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Most techniques for relating textual information rely on intellec-
tually created links such as author-chosen keywords and titles,
authority indexing terms, or bibliographic citations. Similarity of
the semantic content of whole documents, rather than just titles,
abstracts, or overlap of keywords, offers an attractive alternative.
Latent semantic analysis provides an effective dimension reduction
method for the purpose that reflects synonymy and the sense of
arbitrary word combinations. However, latent semantic analysis
correlations with human text-to-text similarity judgments are
often empirically highest at �300 dimensions. Thus, two- or three-
dimensional visualizations are severely limited in what they can
show, and the first and�or second automatically discovered prin-
cipal component, or any three such for that matter, rarely capture
all of the relations that might be of interest. It is our conjecture that
linguistic meaning is intrinsically and irreducibly very high dimen-
sional. Thus, some method to explore a high dimensional similarity
space is needed. But the 2.7 � 107 projections and infinite rotations
of, for example, a 300-dimensional pattern are impossible to
examine. We suggest, however, that the use of a high dimensional
dynamic viewer with an effective projection pursuit routine and
user control, coupled with the exquisite abilities of the human
visual system to extract information about objects and from
moving patterns, can often succeed in discovering multiple reveal-
ing views that are missed by current computational algorithms. We
show some examples of the use of latent semantic analysis to
support such visualizations and offer views on future needs.

Most techniques for relating textual information rely on
intellectually created links such as author-chosen key-

words and titles, authority indexing terms, or bibliographic
citations (1). Similarity of the semantic content of whole docu-
ments, rather than just titles, abstracts, or an overlap of key-
words, offers an attractive alternative. Latent semantic analysis
(LSA) provides an effective dimension reduction method for the
purpose that reflects synonymy and the sense of arbitrary word
combinations (2, 3).

Latent Semantic Analysis
LSA is one of a growing number of corpus-based techniques that
employ statistical machine learning in text analysis. Other tech-
niques include the generative models of Griffiths and Steyvers
(4) and Erosheva et al. (5), and the string-edit-based method of
S. Dennis (6) and several new computational realizations of
LSA. Unfortunately, to date none of the other methods scales to
text databases of the size often desired for visualization of
domain knowledge. The linear singular value decomposition
(SVD) technique described here has been applied to collections
of as many as a half billion documents containing 750,000 unique
word types, all of which are used in measuring the similarity of
two documents. LSA presumes that the overall semantic content
of a passage, such as a paragraph, abstract, or full coherent
document, can be usefully approximated as a sum of the meaning
of its words, as follows: meaning of paragraph � meaning of
word1 � meaning of word2 � . . . � meaning of wordn.

Mutually consistent meaning representations for words and
passages can thus be derived from a large text corpus by treating
each passage as a linear equation and the corpus as a system of
simultaneous equations. In standard LSA, the solution of such
a system is accomplished by SVD (3). SVD is defined as X �
WSP�. As SVD is applied to a text corpus for LSA, X is a matrix
of words by paragraphs, with cells containing the log of the
frequency of a word in a paragraph weighted inversely with the
entropy of the word across all paragraphs. The matrix is decom-
posed by an iterative sparse-matrix SVD program (3) into three
matrices, two with orthonormal singular vectors, W and P,
standing for words and paragraphs, respectively, and a diagonal
S matrix of singular values (square roots of eigen values). SVD
yields a solution that is unique up to linear transformation. For
very large corpora, the methods find only approximate solutions
in dimensionalities well below the rank of the matrix and, in
practice, are usually limited to 200–400 dimensions, for reasons
to be given shortly. Similarities between words or documents are
usually measured by their cosines (cos) in the resulting high
dimensional semantic space. Vectors for new paragraphs can be
computed dynamically by simply adding the vectors of their
words, although after large additions or changes in the domain,
recomputing the semantic space may be necessary, a process that
takes several hours to days depending on corpus size and
computing power.

