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PNAS is one of world’s most cited multidisciplinary scientific
journals. The PNAS official classification structure of subjects is
reflected in topic labels submitted by the authors of articles, largely
related to traditionally established disciplines. These include broad
field classifications into physical sciences, biological sciences, social
sciences, and further subtopic classifications within the fields.
Focusing on biological sciences, we explore an internal soft-
classification structure of articles based only on semantic decom-
positions of abstracts and bibliographies and compare it with the
formal discipline classifications. Our model assumes that there is a
fixed number of internal categories, each characterized by multi-
nomial distributions over words (in abstracts) and references (in
bibliographies). Soft classification for each article is based on
proportions of the article’s content coming from each category. We
discuss the appropriateness of the model for the PNAS database as
well as other features of the data relevant to soft classification.

The Proceedings is there to help bring new ideas
promptly into play. New ideas may not always be right,
but their prominent presence can lead to correction. We
must be careful not to censor even those ideas which
seem to be off beat.

Saunders MacLane (1)

Are there internal categories of articles in PNAS that we can
obtain empirically with statistical data-mining tools based

only on semantic decompositions of words and references used?
Can we identify MacLane’s ‘‘off-beat’’ but potentially path-
breaking PNAS articles by using these internal categories? Do
these empirically defined categories correspond in some natural
way to the classification by field used to organize the articles for
publication, or does PNAS publish substantial numbers of
interdisciplinary articles that transcend these disciplinary bound-
aries? These are examples of questions that our contribution to
the mapping of knowledge domains represented by PNAS
explores.

Mathematical and statistical techniques have been developed
for analyzing complex data in ways that could reveal underlying
data patterns through some form of classification. Computa-
tional advances have made some of these techniques extremely
popular in recent years. For example, 2 of the 10 most cited
articles from 1997–2001 PNAS publications are on applications
of clustering for gene-expression patterns (2, 3). The traditional
assumption in most methods that aim to discover knowledge in
underlying data patterns has been that each subject (object or
individual) from the population of interest inherently belongs to
only one of the underlying subpopulations (clusters, classes,
aspects, or pure type categories). This implies that a subject
shares all its attributes, usually with some degree of uncertainty,
with the subpopulation to which it belongs. Given that a rela-
tively small number of subpopulations is often necessary for a
meaningful interpretation of the underlying patterns, many data
collections do not conform with the traditional assumption.
Subjects in such populations may combine attributes from
several subpopulations simultaneously. In other words, they may

have a mixed collection of attributes originating from more than
one subpopulation.

Several different disciplines have developed approaches that
have a common statistical structure that we refer to as mixed
membership. In genetics, mixed-membership models can ac-
count for the fact that individual genotypes may come from
different subpopulations according to (unknown) proportions of
an individual’s ancestry. Rosenberg et al. (4) use such a model
to analyze genetic samples from 52 human populations around
the globe, identifying major genetic clusters without using the
geographic information about the origins of individuals. In the
social sciences, such models are natural, because members of a
society can exhibit mixed membership with respect to the
underlying social or health groups for a particular problem being
studied. Hence, individual responses to a series of questions may
have mixed origins. Woodbury et al. (5) use this idea to develop
medical classification. In text analysis and information retrieval,
mixed-membership models have been used to account for dif-
ferent topical aspects of individual documents.

In the next section, we describe a class of mixed-membership
models that unifies existing special cases (6). We then explain
how this class of models can be adapted to analyze both the
semantic content of a document and its citations of other
publications. We fit this document-oriented mixed-membership
model to a subcollection of the PNAS database supplied to the
participants in the Arthur M. Sackler Colloquium Mapping
Knowledge Domains. We focus in our analysis on a high-level
description of the fields in biological sciences in terms of a small
number of extreme or basis categories. Griffiths and Steyvers (7)
use a related version of the model for abstracts only and attempt
a finer level of description.

Mixed-Membership Models
The general mixed-membership model that we work with relies
on four levels of assumptions: population, subject, latent vari-
able, and sampling scheme. Population level assumptions de-
scribe the general structure of the population that is common to
all subjects. Subject-level assumptions specify the distribution of
observable responses given individual membership scores. Mem-
bership scores are usually unknown and hence can be viewed also
as latent variables. The next assumption is whether the mem-
bership scores are treated as fixed or random in the model.
Finally, the last level of assumptions specifies the number of
distinct observed characteristics (attributes) and the number
of replications for each characteristic. We describe each set of
assumptions formally in turn.
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Population Level. Assume there are K original or basis subpopu-
lations in the populations of interest. For each subpopulation k,
denote by f(xj��kj) the probability distribution for response
variable j, where �kj is a vector of parameters. Assume that,
within a subpopulation, responses to observed variables are
independent.

