided the epistatic effects among the pairs of loci
decline approximately in proportion to 1/n. Griffing (1960),
who had worked with Lush, showed how epistatic variance
could contribute to response. Genetic gain arises from ga-
metic disequilibrium among the epistatic loci but, for un-
linked loci, asymptotes under continued selection because
half is lost each generation by recombination, like the
Bulmer effect for variance, and so does not contribute to
subsequent response. Lush understood much of this, albeit
not all at a formal level, as sections in animal breeding plans
show; for example, see the footnote quoted earlier. The lack of
impact of epistasis on recurrent response is a general feature,
however, not just of the infinitesimal model (Crow 2010).

When we look at both previous and subsequent develop-
ments in the application of population genetics to animal
breeding we find that much of it has explicitly or implicitly
been based on the infinitesimal model: it has very powerful
simplifying statistical properties and avoids the need to
specify individual gene effects, information on which has
until recently been impossible to obtain.

Breeding Value Prediction Using the Infinitesimal
Model: Henderson, BLUP, and the Animal Model

To utilize additive effects, genetic improvement requires
identifying the animals with the highest breeding value and
selecting them, then replacing them as better ones come
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along. A major intellectual insight into prediction of
breeding value came from C. R. Henderson, a student of
Lush and Hazel (although there is little sign to the outsider
that they interacted much). He recognized that there were
“fixed” effects such as herd or season, which had to be in-
cluded but not estimated, and others, “random” effects,
which were samples from a distribution. In the standard
index theory of Hazel and Lush it was assumed that envi-
ronmental effects were properly corrected for, straightfor-
ward to achieve when all animals are reared together, but
not for bulls with daughters got by AI and distributed un-
equally around many herds. The breeder’s aim is not to
estimate the current mean, but to predict the performance
of future daughters. The methodology was formalized as BLUP
by Henderson. It first appears in his Ph.D. thesis (Henderson
1948), but he developed it greatly subsequently when at
Cornell, completing a book after retirement (Henderson
1984). S. R. Searle, Henderson’s colleague there, was an
important contributor to his work and also did much for
developments in variance component estimation (Searle
1971). Alternative early methods used contemporary compar-
isons or regressed least squares, which were more computa-
tionally tractable. In these the process of estimation of actual
effects and regression to predict the breeding values were
done sequentially and assumptions made that the sires of
contemporaries were randomly sampled from the population.

Henderson proposed the mixed model equations, which
look like least-squares equations but include the critical
shrinkage term for the random effects, and are more compact
and tractable to solve than the equivalent maximum likeli-
hood equations. They yield best linear unbiased estimates
(BLUE) of fixed effects and predictors (BLUP) of random
effects. To many statisticians the idea of predicting a re-
alization of random effects, i.e., a breeding value, in a statis-
tical model was unsound, but scarcely troubled quantitative
geneticists. The critical requirement is that there is a known
distribution from which the breeding values are sampled,
assumed to be the normal with variance VA, and BLUP is no
different in that sense from a simple predictor from pheno-
type such as Â ¼ h2P. Indeed breeding value prediction, the
selection index, BLUP, and the like can be given a simple
Bayesian interpretation (e.g., A. Robertson 1955). The mixed
model has provided a basis for approaching many areas of
variance partition and prediction, including generalized non-
linear models such as those for threshold traits and for mod-
els in which the variance is itself subject to variation.

The first widely used BLUP models were in terms of sire
genetic effects and within sire deviations, which fulfilled the
primary need for dairy sire evaluation and were computa-
tionally feasible. But the complete analysis requires the “an-
imal model” (e.g., Henderson 1976 described it, but did not
then name it), in which the breeding value of each individ-
ual is defined in terms of effects and the covariances among
breeding values of different individuals. The covariances are
expressed in terms of Wright’s numerator relationship, i.e.,
the covariance of uniting gametes or twice coancestry (kinship)

coefficient, as off-diagonals in the relationship matrix (A),
with the diagonal elements depending on the individual’s
inbreeding coefficient. Solution of the BLUP equations
requires the inverse A21, however, but Henderson (1976)
saw that it had a simple form and could be obtained directly
from pedigrees without ever computing A.

BLUP predictions allow comparisons among individuals
in the population that differ in age and amounts of
phenotypic information on them and their relatives and
incorporate multiple traits. Thus, for example, genetic
trends over years and generations can be estimated free of
environmental changes (Henderson et al. 1959). Inter alia
two important assumptions are made, however. The first is
that all selection is accounted for, and so formally it has to
include all traits on which selection is based (but unre-
corded traits, such as on animals prior to the existing ped-
igree or dead before recording remain a problem), and
selection is not confounded with fixed effects (a debated
technical issue, see e.g., Thompson 1979, but not one for
this article). The second is implicit, that the infinitesimal
model holds, such that, for example, the variance is not
changed by selection other than through gametic disequilib-
rium and the genic variance declines in proportion to the
inbreeding coefficient. Mutation is usually ignored, but can
be accommodated by adding a series of relationship matri-
ces back to successive generations of new variance from
mutation (Wray 1990).

