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Abstract
Prediction of HLA binding affinity is widely utilized to identify candidate T cell epitopes, and an
affinity of 500 nM is routinely used as a threshold for peptide selection. However, the fraction (%)
of peptides predicted to bind with affinities of 500 nM varies by allele. For example, of a large
collection of about 30,000 dengue virus derived peptides only 0.3% were predicted to bind HLA
A*0101, while nearly 5% were predicted for A*0201. This striking difference could not be
ascribed to variation in accuracy of the algorithms utilized, as predicted values closely correlated
with affinity measured in vitro with purified HLA molecules. These data raised the question
whether different alleles would also vary in terms of epitope repertoire size, defined as the number
of associated epitopes or, alternatively, whether alleles vary drastically in terms of the affinity
threshold associated with immunogenicity. To address this issue, strains of HLA transgenic mice
with wide (A*0201), intermediate (B*0702) or narrow (A*0101) repertoires were immunized with
peptides of varying binding affinity and relative percentile ranking. The results show that absolute
binding capacity is a better predictor of immunogenicity, and analysis of epitopes from the
Immune Epitope Database (IEDB) revealed that predictive efficacy is increased using allele-
specific affinity thresholds. Finally, we investigate the genetic and structural basis of the
phenomenon. While no stringent correlate was defined, on average HLA B alleles are associated
with significantly narrower repertoires than HLA A alleles.

Introduction
Molecular structures recognized by immune system receptors are called epitopes (1).
Epitopes that bind, and are presented in the context of, class I and class II MHC molecules
are typically recognized by CD8+ and CD4+ T cells, respectively. Binding of a peptide to
the MHC molecule is one of the most selective steps in the classical MHC I pathway of
antigen processing (2-4). The affinity with which an epitope binds to the MHC molecule
plays an important role in determining its immunogenicity (5), and high affinity MHC-
epitope interactions tend to be associated with higher immune responsiveness. However,
while MHC binding is necessary for recognition by T cells, it is in itself not sufficient to
define immunogenicity. Indeed, recognition appears to be influenced by several other
factors, such as abundance of proteins, antigen processing, immunodominance and the
presence of a suitable T-cell repertoire (2-4, 6-10). Previous studies indicated 500 nM as an

1This work was supported by National Institutes of Health (NIH) contracts HHSN272200900042C and HHSN272201200010C (to
A.S.)
3corresponding author: Dr. Alessandro Sette, Phone: (858) 752-6916, Fax: (858) 752-6987, alex@liai.org.

NIH Public Access
Author Manuscript
J Immunol. Author manuscript; available in PMC 2014 December 15.

Published in final edited form as:
J Immunol. 2013 December 15; 191(12): . doi:10.4049/jimmunol.1302101.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MHC affinity threshold associated with potential immunogenicity for HLA class I restricted
T cells (5).

Computational prediction of MHC class I binding capacity has been used in epitope
identification and vaccine discovery studies for many years (11-19). Various bioinformatics
tools and resources that allow prediction of the binding affinity of peptides to MHC class I
and II molecules are provided at a number of publically accessible websites, including the
Immune Epitope Database and Analysis Resource (20, 21), Bimas (22), SYFPEITHI (23),
NetMHC (24), ProPred (25), ProPred1 (26), ABCpred (27), Multipred (28) and Rankpep
(29). In general, MHC class I binding prediction tools scan a protein’s amino acid sequence
to determine each subsequence’s ability to bind a specific MHC class I molecule. While the
majority of MHC class I epitopes are 9 and 10 amino acids in length (20, 21, 23) it is known
that shorter or longer peptides can also be antigenic targets of class I responses. However,
the availability of predictive tools for non-canonical sizes (i.e., other than 9- and 10-mers) is
more limited, and their performance is generally less robust, likely due to the fact that
limited data is available to train and improve the corresponding algorithms.

Several different computational approaches towards prediction algorithms are available,
including those based on Artificial Neural Networks (ANN) (30), the Average Relative
Binding (ARB) method (31), Stabilized Matrices (SMM) (32, 33), scoring matrices derived
from positional scanning combinatorial peptide libraries (Comblib) (34), the NetMHCpan
method (35), Hidden Markov Models (HMM) (28) and Position Specific Scoring Matrices
(PSSMs) (29). The output of the different methods is typically given either in units of
predicted affinity (IC50 nM), or as a percentile score reflecting the relative affinity of a
selected peptide compared to a universe of random sequences. The efficacy of different
methodologies for predicting high affinity MHC binding peptides has been addressed in
several studies by our group, from both the bioinformatics (21, 38) and T cell epitope
identification perspectives (4, 13, 39-42).