Subject Level. For each subject, membership vector � � (�1, . . . ,
�K) provides the degrees of a subject’s membership in each of the
subpopulations. The probability distribution of observed re-
sponses xj for each subject is defined fully by the conditional
probability Pr(xj��) � ¥k�kf(xj��kj) and the assumption that
response variables xj are independent, conditional on member-
ship scores. In addition, given the membership scores, observed
responses from different subjects are independent.

Latent-Variable Level. With respect to the latent variables, one
could assume that they are either fixed unknown constants or
random realizations from some underlying distribution.

1. If the membership scores � are fixed but unknown, the
conditional probability of observing xj, given the parameters
� and membership scores, is

Pr�xj��; �� � �
k�1

K

�kf�xj��kj�. [1]

2. If membership scores � are realizations of latent variables
from some distribution D�, parameterized by vector �, then
the probability of observing xj, given the parameters, is

Pr�xj��, �� ����
k�1

K

�kf�xj��kj��dD����. [2]

Sampling Scheme. Suppose R independent replications of J dis-
tinct characteristics are observed for one subject, {x1

(r), . . . ,
xJ

(r)}R
r�1. Then, if the membership scores are treated as realiza-

tions from distribution D�, the conditional probability is

Pr� �x1
�r�, . . . , xJ

�r��r�1
R ��, �� ����

j�1

J �
r�1

R �
k�1

K

�kf�xj
�r���kj��dD����.

[3]

When the latent variables are treated as unknown constants, the
conditional probability for observing R replications of J variables
can be derived analogously. In general, the number of observed
characteristics J does not need to be the same across subjects, and
the number of replications R does not need to be the same across
observed characteristics.

One can derive examples of mixed-membership models from
this general set up by specifying different choices of J and R and
different latent-variable assumptions. Thus, the ‘‘grade-of-
membership’’ model of Manton et al. (8) assumes that polyto-
mous responses are observed to J survey questions without
replications and uses the fixed-effects assumption for the mem-
bership scores. Potthoff et al. (9) use a variation of the grade-
of-membership model by treating the membership scores as
Dirichlet random variables; the authors refer to the resulting
model as ‘‘Dirichlet generalization of latent class models.’’
Erosheva (6) provides a formal latent-class representation for
the grade-of-membership model approach. In genetics, Prit-
chard et al. (10) use a clustering model with admixture. For
diploid individuals, the clustering model assumes that R � 2
replications (genotypes) are observed at J distinct locations
(loci), treating the proportions of a subject’s genome that

originated from each of the basis subpopulations as random
Dirichlet realizations. Variations of mixed-membership models
for text documents called ‘‘probabilistic latent semantic analysis’’
(11) and ‘‘latent Dirichlet allocation’’ (12) both assume that a
single characteristic (word) is observed a number of times for
each document, but the former model considers the membership
scores as fixed unknown constants, whereas the latter treats them
as random Dirichlet realizations.

The mixed-membership model framework presented above
unifies several specialized models that have been developed
independently in the social sciences, genetics, and text-mining
applications. In the text-mining area, initial work by Hofmann
(11) on probabilistic latent semantic analysis was followed by the
work of Blei et al. (12), who proposed a Dirichlet generating
distribution for the membership scores and the use of variational
methods to estimate the latent Dirichlet allocation model pa-
rameters. Minka and Lafferty (13) developed a more accurate
approximation method for this model.

A natural extension of the original analyses in the text-mining
area that have been based on a single source is to combine
information from multiple sources. Cohn and Hofmann (14)
propose a probabilistic model of document content and hyper-
text connectivity for text documents by considering links (or
references) in addition to words, thus essentially combining two
distinct characteristics; they treat the membership scores as
fixed. Following Cohn and Hofmann, we adopt a mixed-
membership model for words and references in journal publi-
cations but treat the membership scores as random Dirichlet
realizations. Barnard et al. (15) develop similar and alternative
approaches for combining different sources of information.