Notwithstanding the strong assumptions invoked, the
flexibility and successful practical adoption of the BLUP and
animal model framework are such that it became all
pervasive in livestock improvement. It copes with multiple
traits and also enables other major additions to the
quantitative genetic model developed over the decades to
be incorporated in the same structure. These include mater-
nal genetic effects, such as of dam on calf’s phenotype for
birth weight introduced by Willham (1963), a colleague of
Lush; competitive effects, e.g., impact on the growth of an
animal of its pen mates (Bijma et al. 2007), which develop
ideas for analysis of plant competition (Griffing 1967); ran-
dom regression models for traits such as weight at different
ages in which the regression coefficient varies genetically
(Schaeffer and Dekkers 1994) and that can also be
expressed in terms of a covariance function across ages
(Meyer and Kirkpatrick 2005); and dominance effects
(Smith and Maki-Tanila 1990). Subsequently methods to
incorporate genomic information have been put into the
BLUP framework as discussed later.

Henderson (1953) also developed methods for estima-
tion of variance components, e.g., additive genetic variance,
in designs with an unbalanced structure typical in livestock
breeding, These methods were standard for many years un-
til restricted (aka residual) maximum likelihood (REML,
which incorporates BLUP) was developed (Patterson and
Thompson 1971) and computing power became adequate
to use it for large data sets. REML is now standard in quan-
titative genetic analysis and beyond (Thompson 2008).
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Bayesian methods for mixed models in quantitative genetics
have been stimulated particularly by Gianola and colleagues
(e.g., Gianola and Fernando 1986) and, following the de-
velopment of Markov chain Monte Carlo (MCMC) techni-
ques to facilitate computation, are increasingly adopted,
although still computationally intense (Sorensen and Gianola
2002). Whatever one’s philosophical bent, the Bayesian
and MCMC methods have advantages of flexibility in ana-
lyses of nonnormally distributed (e.g., categorical) traits
more generally and in fitting Bayesian genomic prediction
models.

The animal model also provides a structure in which to
visualize and analyze selection experiments, because the
average covariance between individuals within a generation
essentially equals the genetic drift variance accumulated to
that generation (Sorensen and Kennedy (1986). Conse-
quently, the changes in mean and in genetic and other var-
iances can be estimated simultaneously.

Following Shaw (1987) and stimulated by the book by
Lynch and Walsh (1998) and by Kruuk (2004) the mixed
model framework with the animal model has also become
widely adopted in analyses of data from pedigreed natural
populations, not just for estimating quantitative genetic
parameters such as heritability and correlations, but also
the strength of selection acting on each trait. This has led
to new approaches and understanding. Researchers in wild
population biology, however, face problems of obtaining
data on sufficient numbers of related animals to obtain un-
biased estimates with low variance, not least in a context
where natural selection is likely to be acting via many traits,
some or most of which may be unrecorded (Hadfield et al.
2010).

Incorporation of Finite Population Size into Predictions
of Response

How long and how fast selection could continue over many
generations have always been of concern, but Lush and his
school focused on selecting accurately and effectively each
generation, de facto assuming the infinitesimal model with
changes in VA proportional to inbreeding. After Wright there
was little formal analysis of the effects of selection in finite
populations before the work of Kimura in the 1950s at the
individual locus level (Crow and Kimura 1970).

Direct application of population genetic methods includ-
ing individual locus effects, selection, and population size
for predicting long-term response was led by Alan Robertson,
who had previously considered the effects of inbreeding on
variation due to recessives genes in unselected populations
(Robertson 1952). He resurrected (Robertson 1960) a for-
mula of Haldane (1931) for the selective value s of a trait
under artificial selection, s = ia/sP, in terms of selection
intensity (i) and the gene effect relative to the phenotypic
standard deviation (a/sP). Gene frequency change could
then be predicted and he extended the formula to include
selection on an index of relatives’ records. Using Kimura’s

diffusion equation methods and results, Robertson showed
that the fixation probability of a favorable additive gene in
a population of constant effective size Ne was a function of
the product Nei. Thus, while more intense selection
increases short-term response, if fewer parents are thereby
selected and Ne is reduced, there is a cost in long-term re-
sponse. Indeed for selection on phenotype, the limit is max-
imized with half the population selected (i.e., very weak),
and if family information is included to increase accuracy
and immediate gain, the limit is reduced because coselection
of relatives reduces Ne. The impact of small Ne on fixation
probability or long-term response is greatest for genes that
have very small effect or are initially at low frequency. Ex-
perimental tests of the theory were undertaken, with gen-
erally concordant results (Jones et al. 1968).

While the basic premises are clear, the practical problem
with this theoretical approach is that one cannot predict the
actual limit or indeed the response after the first few
generations without knowledge of, or making assumptions
about, s values, i.e., gene effects, and their initial frequen-
cies, let alone considering complexities of dominance, epis-
tasis, and any counteracting natural selection.

The ideas in Robertson’s 1960 selection limits article
were extended to include linkage (Hill and Robertson
1966), using Monte Carlo simulation as a mathematical tool
rather than to represent a binary word as a chromosome. As
a personal aside, this article has had negligible influence on
animal breeding practice but was picked up, initially by
Felsenstein (1974), in discussions of the evolutionary
advantages of recombination and sex by increasing the sur-
vival of advantageous mutant genes. The 1966 and subse-
quent articles (Hill and Robertson 1968; Sved 1968) drew
attention to production of linkage disequilibrium (LD) by
drift in finite populations, but it was then essentially an
academic exercise because many years passed before much
LD data could be collected.