Even if mathematically provable, formal qualities such as
resolution, compactness, and separation of clusters may not be
what is most important for visualization (or other human uses
such as information retrieval) unless they gave rise to useful
human perceptions (or understandings). Therefore, we have
tested the effectiveness of the underlying text analysis by simu-
lating human judgments of the similarity of texts and comparing
them with those of humans. This has been done in numerous
ways with good results, agreement between machine and human
being as good or almost as good as that between two humans. For
example, after training on corpora from which humans learned
or might have, LSA-based simulations have passed multiple
choice vocabulary tests and textbook-based final exams at stu-
dent levels (7). The frequently encountered effect of dimension-
ality and the existence of a high and strongly peaked optimum
was dramatically shown by performance on multiple-choice
items from the Test of English as a Foreign Language. LSA
chose the most similar alternative word as that with the largest
cos to the question word. Fig. 1 shows that its performance at
250–400 dimensions was very much better than at two or three,
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or at ones much higher than the optimum. At peak dimension-
ality, its score equaled that of successful applicants to U.S.
colleges from non-English-speaking countries. In experiments
simulating the amount and kind of reading of middle school
students, LSA vocabulary growth equaled the average 10 per day
increase for students (8). By matching documents with similar
meanings but different words, LSA improved recall in informa-
tion retrieval, usually achieving 10–30% better performance
cetera paribus by standard metrics, again doing best with �300
dimensions (9). LSA has been found to measure coherence of
text in such a way as to predict human comprehension as well as
sophisticated psycholinguistic analysis, whereas measures of
surface word overlap fail badly (10). By comparing contents,
LSA predicted human ratings of the adequacy of content in
expository test essays nearly as well as the scores of two human
experts predicted each other, as measured by �90% as high
mutual information between LSA and human scores as between
two sets of human scores (7). The 300-dimension optimum is not
a universal law, nor is there theory to explain it. The reason for
finding it often (but not always) by empirical test is not known
(note that result in scoring essays here relies exclusively on LSA
as used in visualization and does not include other components
used in automated essay scoring). To repeat, in our method, the
measured relation between words is not the relative frequency
with which they co-occur in the same documents, but the extent
to which they have the same effect in the construction of total
passage meanings. Nor is the relation between two paragraphs
based on the literal words that they have in common, as in
standard vector space information retrieval systems. Instead, it
measures the extent to which the vectors of words they contain
would add to form the same paragraph vectors independent of
what sets of words went into the sum of either text. It is this
property, and the empirical evidence that it produces represen-
tations that closely simulate human judgment, that is the basis of
our belief that it offers important advantages for domain-
knowledge representation. In particular, four relevant properties
result for knowledge domain visualization purposes. (i) The
method measures similarity of meaning of whole documents
independent of the literal words used. For example, ‘‘the doctor
operates on the patient’’ is highly similar to ‘‘the physician is in

surgery’’ (cos � 0.86 � 0.05; the standard deviation is based on
random pairs from the same corpus) but considerably less similar
to ‘‘a carpenter operates a saw patiently,’’ which shares keywords
but carries a completely different meaning (cos � 0.02 � 0.05).
(ii) It is sensitive to all similarities and differences between
documents that are carried by word combinations, not just those
of special interest or notice to their authors, other authors, or
bibliographers. (iii) It ignores word order within documents and
measures pairs of antonyms as equally similar to each other as
pairs of synonyms (although the patterns of relations to other
words of antonyms and synonyms, respectively, are quite differ-
ent). These are disadvantages in some applications because
nonlinear intrasentence syntactic and grammatical effects on
meaning, such as predication, attachment, negation, and prop-
ositional implication, are lost (‘‘no large proteins contain few
amino acids’’ is very nearly the same, cos � 0.99, as ‘‘all amino
acids contain many small proteins’’). However, for most infor-
mation retrieval and mapping purposes, ignoring these phenom-
ena is of little consequence, or even advantageous. This is first
because over paragraph and longer texts, their effects seem to be
small, and, second, because measuring documents as closely
related that assert different things about the same matters is
usually desirable. (It would, of course, be useful if systems could
also automatically detect significant differences in results and
claims, in addition to topical similarity or ‘‘aboutness,’’ but no
general method by which this can be accomplished currently
exists.) (iv) It is entirely automatic. It does not need human
provision of key words or indexing, or even require that docu-
ments have been read, or aspects of their content noticed or
appreciated by others. (Of course, citation offers additional
information, for example, about influence, importance, and
conceptual ancestry, but it is not always useful to confound these
factors with content.)