Mixed-Membership Models for Documents
We can use the general model framework for documents con-
sisting of abstracts and references by representing a document as
d � ({x1

(r1)}, {x2
(r2)}), where x1

(r1) is a word (w) in the abstract and
x2

(r2) is a reference (r) in the bibliography, rj � 1, . . . , Rj. By
adopting the ‘‘bag-of-words’’ assumption, we treat the words in
each abstract as independent replications of the first observed
characteristic (word). Similarly, under the assumption of a ‘‘bag
of references,’’ we treat references as independent replications
of the second observed characteristic (reference). Thus, the
representation of a document consists of word counts n(w, d)
(the number of times word w appears in document d) and
reference counts n(r, d) (1 if the bibliography of d contains a
reference to r, and 0 otherwise). In this context, subpopulations
refer to topical aspects.

The parameters � of our model are: Dirichlet (hyper)param-
eters �1, . . . , �K for the generating distribution of the member-
ship scores and aspect multinomial probabilities for words
�1k(w) � p(w�k) and references �2k(r) � q(r�k), k � 1, 2, . . . , K.

In the generative model, documents d � ({x1
(r1)}, {x2

(r2)}) are
sampled according to the following sequence,

� 	 Dirichlet���, [4]

x1
�r1� 	 multinomial�p��, where p� � �

k�1

K

�k�1k, [5]

x2
�r2� 	 multinomial�q��, where q� � �

k�1

K

�k�2k, [6]

where ¥w �1k(w) � 1 and ¥r �2k(r) � 1, k � 1, . . . , K. Because
distributions of words and references in a document are convex
combinations of the distributions of the aspects, the aspects can
be thought of as extreme or basis categories for a collection of
documents. The sampling of words and references in the model
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can be interpreted also as a latent classification process in which
an aspect of origin is drawn first for each word and for each
reference in a document, according to a multinomial distribution
parameterized by the document-specific membership scores �,
and words and references then are generated from correspond-
ing distributions of the aspects of origin (6). Rather than a
mixture of K latent classes, the model can be thought of as a
‘‘simplicial mixture’’ (13) because the word and reference
probabilities range over a simplex with corners �1k and �2k,
respectively.

The likelihood function is thus

p���d� ��Dir������
w

p��w�n�w,d� �
r

q��r�n�r,d�d� [7]

�
���i �i�

�i ���i�
��

i�1

k

�i
�i	1 �

w

p��w�n�w,d� �
r

q��r�n�r,d�d�,

[8]

where integrals are over the (K 	 1) simplex.
It is important to note that the assumption of exchangeability

among words and references (conditional independence given
the membership scores) does not imply joint independence
among the observed characteristics. Instead, the assumption of
exchangeability means that dependencies among words and
references can be explained fully by the membership scores of
the documents. For an extended discussion on exchangeability in
this context, see ref. 16.

Alternative Model for References
For the analysis of PNAS publications in the next section, we
assume multinomial sampling of words and references. Although
multinomial sampling is computationally convenient, it is not a
realistic model of the way in which authors select references for
the bibliography of an article. We briefly describe an example of
more realistic generative assumptions for references.

Suppose an article focuses on a sufficiently narrow scientific
area. In this case, the authors may have essentially perfect
knowledge of the literature, and thus they would pay separate
attention to each article in their pool of references as they
consider whether to include it in the bibliography. Under these
circumstances, given that the pool of references contains R
articles, we assume that a document is represented as d �
({x1

(r1)}, x2, x3, . . . , xR
1), where x1
(r1) is a word in the abstract,

R is the number of references, and x2, . . . , xR
1 are all references
in the pool. Reference counts do not change: they are given by
n(r, d) � 1 if the bibliography of d contains a reference to r and
by n(r, d) � 0 if otherwise.

Then our model for generating documents would be to sample
� and x1

(r1), according to Eqs. 4 and 5, and sample xj, j � 2, . . . ,
R 
 1, according to

xj 	 Bernoulli�q��xj��, where q��xj� � �
k�1

K

�k�jk. [9]

The likelihood function based on this alternative model would
not only take into account which documents contain which
references, but it also would incorporate the information about
which references documents do not contain.

Both the basic model for references and any alternatives still
would need to reflect the time ordering on publications and
include in the pool of possible references only those that have
been published already, perhaps even with a short time lag.

However, even such changes are unlikely to produce a ‘‘correct’’
model for citation practices.

