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Recent developments in question-answering systems have demon-
strated that approaches based on propositional analysis of source
text, in conjunction with formal inference systems, can produce
substantive improvements in performance over surface-form ap-
proaches. [Voorhees, E. M. (2002) in Eleventh Text Retrieval Confer-
ence, eds. Voorhees, E. M. & Buckland, L. P., http://trec.nist.gov/pubs/
trec11/t11_proceedings.html]. However, such systems are hampered
by the need to create broad-coverage knowledge bases by hand,
making them difficult to adapt to new domains and potentially fragile
if critical information is omitted. To demonstrate how this problem
might be addressed, the Syntagmatic Paradigmatic model, a memory-
based account of sentence processing, is used to autonomously
extract propositional knowledge from unannotated text. The Syn-
tagmatic Paradigmatic model assumes that people store a large
number of sentence instances. When trying to interpret a new
sentence, similar sentences are retrieved from memory and aligned
with the new sentence by using String Edit Theory. The set of
alignments can be considered an extensional interpretation of the
sentence. Extracting propositional information in this way not only
permits the model to answer questions for which the relevant facts
are explicitly stated in the text but also allows the model to take
advantage of ‘‘inference by coincidence,’’ where implicit inference
occurs as an emergent property of the mechanism. To illustrate the
potential of this approach, the model is tested for its ability to
determine the winners of tennis matches as reported on the Associ-
ation of Tennis Professionals web site.

The closely related fields of question answering and information
extraction aim to search large databases of textual material

(textbases) to find specific information required by the user (1, 2).
As opposed to information retrieval systems, which attempt to
identify relevant documents that discuss the topic of the user’s
information need, information extraction systems return specific
information such as names, dates, or amounts that the user requests.
Although information retrieval systems (such as Google and Alta
Vista) are now in widespread commercial use, information extrac-
tion is a much more difficult task and, with some notable excep-
tions, most current systems are research prototypes. However, the
potential significance of reliable information extraction systems is
substantial. In military, scientific, and business intelligence gather-
ing, being able to identify specific entities and resources of relevance
across documents is crucial. Furthermore, some current informa-
tion extraction systems now attempt the even more difficult task of
providing summaries of relevant information compiled across a
document set.

The majority of current information extraction systems are based
on surface analysis of text applied to very large textbases. Whereas
the dominant approaches in the late 1980s and early 1990s would
attempt deep linguistic analysis, proposition extraction, and rea-
soning, most current systems look for answer patterns within the
raw text and apply simple heuristics to extract relevant information
(3). Such approaches have been shown to work well when infor-
mation is represented redundantly in the textbase and when the
type of the answer is unambiguously specified by the question and

tends to be unique within a given sentence or sentence fragment.
Although these conditions often hold for general knowledge ques-
tions of the kind found in the Text REtrieval Conference (TREC)
Question Answer track, there are many intelligence applications for
which they cannot be guaranteed. Often relevant information will
be stated only once or may only be inferred and never stated
explicitly. Furthermore, the results of the most recent TREC
question–answer competition suggest that deep reasoning systems
may now have reached a level of sophistication that allows them to
surpass the performance possible using surface-based approaches.
In the 2002 TREC competition, the POWER ANSWER system (4),
which converts both questions and answers into propositional form
and uses an inference engine, achieved a confidence weighted score
of 0.856, a substantive improvement over the second placed exac-
tanswer (5), which received a score of 0.691 in the main question-
answering task.

A key component in the performance of the POWER ANSWER
system is its use of the WORDNET lexical database (6). WORDNET
provides a catalog of simple relationships among words, such as
synonymy, hypernymy, and part-of relations that POWER ANSWER
uses to supplement its inference system. Despite the relatively small
number of relations considered and the difficulties in achieving
good coverage in a hand-coded resource, the additional back-
ground knowledge provided by WORDNET significantly improves
the performance of the system. This fact suggests that further gains
may be achieved if automated methods for extracting a broader
range of propositional information could be used in place of, or in
conjunction with, the WORDNET database.

In recent years, there have been a number of attempts to build
systems capable of extracting propositional information from sen-
tences (7–9).

For instance, given the sentence:

Sampras outguns Agassi in US Open Final,

these systems might produce an annotation such as:

�Winner Sampras� outguns �Loser Agassi��Loc in US Open Final�.

This work has been driven, at least in part, by the availability of
semantically labeled corpora such as Penn Treebank (10) and
FRAMENET (11). As a consequence, the semantic roles used by the
systems are those defined by the corpus annotators. However,
deciding on a best set of semantic roles has proven extremely
difficult. There are a great many schemes that have been proposed
ranging in granularity from very broad, such as the two-macro-role
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proposal of ref. 12, through theories that propose nine or 10 roles,
such as ref. 13, to much more specific schemes that contain
domain-specific slots, such as ORIG�CITY, DEST�CITY, or
DEPART�TIME, that are used in practical dialogue understanding
systems (14).