Visualization Demonstrations
To be effective, an LSA representation of documents must start
by deriving a good high dimensional ‘‘semantic space’’ for the
whole domain or domains of knowledge to which the documents
in question belong. As a rule of thumb, to attain adequate results,
training data must include at least thousands of general or
domain-relevant coherent passages, for which 75- to 125-word
paragraphs are, empirically again, usually optimal. In our expe-
rience, the larger the training corpus the better, although there
is some dependence on the size and homogeneity of the field to
be covered and the size and specificity of its vocabulary. To
achieve results as good as those described above, at least 200
dimensions usually must be retained.

For visualization, finding good projections is also important;
many may be useful, most may not. There is no guarantee that
any particular projection, the first and second principal compo-
nents, or the 57th and 293rd, or the dynamically rotating 54th,
129th, and 200th, will reveal something familiar or new to the
human visual system, or be of particular interest to a human
analyst. It is also sometimes useful to compute a lower dimen-
sional subspace representation of the relations between a small
set of documents. For example, to map relations among a
particular group of drugs, one might apply multidimensional
scaling to a submatrix of cos to emphasize relations specific to the
subset.

For visualizations, we have used the GGobi (11) high dimen-
sional data viewer (see www.ggobi.org for current system refer-
ence and software). This system displays data points and lines in
any subset of three dimensions passed to it as appropriately
formatted files. It can apply sophisticated projection-pursuit hill
climbing and randomization algorithms to automatically find
dimension triplets and rotations to maximize properties such as
dispersion or grouping of points. These may, of course, be useful
for some purposes even without being comprehensible to a

Fig. 1. LSA performance on the Test of English as a Foreign Language
synonym test as a function of retained dimensions.
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human observer (i.e., for ‘‘machine visualization’’; e.g., of an
irregular 10-dimensional solid). But our goal is human visual-
ization, and we know of no way to assure value for that without
bringing human observers into the picture. Automatic projection
pursuit goes some way toward helping a human locate views of
interest; however, (i) the process is heuristic and weak against the
complexity of the space, and (ii) it does not necessarily corre-
spond to the interests of human searchers. Thus, we believe that
providing a kind of human–computer symbiosis in which the
user can guide and evaluate what the system displays can add
significant value. Importantly, GGobi allows a great deal of user
control. Users can choose starting dimensions and control
direction and speed of rotation. They can also specify the color
and shape of glyphs for subsets of points and connect them with
lines. Clicking on points can bring up associated text.

For the examples given here, we created a 300-dimensional
LSA space from the full title, abstract, and body text of all articles
in PNAS volumes 94–99, some 16,169 articles with a total of
67,341,938 word tokens containing 240,718 unique term types
(no stemming or stop-listing was applied). In an expedience-
dictated procedure differing from the optimal process described
above, we first divided the corpus into 317,115 paragraph-like
passages containing an average of 212 word tokens, and applied
SVD to the resulting matrix of 240,718 terms by 317,115 pas-
sages. Having thus created a vector for each word type, we
constructed vector representations of whole documents as the
sum of their word vectors. (An alternative procedure would have
been to construct article vectors from passage vectors, but that
would have been inconsistent with the manner in which we added
new documents not in the training corpus.)