Estimating the Model
The primary complication in using a mixed-membership model
such as is shown in Eqs. 4–6, in which the membership proba-
bilities are random rather than fixed, is that the integral in Eq.
7 cannot be computed explicitly and therefore must be approx-
imated. Two approximation schemes have been investigated
recently for this problem and the associated problem of fitting
the model. In the variational approach (12), the mixture terms
p�(w) � ¥k�1

K �k�1k(w) are bounded from below in a product
form that leads to a tractable integral; the lower bound is then
maximized. A related approach, called expectation–propagation
(13), also approximates each mixture term in a product form but
chooses the parameters of the factors by matching first and
second moments. Either of these approximations to the integral
(Eq. 7) can be used in an approximate expectation–
maximization (EM) algorithm to estimate the parameters of the
models. It is shown in ref. 13 that expectation–propagation in
general leads to better approximations than the simple varia-
tional method for mixed-membership models, although we ob-
tained comparable results with both approaches on the PNAS
collection. The results reported below use the variational
approximation.

The PNAS Database
The National Academy of Sciences provided the database for the
participants of the colloquium. We focused on a subset of all
biological sciences articles in volumes 94–98 (Julian years 1997–
2001) of PNAS, thereby ignoring articles published in the social
and physical sciences unless they have official dual classifications
with one classification in the biological sciences. The reason for
this narrowing of focus is 2-fold. First, the major share of PNAS
publications in recent years represents research developments in
the biological sciences. Thus, of 13,008 articles published in
volumes 94–98, 12,036 (92.53%) are in the biological sciences.
The share of social and physical sciences articles in volumes
94–98 is a much more modest 7.47%. Second, we assume that a
collection of articles is characterized by mixed membership in a
number of internal categories, and social and physical sciences
articles are unlikely to share the same internal categories with
articles from the biological sciences. We also automatically
ignore other types of PNAS publications such as corrections,
commentaries, letters, and reviews, because these are not tra-
ditional research reports. Among the biological sciences articles
in our database, 11 articles were not processed because they did
not have an abstract, and 1 article was not processed because it
did not contain any references.

PNAS is one of world’s most cited multidisciplinary scientific
journals. Historically, when submitting a research paper to
PNAS, authors have to select a major category from physical,
biological, or social sciences and a minor category from the list
of topics. PNAS permits dual classifications between major
categories and, in exceptional cases, within a major category. The
lists of topics change over time to reflect changes in the National
Academy of Sciences sections. PNAS, in its information for
authors (revised in June 2002), states that it classifies publica-
tions in biological sciences according to 19 topics; the numbers
of published articles and numbers of dual-classified articles in
each topic are shown in Table 1.

The topic labels provide a classification structure for pub-
lished materials, and most of the articles are members of only a
single topic. For our mixed-membership model, we assume that
there is a fixed number of extreme internal categories or aspects,
each of which is characterized by multinomial distributions over
words (in abstracts) and references (in bibliographies). Aspects
are determined from contextual decompositions in such a way
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that a multinomial distribution of words and references in each
document is a convex combination of the corresponding distri-
butions from the aspects. The convex combination for each
article is based on proportions of the article’s content coming
from each category. These proportions, or membership scores,
determine soft classifications of articles with respect to internal
categories.

Results
Choosing a suitable value for the number of internal categories
or aspects, K, in this type of setting is difficult. In our analyses,
we focused largely on two versions of the model: one with 8
aspects and the other with 10. The set of parameters in our model
is given by multinomial word and reference probabilities for each
aspect and by the parameters of Dirichlet distribution, which is
a generating distribution for membership scores. There are
39,616 unique words and 77,115 unique references in our data;
hence, adding an aspect corresponds to having 39,615 
 77,114

 1 � 116,730 additional parameters. Because of the large
numbers of parameters involved, it is difficult to assess the extent
to which the added pair of aspects actually improves the fit of the
model to the data. On the basis of a set of preliminary compar-
isons, we found little to choose between them in fit and greater
ease of interpretation for the eight-aspect model. Therefore, we
report only the results of the eight-aspect model here.

To determine whether there are certain contexts that corre-
spond to the aspects, we examine the most common words in the
estimated multinomial distributions. In Table 2, we report the
first 15 of the high-probability words for each aspect, filtering out
so-called stop words, words that are generally common in
English. An alternative way would be to discard the words from
the ‘‘stop list’’ before fitting the model. If the distribution of stop
words is not uniform across the internal categories, this alter-
native approach may potentially produce different results.