Population genetic arguments were also applied to the
impact of selection on effective population size. High-
performing individuals are likely to have high-performing
relatives so the variation in family size is increased and Ne

reduced by artificial selection. Robertson (1961) computed
the impact using a model in terms of variation in fitness. The
ideas were extended by Nei and Murata (1966) to the evo-
lutionary context and later revised to account for the im-
proving performance of competitors such that fitness
benefits decay over generations (Wray and Thompson
1990). These have led to increasingly sophisticated and dy-
namic methods based on the infinitesimal model to optimize
breeding structure, maximizing response relative to inbreed-
ing, by balancing selection intensity, accuracy, and mating
scheme (Wray and Goddard 1994; Meuwissen 1997).

Frankham (1980) showed that mutation was important
in contributing response in long-term artificially selected
populations. Clayton and Robertson (1957) had previously
obtained estimates of its magnitude for quantitative traits,
and the upper end of their estimate (�0.1% new heritability
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per generation) turned out to be roughly the modal estimate
for many species and traits (Houle et al. 1996). Asymptotic
response from mutations is in theory proportional to Ne, but
the short-term impact is negligible if mutant effects are in-
finitesimally small (Hill 1982). If some effects are large, re-
sponse is less predictable but expected sooner (Caballero
et al. 1991). Mutation is relevant to maintenance of long-
term variation and response and to the comparisons be-
tween infinitesimal and finite locus models, which we dis-
cuss subsequently.

Selection Experiments to Check on
and Develop Theory

Multigeneration selection experiments have been used
widely with the aim of learning about the genetic architec-
ture of traits, not least their polygenic basis, and in
evaluating selection methods for breeding programs. They
date back to those of Castle, Sturtevant, and others. For
example, Mather and colleagues in Birmingham attempted
to draw inferences about, e.g., the relations among gene
effects along the chromosome (Mather 1941). Nevertheless,
experiments that tested quantitative genetics selection the-
ory based on formulations of Lush and colleagues did not
feature significantly much before 1950. Lush himself seemed
confident enough of the theory and was perhaps reassured
by the early experiments of Castle and others not to be
concerned about testing the effectiveness of selection, for
example, in practice. Indeed it is worth noting that annual
cycles of selection in the Illinois lines of maize were started
before 1900 and responses have now continued for .100
generations (Dudley and Lambert 2004).

A straightforward check was made of whether selection
response over multiple generations met predictions made
from parameter estimates in the base population by Clayton
et al. (1957) in Edinburgh. For abdominal bristle number in
Drosophila, predictions (e.g., R = h2S) were quite good over
early generations; most of the response achieved was not
lost quickly on relaxation of selection; and inbred lines and
replicate selection lines varied as expected from genetic
drift. This provided some reassurance on Wright’s and Lush’s
theories of inbreeding and selection response. Further, the
selection experiments showed that, as expected from the
polygenic model, if selection was continued for very many
generations, then response continued such that the means of
both the high and low lines were well outside the phenotypic
range in the base population (Clayton and Robertson 1957).

Bristle number is a highly heritable trait for which most
of the genetic variance is additive (Clayton et al. 1957) and
is not strongly associated with fitness. Other experiments at
Edinburgh, however, e.g., by Reeve and F.W. Robertson,
were focused more on fitness-associated traits, for which
the patterns and continuation of response were more poorly
predicted and plateaus were obtained (F. W. Robertson
1955). Even so, Falconer (1960b) showed that continued
selection to increase ovulation rate was effective in raising

the mean, although more so in reducing it. Lerner and
Dempster were able to show the effectiveness of part record
selection in poultry, as predicted, but had already found
clear examples of natural opposing artificial selection, for
example, in shank length (discussed in Lerner’s 1957 book
The Genetic Basis of Selection). The difficulties with such
were, and remain, to make adequate predictions from base
population parameters.

The selection experiments also led to developments in
theory. Notably Falconer (1952) introduced “realized heri-
tability” to describe the selection response and extended the
concept of genetic correlation between traits as used by
Hazel (1943) to that between the same trait in individuals
reared in different environments and so having phenotypic
record in only one (Falconer 1952). He also showed that,
contrary to some animal-breeding dogma, larger responses
might be obtained in a good environment by selection in
a poorer one than in the good one itself. The principle of
the genetic correlation across environments is, for example,
a fundamental component of methods used for evaluation of
dairy sires in each of many countries by Interbull (http://
interbull2.slu.se/www/v1/).

In farm livestock a number of multigeneration experi-
ments were started. The nicest early example of simple mass
selection working in livestock was for fatness in pigs
reported by Hetzer and Harvey (1967) of USDA, following
proposals by Hazel, in which they obtained a high–low line
divergence in backfat depth of 68% of the initial mean after
10 generations in one breed and 44% after 8 generations in
another. The realized heritabilities accord with estimates on
the trait from elsewhere by variance component analysis.
Several selection lines of sheep were started in Australia in
the 1950s, and substantial responses were obtained for in-
dividual traits (Turner and Young 1969).