We then used GGobi to search for revealing views. Data
points for document sets of interest were visually identified by

shape and�or coloring and are displayed in selected projections
from among those examined. The views presented are ones we
arrived at by the user-guided projection-pursuit methods de-
scribed above, but for illustrative purposes restricted to dimen-
sions 1–6. In the interest of consistency, comparison, and
interpretability, in all of the views presented here we use the
same generally good triple of dimensions, dimensions 3, 4, and
5 (which we found of greater interest than any other of the
six-choose-three combinations, dimensions 1 and 2 in particular
appearing to largely reflect word frequency, a dimension of little
interest to us). It is worth noting that the ‘‘scree slope’’ in LSA
decompositions is generally quite flat after the first two dimen-
sions, each succeeding dimension contributing only a small and
only slowly diminishing amount to the amount of total error
reduction in the reconstructed X matrix. In each case, a com-
bination of rapidly changing GGobi projection-pursuit views
(which, of course, cannot be illustrated here) followed by more
deliberate user control at interesting starting points was applied
to find a better three-dimensional rotation, there being a virtu-
ally unlimited number. In every case, the selected rotation
appeared more revealing to us than the initial one produced by
the algorithm, the latter corresponding to the common use of
two or three unrotated principal components.

Example visualizations of relations among the PNAS articles
are shown in Figs. 2–6. Fig. 2 shows all articles from eight biology
subfield categories in PNAS in the initial algorithmically chosen
view (Left) and in our selected view (Right). This kind of display
might aid in understanding the relations among nominal fields of
science, or help editors, program managers, research organiza-
tions, or institutions organize publications, requests for propos-
als, or departments into maximally distinct and internally cohe-
sive units. Used to display patterns over successive years, it could

Fig. 2. PNAS articles colorized by biology subfield categories. The two-dimensional view on the three-dimensional space was selected algorithmically (Left)
and by aided human selection (Right).
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aid analysis of the changing patterns of scientific effort. This case
has special interest in that its value seems not to depend on
identifying or characterizing individual documents.

Fig. 3 shows views of the overlap between two of those
categories, Biochemistry (blue) and Medicine (red), with all of
the rest displayed as gray dots. Also shown are centroids (the
300-dimensional average) of all documents in these two catego-
ries, respectively (the larger dots), and the category titles.

Fig. 4 illustrates a way to use the technique to find articles that
relate two or more topics of interest in a particular way within
the same article. They display documents similar to ones labeled
with specific Medical Subject Headings (MeSH) terms, but not
necessarily so labeled in the PNAS database, and do it in such
a way that ones containing components of content of both kinds,

either because they are the self-same article or because they
coincide as seen from some particular point of view, stand out
as new perceptual wholes. For this display, we first found all 721
PNAS94 articles with MeSH term ‘‘DNA’’ and all 1,401 with
MeSH term ‘‘protein.’’ For each set, we computed the centroid.
We then found every article that had a cos � 0.7 with each of
the two centroids separately, that is, ones that contained a
relatively high amount of relevant content. Those similar to the
DNA centroid (but not necessarily so labeled in the PNAS
database) are shown as open blue circles, and those similar to
ones labeled ‘‘protein’’ are shown as orange dots. Ones �0.7 to
both or coincident as seen from a particular viewpoint, appear
as bull’s-eyes of blue circles containing orange dots. Note that
the blue and orange documents are not identified by MeSH
terms but by their LSA similarities to the average content of
articles with such terms. In fact, of the 397 with cos � 0.7 to both
DNA and protein centroids, fewer than half had both MeSH
terms, and ones labeled with both did not appear as bull’s-eyes
in every view. The similarity threshold is continuously adjustable
and need not be symmetrical. To us, moving the display through
subsets of dimension triplets and rotating through three-
dimensional viewing angles seems to have revealed patterns that
are differentially interesting, whereas the first two principle
components are less so. We hypothesize that for scientists expert
in these overlapping fields, exploration of concentrated neigh-
borhoods of bull’s-eyes, clicking to see their titles or abstracts, or
the less intrusive automatically generated keyword summaries, as
shown here, could lead to useful information not as easily found
by existing methods. Other variants are possible, for example
precomputing bull’s-eye documents and marking them so that
they appear in every view. No discrete divisions or boundary
planes, which are almost always artificial, are computed, and the
natural fuzziness and intermingling is carried into the display.
What is shown is a complete picture of how objects from
different fuzzy classes are distributed with respect to themselves
and each other from one perspective selected for its utility to the
user with the help of the computational algorithm.

