Skip to main content
. 2004 Apr 13;2(4):e91. doi: 10.1371/journal.pbio.0020091

Figure 5. Model for Activation of ATP Hydrolysis on the Arp2/3 Complex and Mechanism by which WASP-Family Proteins Activate the Arp2/3 Complex to Nucleate New Actin Filaments.

Figure 5

(A) Filament pointed-end capping stimulates ATP hydrolysis on Arp2 without branch formation. (i) Arp2 and Arp3 are separated when the Arp2/3 complex is free in solution. (ii) Upon pointed-end capping, the binding energy of the actin-Arp2/3 interface drives Arp2 and Arp3 together and (iii) a conformational change on Arp2 (shown by the red the subdomain 3/4 loop flipping out) triggers ATP hydrolysis by Arp2 (filament pointed-end capping is probably not a significant function of the Arp2/3 complex in vivo).

(b) A VCA-bound actin monomer drives the activation of the Arp2/3 complex and stimulates ATP hydrolysis on Arp2. (i) The Arp2/3 complex must first be bound to the side of an actin filament, and an actin monomer is bound to the VC domain of the WASP-family protein. (ii) The VC domain of the WASP-family protein docks the first monomer of the daughter filament onto the Arp2/3 complex, stabilizing the Arp2–Arp3–actin interaction and promoting the active conformation of the complex. (cf. Aii). (iii) The active conformation of the Arp2–Arp3–actin monomer triggers a conformational change on Arp2 and ATP hydrolysis by the subunit. (iv) Actin polymerizes from the activated Arp2/3 complex. ATP hydrolysis by Arp2 may promote dissociation of the CA domain of the WASP-family protein from the Arp2/3 complex, aided by actin polymerization, which competes its WH2 domain from the first actin monomer.