Although most of these studies showed that an additive
model did quite a good job, the obvious inbreeding de-
pression and heterosis in fitness led to attempts to utilize the
latter, as was being practiced in maize, both by generating
inbred lines and test crossing and by using RRS, assessing
individuals by their crossbred sibs or progeny. An example of
using selection experiments to compare breeding schemes
was reported by Bell et al. (1955) at Purdue, who assessed
pure-line and cross-line selection alternatives for improve-
ment of crossbred performance, including recurrent inbreed-
ing. While the more complex schemes had potential benefits,
the use of inbreeding and selection on crossbreds as in maize
was not really feasible in livestock: without selfing, inbreed-
ing can be built up only slowly, and the high-inbreeding de-
pression leads to much loss of lines, precluding intense
selection and rapid turnover of new improved crosses; so it
fell out of use. Similarly RRS involves a more complex breed-
ing program with the need for family rather than individual
selection. Although commercial poultry and pig products are
crosses, selection seems to be primarily or exclusively on
purebred performance, focusing on selection intensity and
generation turnover rather than accuracy.
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Experiments were also undertaken to assess the effec-
tiveness of some of Wright’s ideas by comparing continuous
selection in a single large population with selection in many
small lines, selecting among these, and from a cross among
them, continuing with later cycles of inbreeding and selec-
tion. These were undertaken using bristle number in Dro-
sophila, however, an “additive” trait, and so, in hindsight,
the lower response from the inbreeding scheme is unsurpris-
ing (Madalena and Robertson 1975).

Looking back at these experiments, mainly from the
perspective of the early 1960s, what do they tell us? Selection
works and keeps working over many generations to give large
phenotypic change provided that correlated changes in fitness
do not interfere. They are not very discriminatory in terms of
models of gene action, e.g., many or few important loci. The-
ory in terms of average effects (not necessarily additive gene
action per se) gives useful predictions. Drift occurs among
lines and inbreeding within lines in accordance with simple
additive and dominance model predictions respectively. There
was no real upset to the models and arguments of Wright and
Lush, or indeed of Fisher, although he had mostly discounted
drift effects working in the evolutionary context. What we did
not get from the experiments is much detail of the genetic
architecture, beyond the obvious conclusion that many loci
must contribute and that there are often fitness-associated
effects (i.e., unfavorable fitness–trait genetic correlations).
Furthermore, drift-sampling variation precludes fine-scale dis-
crimination of models from selection experiments of manage-
able size (Hill 1971; Falconer 1973).

How Well Does the Infinitesimal Model Fit?

Theoretical analyses show the sensitivity of predictions over
multiple generations to, for example, genes of large effect,
but we do have to ask how well results fit predictions from
the simplistic and unrealistic infinitesimal model. It is
probably fair to say that most early selection experiments
gave results that did not depart far from such predictions;
but many did not span a sufficient time scale for departures
to be detected, were too small (in terms of Ne) to avoid large
drift sampling errors, or were confronted not so much with
fixation of favorable genes as with natural selection oppos-
ing artificial selection. Certainly there is little published ev-
idence of departure from infinitesimal model predictions in
livestock breeding programs based on BLUP models, but the
time horizon in generations is not long, and objectives in
breeding programs change over time, complicating evaluation.

More comprehensively, Weber (2004) put together
results of many experiments with Drosophila undertaken
at different population sizes, including his own with up to
1000 selected parents, and expressed results as the ratio of
selection limit to first-generation response, which would be
2Ne with an infinitesimal model (Robertson 1960). The fit
with this prediction is remarkably good, especially if allow-
ance is made for mutation; but the discriminatory power is
poor against other genetic models, for example, incorporat-

ing a broad distribution of gene effects and frequencies
(Zhang and Hill 2005). Indeed for Drosophila, where the
selection effect on variance is more important with no re-
combination in males and few chromosomes, we showed
that it would be difficult to distinguish an infinitesimal
model with one of a U-shaped allele frequency distribution
of a finite number of loci. In an analysis of the long-term
Illinois maize selection experiment Walsh (2004) showed
that responses over 100 generations were not inconsistent
with an infinitesimal model provided mutation was allowed
for.

Another approach for assessing the fit of the infinitesimal
model is to estimate genetic variances using an animal
model after several generations of selection, but taking
account of the inbreeding to date and the selection of the
parental generation and asking whether the changes in
variance corresponded to infinitesimal model predictions.
Results of our analyses differed somewhat according to the
trait selected: we obtained a near-perfect fit (for log-transformed
data) to infinitesimal model assumptions for selected lines
of mice differing fourfold in a fat measure between high and
low after 20 generations (Martinez et al. 2000), but selec-
tion for body weight from the same founder stock revealed
a QTL with large effect on the X chromosome (Rance et al.
1997) and poorer fit.

At a meeting in 1987 I suggested to Henderson that, to be
conservative, one should exclude or down weight old data
to reestimate parameters for BLUP in a multigeneration
breeding program. He disagreed, arguing that selection
would lead to bias in such estimates, so all must be included
in the parameter estimation. I think he regarded the
infinitesimal model as the real world, whereas Lush thought
that it was adequate for short-term predictions because
changes in variance associated with changes in gene
frequency “. . .will be very slow, especially if heritability is
not high. It is not often, except when the amount of epistatic
variance is large, that the rate of progress will decline
sharply after only a generation or two” (Lush 1945, p.
152). The latter caveat appears to reflect the influence of
Wright rather than any calculations Lush undertook himself.

The infinitesimal model is not true of course, but seems
to do a good job at least over the span of generations where
breeding programs have maintained constant plans. Analy-
ses using dense genomic data have subsequently provided
increasingly more information, revealing individual loci of
large effect but also showing very many loci affect quanti-
tative traits.

The Rise of Gene-Orientated Studies

Breeders and quantitative geneticists assumed that many
loci were acting on each trait, and indeed were often using
the infinitesimal model implicitly. Nevertheless many hoped
to do better by locating them with genetic markers and then
utilizing individual loci by marker-assisted selection (MAS)
among young animals without phenotypic records. The first
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markers, blood groups, became available in the 1950s, and
methods for linkage analysis were soon developed (Neimann-
Sorensen and Robertson 1961). Such markers would be im-
portant indicators if the markers per se either were trait genes
with major effect or were closely linked to them. But blood
groups marked little of the genome, so it was fortuitous that
the chicken B locus, which is in the MHC complex, was found
to be associated with resistance to Marek’s disease (Briles and
Allen 1961). It remains an important marker.