However, a key question to be addressed is whether predicted binding affinity or percentile
rank is the best predictor of potentially immunogenic peptides, especially across a diverse
set of different HLA class I molecules. The present study set out to address this question by
investigating the MHC binding and associated T cell epitope repertoires of a panel of
different HLA class I molecules using bioinformatics analyses, experimental testing of in
vitro binding with purified HLA molecules, and in vivo immunogenicity testing of selected
peptides in HLA transgenic mice. The results unexpectedly revealed that different HLA
class I molecules are associated with distinctively different repertoires of peptide binders
and associated epitope affinities.

Materials and methods
Peptide sets

A set of Dengue virus (DENV) sequences recently utilized for epitope identification studies
in endemic areas (43) was used in the initial analysis presented herein. Essentially, full-
length DENV polyprotein sequences for each serotype were retrieved from the NCBI
Protein database using the query, “txid11053 AND polyprotein AND 3000:5000[slen]” with
the corresponding NCBI taxonomy ID being substituted for each serotype. To avoid
geographical bias, the number of unique isolates (varying by at least 1 amino acid from all
other isolates) from any one country was limited to 10. Polyproteins were then broken down
into all possible 9-mer sequences for binding predictions, corresponding to a set of 38,845
unique peptides.
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The binding affinities of all 9-mer peptides were predicted for 27 common HLA class I
alleles (Table 1). The set of alleles was selected on the basis of allele frequencies in the
general worldwide population, and together they are estimated to provide coverage of over
90% of individuals at the A and B loci (44-46). Binding predictions were performed using
the command-line version of the SMM prediction tool available on the Immune Epitope
Database website (http://www.iedb.org) (21, 32). The SMM tool was selected because it
consistently performs as one of the best prediction tools across a wide array of alleles, and
also provides predicted IC50 nM values for the complete set of 27 common alleles
considered here. In addition to predicted affinity (IC50) the SMM algorithm also provides a
percentile score expressing the relative capacity of each peptide to bind each specific allele,
compared to a universe of potential sequences of the same size.

For the analysis of self sequences, protein sequences were randomly selected from the
human genome and a set of 9-mer peptides equal in size to the DENV set was generated.
Binding predictions were performed as described above. For the analysis of previously
identified epitopes, all 9-mer epitopes with defined HLA class I restriction were retrieved
from the IEDB (47). Binding predictions were then generated for alleles that had more than
15 epitopes.

Selection of peptides for immunogenicity testing
Selected dengue 9-mer peptides were tested for immunogenicity in A*0101, B*0702 and
A*0201 transgenic mice, as described below. For each HLA transgenic mouse strain 4 sets
of 30 peptides each were constructed to represent specific predicted percentile score ranges:
(i) 0.0 – 0.30 (ii) 0.30 – 1.25 (iii) 1.25 – 5.0 (iv) 5.0 – 15.0. In total 360 9-mer peptides were
selected for immunogenicity testing (3 alleles × 4 categories × 30 peptides). All peptides
used in this study were synthesized as crude material by Mimotopes (Clayton, Victoria,
Australia).

MHC-peptide binding
Purification of HLA class I molecules and quantitative competitive inhibition assays to
measure the binding affinity of peptides to purified MHC were performed as described
elsewhere (48). Briefly, 0.1-1 nM of a high affinity radiolabeled peptide is co-incubated at
room temperature with 1 μM to 1 nM of purified MHC in the presence of a cocktail of
protease inhibitors and 1 μM B2-microglobulin. Following a two-day incubation, MHC
bound radioactivity is determined by capturing MHC/peptide complexes on W6/32 (anti-
class I) antibody coated Lumitrac 600 plates (Greiner Bio-one, Frickenhausen, Germany),
and measuring bound cpm using the TopCount (Packard Instrument Co., Meriden, CT)
microscintillation counter, and the concentration of peptide yielding 50% inhibition of the
binding of the radiolabeled peptide is calculated. Under the conditions utilized, where
[label]<[MHC] and IC50 ≥ [MHC], the measured IC50 values are reasonable approximations
of true Kd values (49, 50). Each competitor peptide is tested at six different concentrations
covering a 100,000-fold dose range, and in three or more independent experiments. As a
positive control, the unlabeled version of the radiolabeled probe is also tested in each
experiment.