That there is much debate about semantic role sets and that
existing systems must commit to a scheme a priori are important
limitations of existing work and, I will argue, are consequences of
a commitment to intentional semantics. In systems that use inten-
tional semantics, the meanings of representations are defined by
their intended use and have no inherent substructure.

For instance, the statement ‘‘Sampras outguns Agassi’’ might be
represented as:

Sampras: Winner
Agassi: Loser
However, the names of the roles are completely arbitrary and

carry representational content only by virtue of the inference
system in which they are embedded.

Now contrast the above situation with an alternative extensional
representation of ‘‘Sampras outguns Agassi,’’ in which roles are
defined by enumerating exemplars, as follows:

Sampras: Kuerten, Hewitt
Agassi: Roddick, Costa
The winner role is represented by the distributed pattern of

Kuerten and Hewitt, words chosen because they are the names of
people who have filled the ‘‘X’’ slot in a sentence like ‘‘X outguns
Y’’ within the experience of the system. Similarly, Roddick and
Costa are the names of people who have filled the ‘‘Y’’ slot in such
a sentence and form a distributed representation of the loser role.
Note the issue is not just a matter of distributed vs. symbolic
representation. The tensor product representation used in the
STAR model (15) of analogical reasoning uses distributed repre-
sentations of the fillers but assigns a unique rank to each role and
so is an intentional scheme. By contrast, the temporal binding
mechanism proposed by ref. 16 allows for both distributed filler and
role vectors and hence could implement extensional semantics.

The use of extensional semantics of this kind has a number of
advantages. First, defining a mapping from raw sentences to
extensional-meaning representations is much easier than defining
a mapping to intentional representations, because it is now neces-
sary only to align sentence exemplars from a corpus with the target
sentence. The difficult task of either defining or inducing semantic
categories is avoided.

Second, because the role is now represented by a distributed
pattern, it is possible for the one-role vector to simultaneously
represent roles at different levels of granularity. The pattern
{Kuerten, Hewitt} could be thought of as a protoagent, an agent,
a winner, and a winner of a tennis match, simultaneously. The role
vectors can be determined from a corpus during processing, and no
commitment to an a priori level of role description is necessary.

Third, extensional representations carry content by virtue of the
other locations in the experience of the system where those symbols
have occurred. That is, the systematic history of the comprehender
grounds the representation. For instance, we might expect system-
atic overlap between the winner and person-who-is-wealthy roles,
because some subset of {Kuerten, Hewitt} may also have occurred
in an utterance such as ‘‘X is wealthy.’’ These contingencies occur
as a natural consequence of the causality being described by the
corpus. We will call this type of implicit inference inference by
coincidence and, as we will see in subsequent sections, the perfor-
mance of the model is in large part due to this emergent property.

In the next section, we give a brief introduction to String Edit
Theory (SET), which is used in the model to identify sentences from
the corpus suitable for alignment with the current target and to
define how these sentences should align. Next, the steps involved in
interpreting a sentence in the model will be outlined. Then, the
Tennis News domain that was chosen to test the model is described,

and the results are presented. Finally, some factors that remain to
be addressed are discussed.

Introduction to SET
SET was popularized in a book entitled Time Warps, String Edits and
Macromolecules (17) and has been developed in both the fields of
computer science and molecular biology (18–21). As the name
suggests, the purpose of SET is to describe how one string, which
could be composed of words, letters, amino acids, etc., can be edited
to form a second string. That is, what components must be inserted,
deleted, or changed to turn one string into another. In the model,
SET is used to decide which sentences from a corpus are most like
the target sentence, and which tokens within these sentences should
align.

As an example, suppose we are trying to align the sentences
‘‘Sampras defeated Agassi’’ and ‘‘Kuerten defeated Roddick.’’ The
most obvious alignment is that which maps the two sentences to
each other in a one-to-one fashion.

Sampras defeated Agassi
� � �

Kuerten defeated Roddick
[A1]

In this alignment, we have three edit operations. There is a change
of ‘‘Sampras’’ for ‘‘Kuerten,’’ a match of ‘‘defeated,’’ and a change
of ‘‘Agassi’’ for ‘‘Roddick.’’ In fact, this alignment can also be
expressed as a sequence of edit operations,

�Sampras, Kuerten�
�defeated, defeated�
�Agassi, Roddick�
In SET, sentences do not have to be of the same length to be

aligned. If we add ‘‘Pete’’ to the first sentence, we can use a delete
to describe one way in which the resulting sentences could be
aligned.

Pete Sampras defeated Agassi
� � � �
– Kuerten defeated Roddick

[A2]

The ‘‘–’’ symbol is used to fill the slot left by a deletion (or an
insertion) and can be thought of as the empty word. The corre-
sponding edit operation is denoted by �Sampras, –�. Although these
alignments may be the most obvious ones, there are many other
options.