The following interpretations are based on examination of 50
high-probability words for each aspect. Note that enumeration of
the aspects is arbitrary. The first aspect includes words such as
Ca2
, kinase, phosphorylation, receptor, and G (protein) chan-
nel, which pertain to cell signaling and intracellular signal
transduction. It is likely that, in this aspect, signal transduction

Table 1. Biological sciences publications in PNAS volumes 94–98
by subtopic

Topic n

1 Biochemistry 2,578 (33)
2 Medical sciences 1,547 (13)
3 Neurobiology 1,343 (9)
4 Cell biology 1,231 (10)
5 Genetics 980 (14)
6 Immunology 865 (9)
7 Biophysics 636 (40)
8 Evolution 510 (12)
9 Microbiology 498 (11)

10 Plant biology 488 (4)
11 Developmental biology 366 (2)
12 Physiology 340 (1)
13 Pharmacology 188 (2)
14 Ecology 133 (5)
15 Applied biological sciences 94 (6)
16 Psychology 88 (1)
17 Agricultural sciences 43 (2)
18 Population biology 43 (5)
19 Anthropology 10 (0)

Total 11,981 (179)

The numbers of articles with dual classifications are given in parentheses.
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is considered as applied to neuron signaling as indicated by the
words synaptic, neurons, voltage. It is interesting that Ca2
 in the
first aspect is the highest-probability contextual word over all
the aspects. Frequent words for the second aspect indicate that
its context is related to molecular evolution that deals with
natural selection on the population and intraspecies level and
mechanisms of acquiring genetic traits. Words in aspect 3 pertain
mostly to the plant molecular biology area. High-probability
words in aspect 4 relate to studies of neuronal responses in mice
and humans, which identify this aspect as related to develop-
mental biology and neurobiology. Aspect 5 contains words that
can be associated with biochemistry and molecular biology.

Words in aspect 6 point to genetics and molecular biology.
Frequent words for aspect 7 contain such terms as immune, IL
(or interleukin), antigen, (IFN) gamma, and MHC class II, which
point to a relatively new area in immunology, namely, tumor
immunology. The presence of such words as HIV and virus
in aspect 7 indicates a more general immunology content.
For aspect 8, words such as increase or reduced, treatment,
effect, fold, and P (assuming it stands for P value) correspond to
general reporting of experimental results, likely in the area of
endocrinology.

As for words, multinomial distributions are estimated for the
references that are present in our collection. For estimation, we

Table 3. High-probability references by aspect

For each aspect, the top references are shown in order of decreasing probability, according to the model. The
count of each reference in the PNAS collection is shown in the right column (C).
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only need unique indicators for each referenced article. After the
model is fitted, attributes of high-probability references for each
aspect provide additional information about its contextual in-
terpretation. Table 3 provides attributes of 15 high-probability
references for each aspect that were available in the database
together with PNAS citation counts (number of times cited by
PNAS articles in the database). Notice that, because the model
draws from the contextual decomposition, having a high citation
count is not necessary for having high aspect probability. In

Table 3, high-probability references for aspect 1 are dominated
by publications in Nature; references in aspect 7 are mostly
Nature, Cell, and Science publications from the mid-1990s.

Examining titles of the references (see Table 5, which is
published as supporting information on the PNAS web site,
www.pnas.org), we see that manuals, textbooks, and references
to methodology articles seem to be prominent for many aspects.
Thus, among the first 15 high-probability references, all 15 from
aspect 3 and more than half from aspect 4 are of this method-

Fig. 1. Distributions by aspect of the posterior means of membership scores for articles published in evolution and genetics.
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ological type. In contrast, most high-probability references for
aspect 7 are those that report new findings. Titles of the
references indicate neurobiology content for aspect 1, molecular
evolution for aspect 2, and plant molecular biology for aspect 3,
which is in agreement with our conclusions based on high-
probability words. For other aspects, titles of high-probability
references help us refine the aspects. Thus, aspect 4 mostly
pertains to the study of brain development, in particular, via
genetic manipulation of mouse embryo. Aspect 5, identified as
biochemistry and molecular biology by the words, can be de-
scribed as protein structural biology by the references. Aspect 6
may be labeled in a more detailed way as ‘‘DNA repair,
mutagenesis, and cell cycle.’’ The references for aspects 7 and 8
shift their focuses more toward HIV infection and studies of
molecular mechanisms of obesity.