Mice and immunizations
HLA-A*0201/Kb, A*0101, and B*0702-transgenic mice were bred at the La Jolla Institute
for Allergy and Immunology animal facility (La Jolla, CA) as previously described (43). All
mouse experiments were performed following Institutional Animal Care and Use Committee
approved animal protocols. Mice between 8 and 12 weeks of age were immunized s.c with a
pool of 10 individual peptides [10 μg peptide] in 100 μl PBS emulsified in CFA. Two weeks
post immunization the mice were sacrificed, and splenic CD8+ T cells were isolated.
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IFNγ ELISPOT assay
CD8+ T cells were isolated by magnetic bead positive selection (Miltenyi Biotec, Bergisch
Gladbach, Germany). A total of 2 ×105 CD8+ T cells were stimulated with 1 × 105 naive
splenocytes as APCs and 10 μg/ml individual peptides in 96-well flat-bottom plates
(Immobilon-P; Millipore, Bedford, MA) coated with anti-IFN-γ mAb (clone AN18;
Mabtech, Stockholm, Sweden). Each peptide was tested in triplicates. Following a 20-h
incubation at 37°C, the wells were washed with PBS/0.05% Tween 20 and then incubated
with biotinylated IFN-γ mAb (clone R4-6A2; Mabtech) for 2 h. The spots were developed
using Vectastain ABC peroxidase (Vector Laboratories, Burlingame, CA) and 3-amino-9-
ethylcarbazole (Sigma-Aldrich, St. Louis, MO) and counted by computer-assisted image
analysis (KS-ELISPOT reader; Zeiss, Munich, Germany).

Results
The predicted peptide binding repertoires of HLA class I alleles are widely variable in size

Previously, based on analyses undertaken in the context of HLA A*0201, it was noted that
the majority of HLA class I restricted epitopes bound with an affinity of 500 nM (IC50 ≤ 500
nM) or better (5). In the present study we sought to examine whether the number of peptides
predicted to bind at this affinity threshold was fairly uniform, or whether different alleles
were associated with different repertoire sizes.

Accordingly, the binding affinity of all 9-mer peptides encoded in a database of sequences
corresponding to a set of dengue virus (DENV1- 4) proteomes (43) was predicted for a panel
of 27 common HLA class I alleles, chosen to provide global population coverage of over
90% (44-46). For each allele the percentage of peptides predicted by the SMM algorithm to
have an affinity of 500 nM or better was compiled (Fig. 1a). It was found that the percentage
of the predicted binders varied widely, ranging from 0.07% for HLA-B*5101 to 10.40% for
HLA-A*0206. It was also noted that the binding affinity of predicted peptides for any given
percentile range also varied significantly from allele to allele. As shown in Figure 1b, the
geometric mean of predicted affinity of the top 1% predicted binders varied from 14 nM for
A*6801 to 1110 nM for HLA-B*5101.

The range of repertoire sizes is verified by in vitro binding assays with purified HLA
molecules

The algorithms utilized in the predictions for the different HLA molecules have been trained
with varying numbers of measured peptide binding affinities, and have been shown to vary
in performance (13, 21, 36, 37, 51). To exclude the possibility that the observed variability
in predicted repertoires was an artifact of the variable accuracy of the algorithms utilized, we
next undertook a series of experiments to empirically determine corresponding repertoires
with in vitro binding assays utilizing purified MHC molecules.

For each HLA allele, the top 1% predicted binders were synthesized and tested for binding
capacity as described in the Materials and Methods (Table 1). The complete dataset is
available in the IEDB (http://www.iedb.org/subId/1000490). The number of peptides
binding each allele with an affinity of 500 nM or better was tabulated (Table 1) and
compared with the fraction of peptides predicted to bind with an affinity of 500 nM or
better. It was found that, for vast majority of alleles, the number of predicted and actual
binders were very similar. The ratio of the predicted to measured binders was between
0.66-1.5 for 85% of the alleles (Table 1), with a general trend that larger predicted
repertoires map to larger measured repertoires. This data confirms that different alleles have
very different absolute affinities associated with the same relative percentile, and that
differences in predicted repertoires tend to reflect differences in repertoires as measured in
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actual MHC-peptide binding assays. Accordingly, for the analyses that follow, predicted
peptide class I binding affinities and corresponding allele repertoires have been utilized as
metrics of actual binding affinities and repertoires.