For instance, in aligning ‘‘Sampras defeated Agassi’’ and
‘‘Kuerten defeated Roddick,’’ we could start by deleting ‘‘Sampras.’’

Sampras defeated Agassi –
� � � �
– Kuerten defeated Roddick

[A3]

Note that ‘‘Roddick’’ is now inserted at the end of the alignment
(denoted �–, Roddick�).

Alternatively, we could have deleted ‘‘Sampras’’ and then in-
serted ‘‘Kuerten,’’ to give the following.

Sampras – defeated Agassi
� � � �
– Kuerten defeated Roddick

[A4]

There are a total of 63 ways in which ‘‘Sampras defeated Agassi’’ can
be aligned with ‘‘Kuerten defeated Roddick,’’ but not all of these
alignments are equally likely. Intuitively, alignment A4 seems better
than A3, because the word ‘‘defeated’’ is matched. However, this
alignment still seems worse than A1 because it requires ‘‘Sampras’’
to be deleted and ‘‘Kuerten’’ to be inserted. A mechanism that
produces alignments of sentences should favor those that have
many matches and should penalize those that require many inser-
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tions and deletions. To capture these intuitions, edit operations are
assigned probabilities. Typically, match probabilities are higher than
change probabilities, which are higher than insertion or deletion
probabilities. Assuming conditional independence of the edit op-
erations, the probability of an alignment is the multiplication of the
probabilities of the edit operations of which it is comprised. Each
alignment is an exclusive hypothesis about how the two strings might
be aligned, and so the probability that the strings are aligned in one
of these ways is the addition of the probabilities of the alignments.
Given that there are an exponential number of alignments among
strings, one may be concerned that any algorithm based on SET
would be infeasible. However, there exist efficient dynamic pro-
gramming algorithms that have O(nm) time and space complexity,
where n and m are the lengths of the two strings (20).

Gap Probabilities
In the molecular biology literature, it is common to assign a lower
probability to an initial insertion or deletion (known collectively as
indels) and then higher probabilities to subsequent indels in the
same block. As a consequence, alignments that involve long se-
quences of indels are favored over alignments that have many short
sequences (22–24). In the context of macromolecule alignment,
increasing the probability of block indels is desirable, because a
single mutation event can often lead to a block insertion or deletion.
An analogous argument is also applicable in the language case,
because it is common for entire phrases or clauses to differentiate
otherwise structurally similar sentences.

To illustrate the point, consider aligning the sentences ‘‘Sampras
defeated Agassi’’ and ‘‘Sampras who defeated Roddick defeated
Agassi.’’ Two possible alignments are:

Sampras – – – defeated Agassi
� � � � � �

Sampras who defeated Roddick defeated Agassi

[A5]

and

Sampras – defeated – – Agassi
� � � � � �

Sampras who defeated Roddick defeated Agassi.

[A6]

Note that these alignments have the same matches and deletions
and so will have the same probabilities as calculated above. How-
ever, Eq. A5 should be preferred over Eq. A6, because it involves the
block deletion of a clause. To capture this property, it is assumed
that the probability of an initial indel is lower than the probability
of a continuing indel. Now Eq. A5 will be favored because it involves
a single start indel and two subsequent indels, whereas Eq. A6 has
two start indels and one subsequent indel.† There exists an algo-
rithm that calculates alignment probabilities under this model that
retains O(nm) time and space complexity (22).

We have now completed the overview of SET. In the next section,
the way in which the model exploits SET is described.

Description of the Syntagmatic Paradigmatic (SP) Model
In the SP model, sentence processing is characterized as the
retrieval of associative constraints from sequential and relational
long-term memory (LTM) and the resolution of these constraints
in working memory. Sequential LTM contains the sentences from

the corpus. Relational LTM contains the extensional representa-
tions of the same sentences (see Fig. 1).

Creating an interpretation of a sentence�utterance involves the
following steps.

Sequential Retrieval. The current sequence of input words is used to
probe sequential memory for traces containing similar sequences of
words. In the example, traces four and five, ‘‘Who did Kuerten beat?
Roddick,’’ and ‘‘Who did Hewitt beat? Costa,’’ are the closest
matches to the target sentence ‘‘Who did Sampras beat? #’’ and are
assigned high probabilities (see Fig. 2).

To calculate the retrieval strength of a sequential trace, we take
a similar approach to that adopted by the Bayesian models of
recognition memory (25, 26), which have proven very successful at
capturing a variety of memory effects.