To compare this visualization to a completely verbal presen-
tation of the same data, we computed joint topicality by multi-
plying the cos to the two centroids for each bull’s-eye article.
Table 1 shows the top two and the bottom two article titles in
amount of overlap among the 397 articles, along with the product
of the two cos.

Intuitively, it seems that the verbal presentation offers more
precise information for choosing cases to examine, whereas the
visual presentation offers a more flexible style of exploration
that better shows multiple, fuzzy, and intermixed and complexly
patterned relations among the documents. In addition, note that
to explore the relations from a different perspective (similar to
a different facet in information retrieval terminology), a whole
new relevance ranked list would have to be produced and
examined.

Table 1. Top two and bottom two titles in the amount of topic
overlap, as determined by cos product

Title cos product

In vitro properties of the first ORF protein from mouse
LINE-1 support its role in ribonucleoprotein particle
formation during retrotransposition

0.664

Prospero is a panneural transcription factor that
modulates homeodomain protein activity

0.656

Chondrocytes as a specific target of ectopic Fos
expression in early development

0.492

c-Myc transactivation of LDH-A: Implications for tumor
metabolism and growth

0.490

Fig. 3. Overlap of articles in categories Biochemistry (blue) and Medicine
(red). Centroids of all articles in categories shown as the larger labeled dots.

Fig. 4. Overlap between articles similar at cos � 0.7 to centroids of ones with
MeSH terms DNA or protein. Note the groups of bull’s-eyes, articles related to
both topics according in the current view, and autogenerated key words.
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For Fig. 5, we started with one 1998 article and connected it
to the most similar articles from 1997 and 1999. Investigations of
this kind might help a researcher search for precedents, back-
ground work, or new related work before the sometimes con-
siderable delay before indexing and citations provide good

coverage. A historian might look for lines of progress, indepen-
dent discoveries, or missed opportunities. The apparent advan-
tage over corresponding lists would be the visualization of the
mutual distributions (in multiple dimensions). A disadvantage,
again, is in the more awkward identification of the actual articles.

Fig. 6 shows an application more similar to traditional query-
based information retrieval. In Fig. 6A, the dispersion of all
documents (full text of whole document) in 6 years of PNAS
articles is shown in SVD dimensions 3 and 4. In all of these
figures, the article title Primordial nucleosynthesis was used as the
query (shown as the black circle).

Red, green, and blue circles, respectively, indicate the position
of documents whose similarity to the query is more than four,
three, and two standard deviations above the mean similarity of
randomly chosen documents. Because human similarity judg-
ments are monotonic with LSA cos, one can say that less than
one in a thousand documents would be judged to be at least as
similar in meaning to the query as the red documents.

An additional interesting feature of such views is the extent of
mixture of relevant and nonrelevant articles and the differential
patterning of closeness to the query in different directions. Such
patterns also, of course, would vary with the choice of viewing
plane. This illustrates well the loss of potentially interesting
detail in standard ranked return lists (and purely algorithmic
choice of view). In Figs. 6 B–D, closeness to the query is assigned
to the dimension orthogonal to the plane of Fig. 6A, and the

Fig. 5. Connecting similar articles across years. Red, a single article from
1998; green, similar ones from 1997; and blue, similar ones from 1999, labeled
by autogenerated key words.