Selection of peptide sets to experimentally test the correlation between potential
immunogenicity and i) binding affinity or ii) percentile rank

In the next series of analyses we sought to determine whether absolute binding affinity or
relative rank of affinity (i.e., percentile score) is most predictive of potential
immunogenicity. For this analysis we focused on A*0101, B*0702 and A*0201 as
representative of alleles associated with small, medium and large binding repertoires,
respectively (see Fig. 1).

For each allele considered independently we randomly selected 30 9-mer peptides for each
of 4 contiguous categories of percentile ranks: (i) 0 – 0.30 (ii) 0.30 – 1.25 (iii) 1.25 – 5.0 (iv)
5.0 – 15.0. This resulted in a set of 360 9-mer peptides (30 peptides × 4 categories × 3
alleles). As shown in Table 2, in case of A*0101 only the 30 peptides that belonged to the
1st category of cumulative percentages were predicted to be binders (SMM IC50 ≤ 500 nM),
but none of the peptides in any of the three remaining categories were predicted to be
binders. As expected, B*0702 had more predicted binders, with all peptides in both the first
and second categories predicted to bind at the 500 nM level. Finally, in the case of A*0201
all peptides in the first, second and third categories were predicted to bind at the 500 nM
level. For all three alleles, all peptides in the fourth category, corresponding to the 5 to 15%
percentile range, were predicted to be non-binders (SMM IC50 ≥ 500 nM). Thus, as
assembled, these panels allow correlation of both predicted percentile scores and predicted
IC50s with immunogenicity propensity.

Absolute, rather than relative, HLA binding affinity is a better correlate of immunogenicity
To define if peptide immunogenicity is more reflective of relative (percentile) or absolute
(IC50) binding affinity, we immunized A*0101, A*0201 and B*0702 transgenic mice with
the corresponding peptide sets. For each allele, peptides were administered as 12 pools of 10
individual peptides, corresponding to 3 pools for each percentile range), as shown in Table
2. Two weeks after immunization CD8+ T cells were isolated and screened for reactivity
(IFNγ) against the immunized peptide pools as shown in Figure 2.

In case of the A*0201 transgenic mice, six of the 12 pools representing peptides from the
first three percentile categories ((i) 0 – 0.30, (ii) 0.30 – 1.25 (iii) 1.25 – 5.0) were determined
to be immunogenic on the basis of their capacity to elicit an IFNγ response (Fig. 2a, upper
panel). Four pools of B*0702 predicted peptides derived from the first two categories ((i) 0
– 0.30 and (ii) 0.30 – 1.25) were determined to be immunogenic (Fig. 2b, middle panel).
Finally, A*0101 transgenic mice recognized only one peptide pool from the first category (0
– 0.30). Interestingly, for all alleles the majority of the responses in terms of magnitude were
detected in the first percentile category. No positive responses were detected for peptides
from the fourth category (5.0 – 15.0) in any of the HLA transgenic mouse strains (Fig. 2a).

Deconvolution of all peptide pools eliciting an IFNγ response revealed 12 A*0201, 7
B*0702 and 1 A*0101 restricted epitopes (Fig. 2b). A list of all epitopes identified, as well
as their predicted binding affinities, predicted percentile scores, and magnitude of response
is shown in Table 3. Analysis of the data revealed that all of the B*0702 and A*0101
epitopes had percentile scores less than 0.4 and 0.2, respectively, while the percentile scores
of the A*0201 epitopes ranged between 0.1 and 3, with 5 of the 12 A*0201 epitopes having
scores greater than the first percentile. That is, essentially, a score of 0.4 was sufficient to
identify all B*0702 epitopes and the single A*0101 epitope, while a score of 3 percent was
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necessary to select the entirety of A*0201 epitopes. Thus, given this approximately 7-fold
difference in effective selection percentiles, no universally applicable percentile threshold
associated with immunogenicity could be defined.

At the same time, it was noted that all 7 epitopes identified in the HLA B*0702 mice had
predicted IC50s of about 100 nM, or better, while a threshold of 274 nM was needed to
identify all of the A*0201 epitopes, and 382 nM the single A*0101 epitope. At the same
time, however, in all cases, irrespective of the allele, the epitopes identified had predicted
binding affinities of 500 nM, or better, suggesting that this previously defined threshold may
be universally applicable.

Taken together, this data suggest that alleles associated with higher number of predicted
binders, and corresponding higher predicted binding affinities (Figure 1a and b) are
associated with higher numbers of epitopes and higher cumulative magnitude of responses.
Furthermore, immunogenicity more closely corresponds to predicted affinity, rather than
percentile scores.