Using the terminology Sk � T to indicate that sequential trace
Sk generated the target sentence T, we start with the odds ratio for
Sk � T given T and use the Bayes theorem to convert to a likelihood
ratio:

P�Sk � T�T�

P�Sk � T�T�
�

P�T�Sk � T�P�Sk � T�

P�T�Sk � T�P�Sk � T�

�
P�T�Sk � T�

P�T�Sk � T�
, [1]

assuming equal priors.
To calculate P(T�Sk � T), we use as our data the possible edit

sequences that may have been used to transform the trace into the
target sentence. Each edit sequence represents an exclusive hy-
pothesis about how Sk generated T, so the probabilities of these
hypotheses can be added to determine P(T�Sk � T):

P�T�Sk � T� � �
ap�Ak

P�ap�Sk � T�, [2]

where ap is one of the edit sequences relating T and Sk, and Ak is
the set of these sequences.

Assuming that the edit operations (match, change, insert, or
delete) are sampled independently to create alignments:

P�T�Sk � T� � �
ap�Ak

�
er�ap

P�er�Sk � T�, [3]

where er is the rth edit operation in alignment ap.
Similarly,

P�T�Sk � T� � �
ap�Ak

�
er�ap

P�er�Sk � T�. [4]

So, rearranging Eq. 1 and substituting in Eqs. 3 and 4,

†Allison, Wallace, and Yee (21) describe this process in terms of a three-state finite-state
machine and also generalize beyond the three-state case. Here, however, only the
three-state case will be considered.

Fig. 1. SParchitecture.#,emptyslot.Ultimately, itwill containtheanswertothe
question.
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P�Sk � T�T�

�

�
ap�Ak

�
er�ap

P�er�Sk � T�

�
ap�Ak

�
er�ap

P�er�Sk � T� � �
ap�Ak

�
er�ap

P�er�Sk � T�
. [5]

The expected retrieval probability is P(Sk � T�T) normalized over
the traces in memory,

P�Sk � T�T��
j

P�Sj � T�T�
.

Sequential Resolution. The retrieved sequences are then aligned
with the target sentence to determine the appropriate set of
substitutions for each word (see Fig. 3). Note that the slot adjacent
to the ‘‘#’’ symbol contains the pattern {Costa, Roddick}. This
pattern represents the role that the answer to the question must fill
(i.e., the answer is the loser).

During sequential resolution, we are interested in calculating
Ek[P(�Wm, Ti��T)], the expected value of the probability that word
Ti in slot i in the target sentence substitutes for the word Wm from
the lexicon (W) in the context of sentence T.

We can write

Ek�P��Wm , Ti��T��

� �
k�1

N P�Sk � T�T�

�
i�1

N

P�Si � T�T�

P��Wm , Ti��Sk � T, T�, [6]

where N is the number of sequential traces in memory. Now we have
divided the task into determining the probability that sequential
trace k generated the target (which we calculated in the last section)
and determining the probability that Ti and Skj align given that trace
k did generate the target.

Calculating the latter is straightforward, now that we have
defined how alignments and edit operations are related. Because a
given edit operation is either in an alignment or not, we can just add
the probabilities of the alignments in which this change occurs and
normalize by the probability of all the alignments:

P��Wm , Ti��Sk � T, T� � �
Wm�Skj

P��Skj , Ti��Sk � T, T�

� �
Wm�Skj

�
ap�Ak

�Skj,Ti��ap

P�ap�Sk � T�

�
ap�Ak

P�ap�Sk � T�
.

[7]

We now have an algorithm with which we can calculate the
probabilities of substitution within sentential context.

Relational Retrieval. The bindings of input words to their corre-
sponding role vectors (the relational representation of the target
sentence) are then used to probe relational LTM. In this case, trace
one is favored because it involves similar role-filler bindings. That
is, it contains a binding of Sampras onto the {Kuerten, Hewitt}
pattern, and it also contains the {Roddick, Costa} pattern. Despite
the fact that ‘‘Sampras defeated Agassi’’ has a different surface
form than ‘‘Who did Sampras beat? #,’’ it contains similar rela-
tional information and consequently has a high retrieval probability
(Fig. 4).

As in the sequential case, when interpreting a new target sen-
tence, we will assume that its relational trace (RT) has been
generated via a set of edit operations on one of the RTs in memory.
Specifically, we assume that each binding in RT, which we will
denote RTi, was generated by either an insert or by taking one of
the bindings in the RT (Rkj) and editing the head word and role
vector.

Applying the Bayes rule as we did in the sequential case, we get

P�Rk � RT�RT�

P�Rk � RT�RT�
�

P�RT�Rk � T�P�Rk � RT�

P�RT�Rk � T�P�Rk � RT�
,

�
P�RT�Rk � RT�

P�RT�Rk � RT�
[8]Fig. 3. Sequential resolution. Kuerten and Hewitt align with Sampras, and

Roddick and Costa align with the answer slot (‘‘#’’).