Linkage analysis for QTL detection did not really take off
until many microsatellite markers became available and
maximum likelihood (Lander and Botstein 1989) and re-
gression methods of prediction were developed for inbred
line crosses (Haley and Knott 1992), with the latter ex-
tended to enable analyses in crosses of noninbred popula-
tions (Knott et al. 1996). Extensive analysis into how to
optimize the design of such studies was undertaken. For
example the “grand-daughter design” utilizes the structure
in dairy cattle whereby the effects of QTL segregating in the
grandfather are estimated from his sons’ progeny tests based
on field records of many granddaughters (Weller et al.
1990). Extensive simulations and other theoretical analyses
were undertaken to find how best to utilize findings in
breeding practice (e.g., Smith and Simpson 1986).

Numerous linkage studies have been undertaken (Weller
2009), and hundreds of QTL, some of very large effect, were
found in livestock species (http://www.animalgenome.org/).
The number confirmed by repeat studies is much less, and in
these the same causal locus may be mapped to somewhat
different locations. With few recombinants per chromosome,
the within-family methods lack power and precision, and
estimates of effects of those QTL found significant are biased
upward (the Beavis effect; Beavis 1998). Markers for con-
ditions known to be due to major genes such as for porcine
stress syndrome (PSS) were identified (Fujii et al. 1991),
enabling rapid elimination, and “double muscling”in cattle
was shown to be determined by the MSTN gene recently
identified in mice (Grobet et al. 1997). New major genes
were found, including DGAT1 for milk fat percentage in
cattle (Grisart et al. 2002).

Nevertheless these QTL accounted for a small part of the
genetic variability and the ones easiest to detect are typically
those for easily recorded traits with high heritability, such as
growth rate or fat percentage, rather than the more lowly
heritable, sex limited, traits of mature animals such as
fertility or longevity where use of QTL could have greater
benefit. Therefore, in view of the genetic progress that could
be made by conventional selection on phenotypic records
using BLUP in a well-designed program, the impact of
identified QTL on achieved rates of progress was small
(Dekkers 2004) and has remained so.

The development of SNP technology and availability of
thousands of markers enables LD association mapping rather
than linkage mapping and so higher precision in QTL
detection and location can be achieved (e.g., Meuwissen
and Goddard 2000). The understanding and training in pop-

ulation genetics stimulated by linkage and LD mapping and
the dearth of useful QTL obtained, however, stimulated
a more sophisticated view of the genetic architecture and
of how to utilize the knowledge in improving polygenic
quantitative genetic traits. This has led to what is already
becoming a major revolution in livestock improvement prac-
tice, and one with much more in common with the approach
of Lush in combining all relevant data to inform selection
decisions.

Genomic Prediction and Selection

There had been some analysis previously of what might be
achieved by utilizing identified variation at all loci (notably
by Lande and Thompson 1990), but there were not the
genomic tools to effect it. As dense SNP markers were be-
coming available and affordable, the landmark article by
Meuwissen et al. (2001) showed how whole-genome marker
data could be incorporated effectively in a breeding program
for a polygenic trait. Subsequent modeling showed how
large an impact on genetic progress such a scheme might
have (e.g., Schaeffer 2006) and the ideas were rapidly
brought into commercial practice (Hayes et al. 2009). This
opportunity has stimulated more intense interest and activ-
ity in both development of statistical inference and method-
ology and its integration with population and quantitative
genetics than ever before in the breeding context.

Principles

In conventional methodology, breeding value prediction for
animals without records has to be made from pedigree, but
its accuracy is limited because the Mendelian sampling
variation (which comprises half the additive genetic vari-
ance for unselected parents, more in a population under
selection) cannot be utilized, so full sibs get the same
predictions. The genomic information on young animals and
the genomic and production data on their older relatives
enable prediction both within and across families of breed-
ing values for animals without phenotypes. Benefits are
likely to be greatest for traits that are sex limited, such as
milk yield and egg production, or not recorded till late in life
or post mortem such as longevity or meat content, but
increases in accuracy can also be achieved for animals that
do have records. Thus greater rates of progress, up to
double, can be made and the costs of genotyping can be at
least partly offset by reducing or eliminating progeny
testing.

The critical idea of Meuwissen et al. (2001) was to pre-
dict breeding value using trait effects bk estimated for (i.e.,
associated with) all the markers as a linear function Sxikbk
for individual i, where xik denotes genotype, e.g., 0, 1, 2 at
locus k according to its genotype aa, Aa, or AA, utilizing
their LD with nearby trait genes. They assumed a model in
which the trait genes were dispersed throughout the ge-
nome. SNP genotypes for all loci are then included in a BLUP
or similar analysis, with their associated effects as random
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variables, necessary not least because very many more
markers may be fitted than there are animals with data.