Allele specific HLA repertoire and immunogenicity thresholds
The data presented above suggest that each HLA allele is associated with a different
number/proportion of peptides that bind below the 500 nM affinity threshold and are
immunogenic. We expected this finding to be reflected in the predicted binding affinity of
HLA class I restricted epitopes described in the literature.

To address this issue we retrieved all epitopes with defined HLA restrictions from the IEDB
(47). Next, we predicted the corresponding binding affinity of all epitopes restricted by
alleles for which at least 15 data points (reported unique epitopes) were available. Figure 3
shows a cumulative plot of the predicted binding affinities of the corresponding epitopes for
each allele, and the results are also summarized in Table 4. An important caveat to consider
for the foregoing analysis is that HLA binding predictions using the 500 nM affinity
threshold have been widely used in the studies reported in the literature, and thus some bias
may be present in the data set.

Nevertheless, is apparent that the affinity distribution of the reported epitopes for the
different alleles varies significantly. The median affinity threshold necessary to identify 75%
of the epitopes is 372, ranging from 19 nM for A*0201 to 1235 for B*0801. The median
affinity threshold necessary to identify 90% of the epitopes is 1635 nM, ranging from 65 nM
to 3687 for B*0801. Despite these large variations, 500 nM is still a useful binding
threshold. Overall, the median % fraction of epitopes identified by this threshold is 79%.

Relation between HLA repertoire size and associated epitope binding affinity
The data presented above suggest that certain alleles, such as HLA A*0101, are relatively
inefficient in terms of antigen presentation, binding fewer peptides with an overall lower
affinity. As a result, these alleles are associated with a correspondingly smaller T cell
epitope repertoire, and those epitopes are associated with lower binding affinity. Conversely,
other alleles, such as A*0201, bind a larger repertoire of peptides, are associated with a
higher number of epitopes, and those epitopes are associated with higher binding affinity on
average.

To test the validity of this theory, we compared the percent of peptides predicted to bind in
the set of DENV peptides (See Table 1), with the IC50 threshold associated with ≥75% of
the epitopes retrieved from IEDB. This analysis revealed that epitopes restricted by alleles
with larger repertoires were, in general, also associated with higher predicted binding
affinity (IC50 <500 nM) (Pearson correlation coefficient, r = −0.77) (Fig. 4). Conversely,
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alleles with more limited predicted repertoires the 75% threshold for their corresponding
epitopes were associated with lower affinities (IC50 >500 nM). Notably, the correlation in
Figure 4 can be utilized to derive an allele specific affinity cutoff for any allele of interest,
based on the breadth of their binding repertoires. Supplemental Table 1 shows revised
thresholds selected according to this method for 38 most common HLA A and B alleles,
representative of the nine major supertypes (52).

HLA binding prediction strategies based on allele-specific thresholds
Based on the data presented above we next sought to compare the practical implications of
our findings in terms of epitope prediction strategies. First we calculated the number of
peptides required by a prediction strategy utilizing a generalized 500 nM threshold, which is
associated with prediction of 79% of the epitopes (Table 4). For this analysis we utilized the
same allele list and set of DENV sequences form Table 1. We found that on average 1184
peptides/allele would be required (Fig 5).

Next we calculated the number of peptides required by allele specific thresholds, as
Tabulated in the Supplemental Table 1. In this case an average of 765 peptides/allele would
be required (Fig.5). This is significantly less (p=0.03) than the 500n nM general threshold.
In addition it would be expected that this approach, would be more accurate, as it would by
definition accommodate effective prediction of alleles with larger repertoire sizes.

Genetic and structural basis of allele associated differences in repertoire and epitope
affinity