Fig. 2. Sequential retrieval. The traces ‘‘Who did Kuerten beat? Roddick’’ and
‘‘Who did Hewitt beat? Costa’’ are most similar to the input sentence ‘‘Who did
Sampras beat? #’’ and are retrieved from sequential LTM. Bold type is used to
indicate the traces that are retrieved.

Fig. 4. Relational retrieval. The first relational trace is retrieved, because it
contains similar role-filler bindings. Bold type is used to indicate the traces that
are retrieved.

Dennis PNAS � April 6, 2004 � vol. 101 � suppl. 1 � 5209



assuming equal priors. So we must now calculate P(RT�Rk � RT).
If RT contains M bindings, each of which are generated by
independent operations,

P�RT�Rk � RT� � �
i

M

P�RTi�Rk � RT�. [9]

Furthermore, each binding in RT was generated from one of the
bindings in Rk or by an insert, so

P�RTi�Rk � RT� � �
j

N

P�RTi , Rkj � RTi�Rk � RT�

� P�RTi , insert�RTi��Rk � RT�,

[10]

and

P�RT�Rk � RT� � �
i

M

P�RTi�Rk � RT�

� �
i

M � �
j

N

P�RTi , Rkj � RTi�Rk � RT�

� P�RTi , insert�RTi��Rk � RT��
� �

i

M ��
j

N

P�Rkj � RTi�Rk � RT�P

��RTi�Rkj � RTi� � P�insert�RTi��Rk � RT��.

[11]

Note that if Rkj � RTi, then Rk � RT, so P(RTi�Rkj � RTi, Rk �
RT) � P(RTi�Rkj � RTi). Also, P(RTi, insert(RTi)�Rk � RT) �
P(insert(RTi)�Rk � RT). Now P(RTi�Rkj � RTi) is the probability
that the head word of RTi (Ti) substitutes for the head word of Rkj

(Skj), and that the vector of change probabilities of RTi is an edited
version of the Rkj vector. To determine the probability of head-word
substitution, the prior substitution probability can be used P(�Skj,
Ti��Sk � T). To determine the probability of vector substitution,
recall that each of the vectors is comprised of change probabilities.
In each case, only one of the words could have substituted for their
respective head words, so we can multiply the probability of the
trace word (Rkjl) by the probability of the target word (RTip) and the
probability that the trace word would substitute for the target word
(P(�Wp, Wl��Sk � T) to obtain an estimate of the probability that the
role vector of Rkj was edited to produce the role vector of RTi so

P�RTi�Rkj � RTi�

� P��Skj , Ti��Sk � T��
p

�
l

RTipP��Wp , Wl��Sk � T�Rkjl ,

[12]

where RTip is the pth component of the role vector of RTi,
and Rkjl is the lth component of the role vector of Rkj. The

P(RTi�Rkj � RTi), is calculated in an analogous way by using the
P(�Skj, Ti��Sk � T) and P(�Wp, Wl��Sk � T).

A similar logic is used to calculate the insertion probability

P�insert�RTi��Rk � RT�

� P��–, Ti��Sk � T��
p

P��–, Ti��Sk � T�RTip . [13]

And finally the retrieval component is

P�Rk � RT�RT� �
P�RT�Rk � T�

P�RT�Rk � T� � P�RT�Rk � T�
.

[14]

As before, the expected retrieval probability is P(Rk � RT�RT)
normalized over the traces in memory,

P�Rk � RT�RT��
j

P�Rj � RT�RT�
.

The above algorithm has constant space and time complexities
O(�T�Sk�W�2), where �W� is the size of the vocabulary. Although in
principle this is expensive, in practice there is typically a small set
of traces that attract the majority of the probability mass. Traces
with very low retrieval probabilities are truncated and, as a conse-
quence, there are usually only a few nonzero entries in each role
vector.

Relational Resolution. Finally, the paradigmatic associations in the
retrieved RTs are used to update working memory. In the RT for
‘‘Sampras defeated Agassi,’’ ‘‘Agassi’’ is bound to the {Roddick,
Costa} pattern. Consequently, there is a strong probability that
‘‘Agassi’’ should align with the ‘‘#’’ symbol, which, as a consequence
of sequential retrieval, is also aligned with the {Roddick, Costa}
pattern. Note that the model has now answered the question: it was
Agassi who was beaten by Sampras (see Fig. 5).

As in the sequential case, we wish to calculate the probability that
a given word substitutes for Ti given the relational representation of
the target (RT).

Ek�P��Wm , Ti��RT��

� �
k�1

N P�Rk � RT�RT�

�
i�1

N

P�Ri � RT�RT�

P��Wm , Ti��Rk � RT, RT�, [15]

where P(Rk � RT�RT) was calculated in the last section. To
calculate the probability of substitution, we note that a substitution

Fig. 5. Relational resolution. Agassi aligns with the answer slot, because it is
bound to the {Roddick, Costa} pattern in the retrieved relational trace.
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of Ti for Skj has occurred whenever Rkj � RTi. As a consequence,
the following derivation applies.