The markers both incorporate long-standing LD with trait
genes but also help establish the realized or actual relation-
ship between close relatives for individual segments of the
genome. While, say, half sibs have a 50% chance that the
alleles inherited from their common parent at any genomic
site are identical by descent (IBD) (i.e., their pedigree re-
lationship is 0.25), they actually vary in realized relation-
ship, sharing IBD regions of varying length scattered
through the genome that markers can identify. Thus the
pedigree relationship matrix can be replaced by an (addi-
tive) genomic relationship matrix (GRM), with elements
computed in terms of identity in state (IBS) as a predictor
of IBD, with elements obtained by averaging over all marker
loci quantities such as (xik – 2pk)(xjk – 2pk)]/[2pk(1 – pk)],
where pk is the gene frequency at locus k, for individuals i
and j. These have expectation equal to Wright’s numerator
relationship for neutral loci, but on a shifted and pragmatic
reference point, the current population on which gene fre-
quencies are estimated (Powell et al. 2010), rather than
back as far as pedigrees are available, even though all alleles
ultimately coalesce.

The procedure in which the pedigree relationship matrix
in BLUP is replaced by the genomic relationship matrix in
BLUP is commonly known as GBLUP and the analysis can
proceed otherwise essentially as in traditional BLUP (VanRaden
2008). Computation is much heavier since the GRM does
not have a simple inverse, but is generally feasible. Basically
the method, as indeed is BLUP, is a form of ridge regression
statistical analysis with shrinkage of the least-squares equa-
tions according to the degree of genomic relationship. Use of
GBLUP is equivalent to assuming that the distribution of
marker-associated effects on the trait is the same for all
markers fitted across the genome and each is sampled from
a normal distribution with the same variance. It would also
arise from assuming an infinitesimal model of trait effects.
The models based on marker LD and genomic relationship
are then computationally equivalent (Stranden and Garrick
2009), with GBLUP capturing the average effects of all ge-
nomic regions simultaneously.

Before considering details further, an example shows that
the impact of using genomic prediction can be large. Accu-
racies of predicting the breeding values of young dairy bulls
computed solely from pedigree information or by incorpo-
rating genomic information can be compared by correlating
each with those realized subsequently by progeny testing. In
an early report using the large U.S. data set, published R2

(“reliability” or squared accuracy) for prediction of milk
yield of daughters of young bulls were 0.28 for parent av-
erage, 0.47 for GBLUP, and 0.17 and 0.26, respectively, for
productive life (VanRaden et al. 2009).

Models

Meuwissen et al. (2001) recognized that the optimal
weights to give to individual markers in the analysis depend

on the distribution of effects of genes on the trait. This could
range from very many of small effect contributing variance
evenly distributed throughout the genome, to just a few of
large effect, perhaps concentrated in a few chromosomes,
and on the distribution of LD between markers and trait
genes across the genome. These are unknowable with finite
data sets, so in the analysis it is necessary to make prior
assumptions about how gene effects (formally marker-associated
effects of genes) on the trait are distributed. Meuwissen
et al. proposed two Bayesian models: Bayes A, which in
practice assumes a t distribution (longer tail of large effects
than the normal) and Bayes B, which is as A but with a de-
fined proportion of markers having no effect. (This started
an industry, the “Bayesian alphabet”; Gianola et al. 2009.) In
contrast with GBLUP, some form of MCMC simulation is
then needed to obtain predictions.

Alternative models proposed subsequently include more
extreme prior distributions of marker effects than the t that
is used in Bayes A. These include the Bayesian LASSO,
others allowing for the number of non-zero-weighted markers
used in Bayes B to be estimated, and models with a mixture
of distributions of effects with different variances. Gianola
(2013) gives a recent comprehensive review and reminds us
that the numbers of marker effects being fitted relative to
the number of observations is so large that inferences can
still be greatly influenced by the chosen prior. There has
been extensive simulation of alternative models, but real
data with proper separation of training data sets used to
establish the prediction equations and test data sets to eval-
uate them are needed to evaluate models and methods.
Choice of priors remains an active (and contentious) area.

An alternative approach is to avoid distributional assump-
tions by using a nonparametric method to obtain a prediction
algorithm numerically from the training and test sets. As
a linear model is not fitted, such predictions also incorporate
any epistatic interactions. Methods have been discussed by
Gianola and colleagues, and in a study comparing linear and
nonparametric approaches for dairy and wheat data, the
nonparametric method gave more accurate predictions
(Morota et al. 2013). A weakness of this approach seems,
however, to be that as a linear additive model is not used in
the analysis, predicted breeding value of unselected off-
spring cannot be assumed to be simply half that of the
parent.

For the dairy cattle data mentioned above VanRaden
et al. (2009) also fitted Bayes A. For most traits, R2 values
using Bayes A (e.g., 0.49 vs. 0.47 for milk yield) were close
to those for GBLUP, implying the normal model fitted, but
were higher for milk fat percentage (0.63 vs. 0.55). For
percentage fat in the milk, a gene of large effect (DGAT1)
is segregating, and in a different data set Hayes et al. (2010)
found that one-quarter of its variance was explained by
three QTL and that predictions using Bayes B, in which
a small number of genomic regions are included, were more
accurate. For overall type, however, fitting ever more SNPs
(i.e., approaching GBLUP) continued to increase accuracy.
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Factors affecting accuracy of prediction

The accuracy of prediction depends both on operational
factors, such as the density of markers fitted and the size of
the training data set, and on broader factors, such as the
population history and demography and the genetic archi-
tecture of the trait. As the training set is likely to be far
smaller than the number of SNPs to be fitted, increases in its
size are always likely to lead to increases in accuracy and
ability to discriminate between the effectiveness of alterna-
tive Bayesian models. Increasing marker density alone is not
enough.