These observations raised the question of whether a genetic or structural/molecular basis for
these differences can be discerned. First, when the ranking of HLA A versus HLA B alleles
in Figure 1a was compared, it became apparent that HLA A alleles are in general associated
with broader repertoires (Student’s T-test, P = 0.01). Figure 6 illustrates the comparison of
repertoire size for HLA A versus B alleles. To investigate the possible molecular basis of
this phenomenon, within each subset of HLA A and B alleles we examined whether any
significant correlation existed between certain structural features of associated motifs, high/
low repertoire size, and epitope affinity. For this purpose, we sorted the alleles from Figure
1, according to their main supertypic specificities, as cataloged by Sidney et al. (52) (Table
5). It was found that repertoire size was only loosely correlated with supertype specificities.
That is, in some cases alleles within a supertype were consistently associated with large or
small repertoires. For example, the broadest repertoire was associated with the A2 supertype
(A*0201, A*0203, A*0206 and A*6802), where an average repertoire of 7.26% was
predicted, and little difference was noted between the individual alleles (± 2.77%), while the
narrowest repertoires were associated with the A24 (A*2301 and *2401; 0.7% ± 0.36) and
B44 supertypes (B*4001, *4402 and *4403; 0.83% ± 0.65). In other cases dramatic
differences were detected between alleles in the same supertype. This is particularly
exemplified by the A1 supertype, where A*0101 was associated with one of the narrowest
repertoires (0.29%) and A*3201 was associated with one of the largest repertoires (7.46%),
of the alleles analyzed herein. Similarly, in the case of the B7 supertype, repertoire sizes
ranged widely, with a low of 0.07% for B*5101 to a high of 3.79% for B*3501.

It has been suggested that HLA B molecules in particular have evolved to maximize their
recognition of viral sequences (53, 54). To test whether this concerted evolution might be
related to the phenomena we observed, we examined whether the repertoire size differences
we detected in the case of the DENV sequence set was still detected in a set of self-
sequences of similar size. To this end, we randomly selected 38,845 9-mer sequences from
the human genome. When binding predictions were done similarly to what described above
in Figure 1, similar differences in repertoire size were detected (data not shown). These data
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underline the generality of this observation and thus argue against the suggestion that B
evolved to maximize viral recognition.

Discussion
Herein, we show that different HLA class I alleles are associated with different peptide
binding repertoire sizes, defined as the fraction of all possible peptides that are bound at a
given affinity threshold. These repertoire differences translate into a correspondingly
different number of epitopes being recognized, and with correspondingly different median
affinities. This observation has implications both at the basic level, in terms of generation of
epitope repertoires, and at the practical level, in terms of guiding optimal epitope predictions
by bioinformatics means. The present study provides means to efficiently select peptides
from pathogens, allergens or other antigens of immunological relevance, which may in turn
facilitate studies probing the correlates of immunity and antigen recognition. It is also
possible that these results may facilitate the design of peptide-based subunit vaccines and
immunotherapeutics. However, in this context, it is important to recognize that the utility
and effectiveness of such subunit vaccines is still an issue in need of further study and
validation. And, indeed, the use of whole proteins for such constructs implicitly diminishes
the issue of HLA allelic variation in the population.

One immediate question arising from these observations pertains to the structural and
molecular basis of the phenomenon. Our analysis demonstrates that the breadth of repertoire
and associated epitope affinities is likely influenced by the structure of the HLA molecule,
as differences are apparent between the HLA A and B loci. It is generally assumed that
pathogen escape is a major driver of evolution of HLA polymorphism. In this regard, it is
reasonable to hypothesize that repertoire size and average epitope affinity should be
considered as broad variables potentially influencing HLA evolution at the immunogenetic
and immunochemical level.

It is currently unknown to what degree these observations might be generalizable. It is
noteworthy that similar variation in repertoire size was recently noted in the case of the class
I molecules expressed by the rhesus macaque (Macaca mulatta (55)). Therefore, it is
reasonable to speculate that similar allele-related variation in repertoire size will be broadly
observed. Future studies will address this point by combined immunological and
bioinformatics analysis.

A theoretical point of potential interest is whether the presence within a species or a
population of different MHC allelic variants associated with different repertoire sizes might
confer some advantage and be optimal in terms of overall biological function of the MHC
system. A wide repertoire will render pathogen escape by loss of MHC binding less likely,
but on the other hand might dilute the focus of the immune response, be more likely to
trigger autoimmunity, or even paradoxically result in a too narrow T cell repertoire, because
of overzealous negative selection.

It is worth noting that in evolutionary terms, HLA B polymorphism is more recent, more
diverse and more rapidly evolving (53, 54). Thus, in a broad sense, HLA A seems, on
average, to be associated with a broader repertoire approach than HLA B, which seems to be
enacting a strategy based on somewhat narrower but more flexible and diverse repertoires
and binding motifs. Indeed, most examples of HLA class I molecules associated with
disease resistance to viral infections, such as HIV or DENV, are HLA B.