Fig. 6. Rotation from knowledge map view A (SVD dimensions 3 and 4), through views B and C, to information retrieval view D (SVD dimension 3 and relevance
to query). Query is marked as a black dot; significant results are marked in red, green, and blue (see text).
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plane rotated by hand and eye to two particularly interesting
views, one that stretches the orthogonal relevance view to
emphasize the distribution of relevances, the other to spread the
relevance peak to reveal qualitatively different ways in which
similar relevances are attained. In the last frame, two articles
from apparently different neighborhoods are automatically la-
beled to show that they indeed appear to be topically distinct;
presumably, the user would choose to examine only articles in
one of the neighborhoods. This kind of search has much the same
goal as recent attempts to automatically cluster subsets of
returns, but allows and relies on visual search by the user that can
reveal patterns and shapes such as clouds, gradual intermixings,
and scattered islands that hard-boundary clustering usually
misses, but the human visual system has evolved to perform in
still mysterious ways.

Of course, it might sometime be possible to find computa-
tional procedures to automatically find views optimized accord-
ing to these or other objectives. If and when user control is better
is an open question. Another open question is the extent to which
such visual explorations are useful, given the greatly impover-
ished semantic information they carry; without the labels, the
reader has no idea what the visualizations are about. Labels for
more than a few of the dozens or hundreds of points obscure the
rest. How much help are the clouds of unlabeled points and for
what tasks? How much help are short labels? Would interpret-
ability of dimensions help? LSA dimensions as extracted are
fundamentally uninterpretable because of the indeterminacy of
rotation. However, it should be possible to label them dynami-
cally in the same rather minimal manner as we have labeled
points.

Two More Examples of Potential Applications
There are a very large number of possible ways to use semantic
content-based measures of similarity in visualization, most of
which we have probably not yet imagined, and space prevents
showing more of the ones we have. However, to suggest the
possible range, here are just two more ideas. (i) One could
display the multidimensional topical distribution of research
proposals in one color and that of bibliographies from vitae of
potential reviewers in another, and explore views to find a
minimal set of reviewers whose expertise best covers the subjects
of all of the proposals. (ii) One could plot each article from a
large number of journals in two dimensions, differentially col-
oring them and labeling centroid points with, say, the number of

citations to each weighted by the cos of citing to cited, as a third
dimension. Narrow, coherent fields would stand out as high
pointed peaks, related groups as ranges separated by valleys.
This would be a semantic full-content version of something that
has frequently been done with other kinds of linkages.

Comments on the Enterprise
First, we conjecture that verbal meaning is irreducibly high
dimensional. Thus, the value of automatic reductions to two or
three best dimensions may be inherently limited; although they
may be valuable for some purposes, they must often provide only
an impoverished and possibly misleading impression of the
relations in a dataset. Different researchers and scholars are
often interested in different aspects of articles, only some of
which may have been indexed, key-worded, the object of citation,
or shown in a particular view. The alternative we have explored
here is a combination of measuring similarity of the entire
content of articles with high dimensional visualizations that
support search for projections that are of special interest to the
user. Our goal in selecting examples has been to identify cases
that exploit the putative advantages of these approaches. Un-
fortunately, we do not know whether we have succeeded because
we have not yet tested typical users using the displays to perform
either typical or novel tasks. This appears to be a widespread
situation in research in information visualization. Seldom have
new visual displays been empirically compared with best-of-class
verbal methods for the same tasks. The consequence is that the
majority of work in the field is, like ours, technology driven
rather than user problem driven and user success tested.

Despite decades of highly creative and sophisticated innova-
tion, and a plethora of claims for obvious superiority of the
visualization approach, we do not see visual maps of verbal
information in popular and effective use. It is, of course, possible
that visualizing verbal information is in large part just an
appealing bad idea. A more optimistic view is that the applica-
tion of more user testing to understand what does and doesn’t
help people do what, will steer innovations in more effective
directions. Precedent exists, for example in Bellcore’s Super-
Book, for turning novel information search devices from useless
as first designed to order-of-magnitude more effective through
iterative empirical usability analysis and redesign (12).
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