Accurate prediction requires that the LD structure is the
same in the data used for training the model as that in which
it is applied in practice. Thus retraining is needed regularly
over generations of selection in a closed population as the
relationships become more distant (Wolc et al. 2011). Het-
erogeneity in population structure generates heterogeneous
marker QTL associations through LD. Hence accuracies of
prediction from one breed or distinct population to another
are lower, as is accuracy of prediction within a structured
population such as a breed and breed cross mix. Daetwyler
et al. (2012) discuss how to deal with such issues and how
effective they are. The problem is critical for populations for
which large training sets are not available.

Among the biological factors, accuracy increases of
course with the heritability of the trait, i.e., the information
from individual records. The accuracy of GBLUP depends on
the extent to which realized relationship varies about pedi-
gree relationship. The latter depends on the length of seg-
regating chromosome segments and is an inverse function of
NeL, where L is chromosome length (Goddard et al. 2010).
Together with the number of markers used, this indicates
how useful they are at identifying genomic regions. Addi-
tionally, particularly in Bayesian models, the accuracy
depends on the magnitude of LD between markers and trait
genes, which in turns depend on their joint frequency dis-
tributions. Thus trait genes with low minor allele frequency
(MAF) are likely to be poorly marked because the SNPs used
have higher minor allele frequency. Hence there is interest in
using ever more dense markers and in sequencing of impor-
tant animals in the breeding pyramid, such as sires used in
AI (Meuwissen and Goddard 2010), with imputation of gen-
otypes in animals down the pedigree for economy. Sequenc-
ing also increases the number of markers fitted and hence
the need to have large training sets.

Information comes from close relatives and via LD from
more distant ones. That from close relatives is less de-
pendent on the joint distribution of marker and trait gene
frequencies. Indeed de los Campos et al. (2013) argue that
the critical factor driving accuracy is the extent to which
marker-based relationships properly describe the unobserved
genetic relationships at trait loci. Hence if the training and
test data sets have related individuals the markers can be
good predictors even if the LD between markers and trait
genes is weak (see also Wray et al. 2013). This is exemplified

by their comparisons showing quite high accuracy of predic-
tions for traits of humans in which the training and test indi-
viduals are from the same local population, but low accuracy
for sets of unrelated individuals from the whole population.

Interest in genomic prediction is not restricted solely to
livestock breeding. For example, maize breeders who are
developing new lines founded from crosses want to obtain
reliable indicators from early generations of their perfor-
mance in subsequent generations of inbreeding and, criti-
cally, as a parent of a commercial hybrid. Theory/simulation
studies (e.g., Jannink et al. 2010), and also experimental
trials, have been undertaken. Results to date for maize cor-
respond to those in livestock, in that predictions are better
within families (i.e., specific F2 of initial cross) than across
families (0.72 vs. 0.47 for grain yield; Albrecht et al. 2011),
and in another data set predictions of cross performance had
essentially zero accuracy (Windhausen et al. 2012). Wimmer
et al. (2013) provide analyses in three species and find that
methods involving marker selection (in contrast to BLUP
employing ridge regression) can be unreliable unless data
sets are large.

Although genome wide association studies (GWAS) studies
in humans have identified significant genetic lesions or highly
disease-associated SNP markers, the numbers detected have
increased as sample sizes and marker density have increased
and thus power to find those of ever smaller effect risen
(Visscher et al. 2012). Even so, all those detected (e.g., .150
for human height; Lango Allen et al. 2010) typically account
for a small proportion (�10%) of the genetic variance in
quantitative and disease traits estimated from pedigree stud-
ies. That many of small effect are missed is shown by the fact
that if all SNPs are fitted together, whether significant or not,
they can account for half of the genetic variance (Yang et al.
2010) in height, and similarly for other traits. There is there-
fore interest in human genetics in using all the markers in
whole-genome prediction based on the animal breeders’
methods. There are limitations, however, not least because
prediction of individual phenotype is necessarily less accurate
than for genotype for any trait. Further, Ne in humans is much
greater than in cattle, indicating that it would take.145,000
records with humans to achieve the same accuracy, 0.65, of
genetic prediction as for about 2500 cattle (Kemper and God-
dard 2012). Thus accuracies of prediction may be very small,
�0.1 or less, if training and test sets properly comprise un-
related individuals (de Los Campos et al. 2013; Wray et al.
2013). Overcoming these limitations may prove difficult: sim-
ply increasing marker density does not resolve it, unless the
data sets become correspondingly large and informative on
the correspondence of marker and trait loci and there are
substantial differences among genomic regions in their effects
on the trait.

Remarks

In view of the range of models available and differences in
results obtained using them, further work is required before
a consensus on the optimum approach is likely to be
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reached. Again it must be emphasized that simulation of
models is not enough; results may not apply to the real
world architecture. While GBLUP is a conservative option, it
is perhaps also the most robust against departure from
assumptions about the architecture and inadequate data in
training sets (as further evidenced by results of data
analysis; Wimmer et al. 2013). While the recent studies
show (no surprise there) that not all trait loci have infini-
tesimally small effect, typically few account individually for
much of the variation; it remains a good a priori model. As
SNP density rises, data sets increase in size, and the genome
analysis becomes more fine scale, it seems likely that this
simple model will become increasingly superseded. The de-
sign of breeding programs using genomic prediction, the
prediction method, and the genetic architecture also influ-
ence the potential long-term responses, and some issues
have already been discussed (Goddard 2009). These are
likely to be further developed as research continues and
programs become more established.