P��Wm , Ti��Rk � RT, RT�

� �
Wm�Skj

P��Skj , Ti��Rk � RT, RT�

� �
Wm�Skj

P�RTi�Rkj � RTi��j P�RTi�Rkj � RTi�P�Rkj � RTi�Rk � RT�

� P�insert�RTi�Rk � RT�

. [16]

Combining Sequential and Relational Substitution Probabilities
We now have two procedures by which we can generate estimates
of the substitution probabilities of trace and target words, one based
on the sequence of words in the target (sequential) and one based
on retrieved role-filler bindings (relational). The final question is
how the estimates based on these two different sources of infor-
mation should be combined to arrive at a final set of substitution
probabilities. Taking a simple mixture of the information sources,
we get:

P��Wm , Ti�� � �P��Wm , Ti��T� � �1 � ��P��Wm , Ti��RT�,

[17]

where � is set at 0.5 for the simulations reported here.‡
To summarize, the model hypothesizes four basic steps. First, the

series of words in the target sentence is used to retrieve traces that
are similar from sequential LTM. Then, the retrieved sequential
traces are aligned with the input sentence to create a relational
interpretation of the sentence based on word order. This interpre-
tation is then used to retrieve similar traces from relational LTM.
Finally, working memory is updated to reflect the relational con-
straints retrieved in the previous step.

Updating Edit Probabilities with Corpus Statistics
The method used to derive the edit probabilities used above is a
version of the Expectation Maximization (EM) algorithm (27). EM
algorithms involve two steps. In the first step, the expected value of
the log likelihood of the data given the current parameters is
calculated. That is, we define Q:

Q��, �t� � �
y�Y

log�P�C, y���P�y�C, �t�d�, [18]

where C is the set of sentences in the training corpus, and Y is the
set of all possible hidden variables (i.e., trace selections and edit
sequences) that could have given rise to the set of traces. �t is the
set of parameters at the current step.

In the second step, we find the parameters �, which maximize Q.
These will be used as the parameters for the next iteration of the
algorithm

�t�1 � arg max
�

Q��, �t�. [19]

Repeated iterations of the EM algorithm are guaranteed to find a
local minimum in the log likelihood (27). In the case of the SP
model, the training algorithm reduces to adding the probabilities
of the alignments in which each edit operation occurs and normal-
izing appropriately. Space precludes providing the entire derivation,
but it follows the familiar pattern of EM derivations of mixture
models (28).

Although the EM algorithm has proven useful in a wide range of
language-learning tasks, optimization of the log likelihood of the
data is not always a desirable objective (29). In the case of the SP
model, a difficulty arises with the optimization of match probabil-
ities. For low-frequency words, the probability that there will be a
match of these words in the corpus can be very small, meaning that
the match probabilities tend to zero. This property is particularly
undesirable when the match probabilities are used in the relational
model. For that reason, only change and indel probabilities were
trained in the following evaluation.

The mathematical framework of the SP model has now been
outlined. In the next section, we describe the data set used to test
the question-answering capabilities of the model.

The Tennis News Domain
A number of criteria were used to select the domain on which to test
the model. First, the domain was required to be one for which
naturally occurring text was available, because it is important that
the model be capable of dealing robustly with the variety of
sentences typically found in real text. Also, in real corpora, there are
many sentences that do not refer to the facts of interest at all, and
the model should be capable of isolating the relevant ones.

Second, we wished to test the model’s ability to extract relational
information from sentences. Many question-answering systems use
type heuristics rather than engaging in relational analysis. For
instance, they might determine the date of the running of the
Melbourne Cup by looking for sentences containing the term
Melbourne Cup and returning any date within these sentences
regardless of the role this date might fill. Although such heuristics
are often very successful in practice, there are some questions for
which a relational analysis is necessary.

Finally, we were interested in testing the model’s ability to take
advantage of inference by coincidence and so chose a domain in
which the opportunities for such inferences are abundant.

Sixty-nine articles were taken from the Association of Tennis
Professionals web site (www.atptennis.com). The articles were
written between September 2002 and December 2002 and ranged
in length from 134 to 701 words. In total, there are 21,212 words.
The documents were manually divided into sentences, and the
mean sentence length was 23.7.

The tennis domain fulfills each of the criteria. Naturally occurring
text is available, and there were many nontarget sentences that the
model was required to reject in its search for relevant information.
Choosing the winner of a tennis match cannot be done by appealing
to simple type heuristics, because relevant source sentences often
contain the names of both the winner and the loser so that the
correct answer must be selected from items of the same type.
Finally, in sports reporting of this kind, there are often multiple
cues, many of which are indirect, that allow the disambiguation of
key facts, like who the winner of a match was.