Last but not least, our data has significant implications in terms of the practical use of
bioinformatics predictions of HLA binding and T cell epitopes. First, our data indicates that
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if a single criterion for alleles has to be chosen, it is preferable to use absolute binding
affinity, rather than a relative percentile. Second it indicates that 500 nM is a reasonably
good “universal” threshold. Thirdly our data indicates that more effective allele-specific
thresholds can be derived either experimentally or by linear regression equations as the one
shown in Figure 4 and Supplemental Table 1. In this our data indicates that the number of
peptides necessary to predict a similar fraction of epitopes will vary as a function of the
particular allele considered and thus the optimal prediction strategy can be adapted to the
specific experimental goal.

In conclusion, our data highlights how different HLA loci and alleles are associated with
different repertoire sizes, and sheds new light on the mechanisms governing allelic
polymorphism of MHC molecules. We predict that this enhanced understanding will further
increase the accuracy and ease of prediction of MHC restricted T cell epitopes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The predicted binding repertoire is highly variable among HLA alleles
(A) The repertoire size (cumulative percentage) of predicted binders among the 27 alleles
considered in the study is shown. The peptides were considered to be binders if the binding
affinity (IC50) predicted by SMM algorithm was ≤ 500 nM. (B) The geometric mean of
binding affinity (IC50 predicted by SMM algorithm) of the top 1% peptides based on SMM
IC50 is shown.
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Figure 2. Immunogenicity of predicted binders varies between HLA alleles
A) For each HLA allele 120 peptides were predicted to represent four percentile ranges: (i) 0
– 0.30, (ii) 0.30 – 1.25 (iii) 1.25 – 5.0 (iv) 5.0 – 15.0. For each percentile range 30 randomly
selected peptides were pooled into 3 pools of 10 individual peptides [10μg/peptide]. Groups
of 3 HLA transgenic mice between 8 and 12 weeks of age were immunized s.c with each
pool diluted in 100 μl PBS emulsified in CFA. Two weeks post immunization the mice were
sacrificed, and splenic CD8+ T cells were isolated and screened for IFNγ production. Data
are expressed as mean number of SFC/106 CD8+ T cells from three independent
experiments. Error bars represent SEM. Responses against peptides were considered
positive if the stimulation index (SI) exceeded double the mean negative control wells
(CD8+ T cells plus APCs without peptide) and net spots were above the threshold of 20
SFCs/106 CD8+ T cells experiments. Asterisks indicate peptides able to elicit a significant
IFNγ response in two out of three individual experiments, according to the criteria described
above. (B) Pools eliciting a significant IFNγ response were subsequently deconvoluted to
identify individual epitopes. For each allele the number of identified epitopes per percentile
is shown.
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Figure 3. IC50 threshold of epitopes derived from the IEDB
The cumulative epitope distribution is compared with the binding affinity (SMM IC50 nM)
for alleles for which at least 15 data points were available from the IEDB. While the affinity
distribution for different alleles varied significantly, 500 nM was found to be a useful
binding threshold. Overall, the median % fraction of epitopes identified by this threshold is
79%.
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Figure 4.
Correlation between cumulative % of predicted binders and binding affinity (IC50) of the
epitopes retrieved from IEDB at IC50 500nM among different alleles. Alleles with higher
number of predicted binders had epitopes with stronger binding affinity.
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Figure 5.
Average number of peptides/allele required by different prediction strategies using a
uniform threshold of IC50 of 500 nM (black bar) or an allele specific IC50 threshold (white
bar). The same set of alleles and DENV sequences from Figure 1 was utilized. Error bars
represent SEM.
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Figure 6.
Average repertoire size of predicted binders restricted by HLA A and B alleles. HLA A
alleles in general were found to be associated with broader predicted binder repertoires.
Error bars represent SEM.
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Table 1
Comparison of predicted and actual binding peptides in the top 1% percentile for
common HLA A and B molecules

HLA
allele

# of peptides
tested

# of predicted
binders

# of actual
binders

Ratio of
predicted/

actual binders

A*0101 152 37 41 0.90

A*0201 160 160 157 1.02

A*0203 165 165 163 1.01

A*0206 146 146 141 1.04

A*0301 156 156 151 1.03

A*1101 151 151 133 1.14

A*2301 145 125 91 1.37

A*2402 150 68 96 0.71

A*2601 136 77 43 1.79

A*3001 154 154 120 1.28

A*3002 146 136 82 1.66

A*3101 136 136 110 1.24

A*3201 166 165 116 1.42

A*3301 143 143 132 1.08

A*6801 137 137 133 1.03

A*6802 145 145 143 1.01

B*0702 153 149 141 1.06

B*0801 142 134 124 1.08

B*1501 136 136 135 1.01

B*3501 142 142 102 1.39

B*4001 141 140 109 1.28

B*4402 154 24 122 0.20

B*4403 143 88 97 0.91

B*5101 145 9 34 0.26

B*5301 156 146 108 1.35

B*5701 136 127 127 1.00

B*5801 152 152 148 1.03

Average = 1.09

Std Dev = 0.33
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Table 2
Selected peptides for immunogenicity study