The principles and practice of genomic prediction are
a highly active area, and for want of space and competence I
cannot do full justice to the issues, approaches to their
resolution, findings, disappointments, and triumphs. Those
wishing to become more deeply immersed will find the
article of Meuwissen et al. (2001) useful for setting the
scene and those of Goddard et al. (2010), Habier et al.
(2013), de los Campos et al. (2013), and Gianola (2013)
for providing more current views. While these focus on us-
ing whole-genome prediction, the recent discussion by Wray
et al. (2013) of GWAS analysis for finding the actual trait
genes points to pitfalls in design, analysis, and interpretation
that can influence both objectives.

Progress and Perspectives

Very substantial and continued genetic improvement has
been made in livestock over the past several decades (Hill
and Bunger 2004; Hill 2008). Broiler chickens increased in
8-week weight over fourfold as shown by a contemporary
comparison of 1957 control and 2001 commercial stock,
with a further twofold difference in breast meat yield, and
response continues. Analysis of dairy cattle records shows
more than doubling in milk yields over 50 years, with at
least half attributable to genetic change. Worsening of
fitness-associated traits such as fertility in dairy cattle and
leg defects in broilers have been reversed by increasing em-
phasis on these traits (Kapell et al. 2012). In contrast, judg-
ing by the winning times of classic flat races, Thoroughbred
racehorses and Greyhounds have hardly increased in speed
for well over half a century; but it is not clear why (Hill
1988; Hill and Bunger 2004).

These changes were obtained before genomic methods
were introduced, so we can hope for more rapid progress,
particularly for sex-limited traits. There are two important
caveats. The first is that good phenotypic records are still
needed. Technological improvements will facilitate their

collection, but while the costs of genotyping continue to fall
rapidly, the costs of maintaining and individually recording
animals are less likely to do so. The second is that
substantial and useful genetic variation remains. We con-
tinue to find similar heritabilities for commercial traits (that
for juvenile growth weight remains about one-quarter in
poultry and indeed in other species). Much is made of con-
servation of unselected breeds and populations as material
but the real problem with using these is in identifying any
useful genes. Variation is coming into the populations from
mutation, which we continue to utilize unknowingly; per-
haps we have to reconsider enhancing mutation rates, if we
can do so selectively. Unfortunately, genomic methods of
utilizing them are likely to be rather ineffective because both
the beneficial and deleterious mutants are too rare to locate
with any power in GWAS.

Lush’s standpoint of concentrating on the short term has
been effective, not just to get breeders started in sensible
directions but continues to be so because incorporating ge-
nomic prediction and selection follows his aim of using all
available data on individuals and their relatives optimally to
make breeding decisions. Wright’s theoretical develop-
ments, such as of inbreeding and relationship, of gene fre-
quency distributions under selection and mutation, and of
threshold traits have had continuing impact. In contrast his
shifting balance theory has remained controversial among
evolutionary biologists; see, for example Coyne et al. (1997)
for the attack and Wade (2013) for the defense. Lush
explained the theory in Animal Breeding Plans and its rele-
vance to breeding programs, discussing “Ideal breeding sys-
tem for rapid improvement of the whole breed” in terms of
local groups subject to selection and introgression among
them. As indeed with Wright’s work, however, there is a clear
contrast between the quantitative genetics theory that Lush
uses to maximize genetic change and the discursive sections
based on assumptions of important interactions. Ironically,
Lush’s main contributions more closely followed the ideas of
Fisher (1930), albeit over a short time horizon.

The ability to fit multiple markers is also concentrating
attention again on the genetic architecture, not just on the
distribution of gene effects, but also epistasis. For example,
it has been argued that epistatic variance provides an
explanation of why much, say one-half, of the genetic
variation estimated from pedigrees is unaccounted for by
fitting SNPs in GWAS for disease and quantitative traits (Zuk
et al. 2012). Nevertheless even if the loci show epistasis,
population genetic theory tells us to expect low amounts
of epistatic relative to additive variance from low-heterozygosity
genes (Hill et al. 2008), and models proposed by Zuk et al.
(2012) seem biologically unrealistic (Stringer et al. 2013).
In any case, epistatic variance is hard to utilize in breeding
programs and can largely be ignored in predicting response
(Crow 2010), so we can perhaps be content to work with
the polygenic additive model for within-population improve-
ment, even perhaps in genomic prediction using the ge-
nomic relationship matrix. It has been the foundation for
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successful prediction of breeding value and selection re-
sponse and, like its infinitesimal special case, does not have
to be true to be useful.

In practice there has been migration (upgrading or other
expressions in the breeding context) or breed replacement
to utilize desirable properties of other breeds, consequent on
drift, selection history, and particular desirable attributes.
(The Shorthorn breed Wright analyzed is now a rare breed.)
While there is little if any direct evidence that impacts on
performance traits have been other than linear, so much
breed choice is undocumented that it is very hard to tell.
Breed diversity has been widely used in crossbreeding to
utilize heterosis and complementary traits (e.g., reproduc-
tive rate in a dam line, meat yield in a sire line) of popula-
tions to generate commercial crosses, and any epistatic
interactions would just be counted in with the dominance.

Thus Lush’s ideas have been influential and lasting. He is
best known for simple formulae like the breeder’s equation
and ideas like accuracy of selection, but he had a great depth
of understanding of population genetics that he learned
from the work and influence of Wright and to a lesser extent
of Fisher. They have provided food for thought and, indi-
rectly, our stomachs.
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