Then 377 questions of the form ‘‘Who won the match between
X and Y? X’’ were created. Any result that could be deduced from
the article text was included. So, for instance, results that required
the resolution of an anaphoric reference from other sentences in the
same document were retained. Also, the winner was alternated
between the first and second name positions so that the model
could not simply repeat the name in the first slot to answer the
question.

Results and Discussion
To test the model, the EM algorithm was first used to train edit
probabilities and then each question was presented with the final
answer slot vacant (e.g., ‘‘Who won the match between Sampras and
Agassi? #’’). The SP model was invoked to complete the pattern.§

‡I thank an anonymous reviewer who suggested using the explicit mixture model to
combine sources.

§The parameters used were P(Match) � 0.95 P(Change) � 0.025 P(Not Match) � 0.35, P(Not
Change) � 0.45.
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During sequential retrieval, the model was allowed to retrieve any
sentence or question from the entire corpus. During relational
retrieval, however, only facts derived from the sentences were
allowed as retrieval candidates,¶ that is, the factual knowledge
embodied by the questions was not permitted to influence the
results.

The token with the highest probability in the # slot was assumed
to be the answer returned by the model. Fig. 6 shows a breakdown
of the number of results in each category after sequential and
relational resolution. After relational processing, on 	67% of
occasions the model correctly returned the winner of the match.
Twenty-six percent of the time, it incorrectly produced the loser of
the match. Five percent of the time, it responded with a player other
than either the winner or loser of the match, and on 3% of occasions
it committed a type error, responding with a word or punctuation
symbol that was not a player’s name.

There are a number of ways in which one might seek to establish
an appropriate baseline against which to compare these results.
Because the model is developed in a pattern-completion frame-
work, it is possible for any symbol in the vocabulary to be returned.
There were 2,522 distinct tokens in the corpus, so nominally the
chance rate is 
1%. However, one might also argue that the chance
rate should be related to the number of elements of the appropriate
type for a response, that is the number of names of players. There
were 142 distinct players’ names and so, by this analysis, the baseline
would also be 
1%. A further type distinction would be between
winners and losers. There were 85 distinct winners, which results in
a baseline of just �1%. Note that in any of these cases, the model
is performing well above chance.

Another possible model for the decision process against which
one might be tempted to compare the performance of the SP model
is a winner maximum-likelihood model. In this model, the two
players are extracted from the question, and the one that most often
fills the winner slot is selected. With this model, performance is
74%. However, it is important to recognize that, to apply this model,
one must provide a mechanism by which the relevant contenders
are extracted from the sentence and which is capable of deciding
what statistics are relevant for making frequency comparisons,
decisions that will change on a question-by-question basis. By
contrast, the SP model is only given a pattern to complete, and so
is not only answering the question but is also extracting the relevant
schema within which the question must be answered. In addition,
when the SP model is run without relational retrieval or resolution,
performance drops from 67% to 8% correct (see Fig. 6), so it would
seem that relational processing was critical. Given that the questions
were not included in relational memory, performance must have
been driven by the statistics of the articles rather than of the

questions. Consequently, the comparison against the maximum-
likelihood model is somewhat inappropriate.

Issues That Compromised Performance
In examining the types of errors committed by the model, a number
of recurring types were evidenced. As mentioned earlier, the use of
anaphora is quite common in this corpus. The current model has no
mechanism for the resolution of anaphora, which undermines its
ability to both isolate the sentences containing the appropriate
relational information and select the correct answer token. In
addition, a mechanism for isolating appropriate context is neces-
sary. On seven occasions in the current data set, there are sets of
players for whom the questions are ambiguous without the use of
context to isolate the correct match. In addition, inference by
coincidence can sometimes induce an incorrect response. For
instance, the model induces that Schalken won the match against
Pete Sampras in part on the basis of the sentence ‘‘Schalken, from
the Netherlands, made his best-ever grand slam showing at the US
open last month. . .’’ However, although having a best-ever showing
is indicative of winning, in this case, it is misleading because it was
in fact Sampras who defeated Schalken in the semifinals. Finally,
the model’s lack of sensitivity to sublexical structure creates diffi-
culties, particularly in deriving relational match when possessives
are used. There are then many avenues by which one could look to
improve performance.

Inference by Coincidence
To assess the contribution that inference by coincidence made to
the performance of the model, the sentence with maximal retrieval
probability for each query was classified into one of three catego-
ries.

The literal category contained those sentences where there was
an explicit statement of the result, even if it required some
interpretation. For example, when processing the question, ‘‘Who
won the match between Ulihrach and Vicente? Ulihrach,’’ the
highest-probability relational trace was ‘‘Vicente bounced by Uli-
hrach,’’ which literally states the result (even if it is necessary for one
to interpret ‘‘bounced’’ in this context).