HLA
allele

Selected
percentile

# of
peptides

Predicted IC50
[nM]

A*0101 0 – 0.30 30 122-477

0.30 – 1.25 30 527-1850

1.25 – 5.0 30 1985-5931

5.0 – 15.0 30 6522-20859

A*0201 0 – 0.30 30 7-22

0.30 – 1.25 30 23-78

1.25 – 5.0 30 82-489

5.0 – 15.0 30 516-3790

B*0702 0 – 0.30 30 3-86

0.30 – 1.25 30 89-448

1.25 – 5.0 30 510-2861

5.0 – 15.0 30 3238-15320
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Table 3
Epitopes identified in this study

HLA
allele

Selected
percentile

# of
epitopes Sequence SMM

Rank
SMM

IC50 [nM]

Average T cell
response

[SFC/106 CD8+]

A*0201

0 – 0.30 6/30 KLAEAIFKL 0.1 9 469

TLLCLIPTV 0.2 11 377

TIMAVLFVV 0.2 12 245

VLNPYMPTV 0.2 12 240

LVISGLFPV 0.3 17 185

GLYPLAIPV 0.3 17 122

0.3 – 1.25 4/30 ILAKAIFKL 0.5 31 61

IMAVGIVSI 1.1 68 108

VLLLVTHYA 1.2 43 99

ALCEVLTLA 1.2 69 92

1.25 – 5.0 2/30 SLLKNDVPL 2.2 159 172

SGMLWMAEV 3.0 274 83

B*0702

0 – 0.30 6/30 RPAKSGTVM 0.1 3 103

RPTPRGAVM 0.1 7 74

RPMPGTRKV 0.1 29 300

LPSIVREAL 0.1 19 456

RPRWLDARV 0.2 49 659

TPRSPSVEV 0.3 66 681

0.30 – 1.25 1/30 IPKIYGGPI 0.4 91 119

A*0101 0 – 0.30 1/30 VIDLEPIPY 0.2 382 307
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Table 4
IC50 threshold of epitopes derived from the IEDB

Alleles
No. of
data

points

% of
epitopes at

500 nM
nM at 75% nM at 90%

A*0101 33 58 606 3,328

A*0201 833 80 331 1,635

A*0202 23 100 19 65

A*0203 23 96 35 154

A*0206 26 100 77 129

A*0301 40 63 646 2,341

A*1101 68 81 372 1,213

A*2402 98 53 1,573 3,687

A*2902 18 89 91 112

A*6802 16 56 952 2,767

B*0702 73 79 285 1,324

B*0801 18 56 1,235 1,970

B*1501 15 93 199 274

B*2705 39 77 439 1,953

B*3501 45 76 383 2,861

Median 33 79 372 1,635
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Table 5
Repertoire sizes of the HLA allele supertypes covering the 27 alleles included in the study

Supertype Alleles Repertoire
size (%)

Average
repertoire size
per supertype

SD

A01 A*0101 0.29% 2.42% 3.39%

A*2601 0.60%

A*3002 1.31%

A*3201 7.46%

A02 A*0201 4.96% 7.26% 2.77%

A*0203 8.77%

A*0206 10.40%

A*6802 4.90%

A03 A*0301 1.74% 4.15% 2.50%

A*1101 3.44%

A*3001 8.13%

A*3101 4.00%

A*3301 1.71%

A*6801 5.92%

A24 A*2301 0.96% 0.70% 0.36%

A*2402 0.45%

B07 B*0702 1.24% 1.81% 1.57%

B*3501 3.79%

B*5101 0.07%

B*5301 2.16%

B08 B*0801 1.37% 1.37%

B44 B*4001 1.51% 0.83% 0.65%

B*4402 0.21%

B*4403 0.76%

B58 B*5701 1.08% 1.97% 1.26%

B*5801 2.86%

B62 B*1501 2.22% 2.22%
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