¶To speed computation, only sentences that contained at least one of the two combatants
were considered.

Fig. 7. Breakdown of responses based on the accuracy of the response and the
typeofthemostprobablerelational traceaccordingtothemodel. ‘‘Literal’’ refers
to traces in which the answer was stated explicitly. ‘‘Inference’’ refers to traces in
which the answer was not stated, but from which it could be inferred. ‘‘Other’’
refers to traces from which the answer was not derivable. Note that these
statistics are, for the most part, probably trace only. The model, however, accu-
mulates information from multiple traces, so it is still possible for it to answer
correctly even if the most probable trace does not contain the relevant information.

Fig. 6. Breakdown of result types after sequential and relational processing.
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The inference category included those sentences that did not
contain a literal statement of the result but that provided some
evidence (not necessarily conclusive) for what the result may have
been (see Table 1 for examples). For instance, when processing the
question, ‘‘Who won the match between Portas and Sampras?
Sampras,’’ the relational trace with the highest retrieval probability
was ‘‘Sampras claims 14th Grand Slam title.’’ Although this sen-
tence does not explicitly state the result of this match, one can infer
that if Sampras won the title, then it is likely that he won this match.
Note that this inference does not always follow, because the writer
may have made reference to a result from a different tournament,
or the question may have come from a different article. However,
that Sampras won the title does provide evidence in favor of his
having won this match. Unlike a traditional inference system,
however, the SP model is making the inference by virtue of the fact
that the names of people that appear in statements of the form ‘‘X
claims title’’ also tend to appear in the winner slot at the end of the
questions.

Finally, the other category included all remaining cases. These
contained traces in which both players were mentioned but the
sentence could not have been used to conclude who the winner may
have been. For example, when the question, ‘‘Who won the match
between Acasuso and Pavel? Acasuso’’ was presented, the most

probable relational trace was ‘‘Pavel and Acasuso to clash in
Bucharest semis.’’ In addition, this category contains sentences that
contradict the correct result. For example, the question ‘‘Who won
the match between Pavel and Srichaphan? Pavel’’ produced the
relational trace ‘‘Pavel, now 38-22 on the year, has reached two
semifinals in 2002 Chennai I. to Srichaphan and Bucharest I. To
Acasuso.’’ This situation occurs when a player revenges an earlier
loss. In addition, the other category was assigned when the sentence
was unrelated to the question. For instance, when the model was
presented with the question, ‘‘Who won the match between Meli-
geni and Etlis? Etlis,’’ it returned ‘‘Kiefer quickly overcame Gaston
Etlis of Argentina 6-2, 6-4 on Monday to qualify for the main draw
of the Kremlin cup.’’

Fig. 7 shows the number of most probable relational traces in
each category.

For an indication of the contribution that inference by coinci-
dence is making to correct responding, consider those correct
responses that can be attributed to either literal or inference traces.
On 59% of occasions, the model was inferring the answer rather
than relying on literal retrieval. Given that in each case a literal
statement of the results existed in the corpus, it is significant that
inference by coincidence seems to be playing such a crucial role in
the performance of the model.

Conclusion
The ability of the SP model to isolate the combatants from arbitrary
sentences and to successfully separate winners from losers demon-
strates it is capable of extracting propositional information from
text. Using simple retrieval and alignment operations, the model
takes advantage of the statistics of word use. Unlike existing work
(7, 8, 10), it need make no a priori commitment to particular
grammars, heuristics, or sets of semantic roles, and it does not
require an annotated corpus on which to train.

Furthermore, the large number of occasions (59%) on which the
most probable relational trace was a sentence from which the result
could be inferred but not directly derived is an indication that
inference by coincidence can play a dominant role in successful
question answering and may be a crucial factor in sentence com-
prehension in general.
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Table 1. Examples of inference by coincidence in the Tennis
News domain

Who won the match between Carlsen and Kiefer? Carlsen.

Kafelnikov now meets Kenneth Carlsen of Denmark in the second round.

Who won the match between Kiefer and Safin? Safin.

Safin, Kafelnikov surge toward hometown showdown.

Who won the match between Ljubicic and Kutsenko? Ljubicic.

Sixth seed Davide Sanguinetti of Italy and eighth seed Ivan Ljubicic of Croatia

took different paths to their opening-round wins at the president’s cup in

Tashkent.

Who won the match between Voltchkov and Haas? Voltchkov.

According to Haas, the injury first arose during Wednesday’s match against Sargis

Sargsian, and became progressively worse during practice and then the match

against Voltchkov.

Who won the match between Srichaphan and Lapentti? Srichaphan.

Srichaphan has now won two titles in four finals this year.

Who won the match between Mamiit and Coria? Coria.

Kuerten, Coria withstand heat, set up fiery South American showdown.

Each example shows the question and the sentence that generated the
most probable relational trace.
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