Among frequent references for the eight aspects, there are
seven PNAS articles that share a special feature: they were all

either coauthored or contributed by a distinguished member of
the National Academy of Sciences. In fact, one article was
coauthored by a Nobel prize winner, and two were contributed
by other Nobelists. Although these articles do not have the
highest counts in the database, they are notable for various
reasons; e.g., one is on clustering and gene expression (2), and
it is also one of the two highly cited PNAS articles on clustering
that we mentioned in the Introduction. These seven articles may
not necessarily be off-beat, but they may be among those that
fulfill MacLane’s petition regarding the special nature of PNAS.

From our analysis of high-probability words, it is difficult to
determine whether the majority of aspects correspond to a single
topic from the official classifications in PNAS biological science
publications. To investigate whether there is a correspondence
between the estimated aspects and the given topics, we examine
aspect loadings (means of posterior membership scores) for each
article. Given estimated parameters of the model, the distribu-

Table 4. Mean decompositions of aspect membership scores (Lower), together with a graphical representation of this
table (Upper)

Topic

Biochemistry 0.0469 0.0347 0.1810 0.0178 0.3838 0.2057 0.0477 0.0823
Medical sciences 0.0244 0.0502 0.0938 0.1274 0.0181 0.1075 0.3286 0.2500
Neurobiology 0.2875 0.0398 0.0722 0.3768 0.0196 0.0296 0.0441 0.1304
Cell biology 0.1691 0.0165 0.1420 0.0684 0.1097 0.2423 0.1637 0.0884
Genetics 0.0141 0.3056 0.1422 0.1532 0.0487 0.2621 0.0395 0.0347
Immunology 0.0127 0.0593 0.1003 0.0413 0.0422 0.0915 0.6244 0.0283
Biophysics 0.0507 0.0295 0.2398 0.0162 0.5496 0.0542 0.0176 0.0423
Evolution 0.0042 0.7679 0.0465 0.0913 0.0289 0.0378 0.0101 0.0133
Microbiology 0.0158 0.1725 0.3431 0.0335 0.0647 0.1174 0.1870 0.0661
Plant biology 0.1333 0.0983 0.4400 0.0360 0.0462 0.0954 0.0166 0.1344
Developmental biology 0.0475 0.0288 0.1071 0.3729 0.0274 0.2558 0.0974 0.0631
Physiology 0.3179 0.0275 0.0712 0.1123 0.0258 0.0116 0.0595 0.3743
Pharmacology 0.2883 0.0161 0.0772 0.1965 0.0299 0.0349 0.0537 0.3033

For clarity, the six lowest-frequency topics, which make up 3.4% of the biological sciences articles, are not shown.
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tion of each article’s loadings can be obtained by means of Bayes’
theorem. The variational and expectation–propagation proce-
dures provide Dirichlet approximations to the posterior distri-
bution p(��d, �) for each document d. We use the mean of this
Dirichlet as an estimate of the weight of the document on each
aspect. Histograms of these loadings are provided in Fig. 1 for
articles in evolution and genetics. Relatively high histogram bars
near zero correspond to the majority of articles having small
posterior membership scores for the given aspect. Among the
articles published in genetics, some can be considered as full
members in aspects 2, 3, 4, and 6, but many have mixed
membership in these and other aspects. Articles published in
evolution, on the other hand, show a somewhat different behav-
ior: the majority of these articles comes fully from aspect 2.

The sparsity of the loadings can be gauged also by the
parameters of the Dirichlet distribution, which are estimated as
�1 � 0.0195, �2 � 0.0203, �3 � 0.0569, �4 � 0.0346, �5 � 0.0317,
�6 � 0.0363, �7 � 0.0411, and �8 � 0.0255. The estimated
Dirichlet, which is the generative distribution of membership
scores, is ‘‘bathtub-shaped’’ on the simplex; as a result, articles
tend to have relatively high membership scores in only a few
aspects.

To summarize the aspect distributions for each topic, we
provide mean loadings and the graphical representation of these
values in Table 4 Upper. Larger values correspond to darker
colors, and the values below some threshold are not shown
(white) for clarity. As an example, the mean loading of 0.2883 for
pharmacology in the first aspect is the average of the posterior
means of the membership scores for this aspect over all phar-
macology publications in the database. Note that this percentage
is based on the assumption of mixed membership and can be
interpreted as indicating that 29% of the words in pharmacology
articles originate from aspect 1, according to our model.

Examining the rows of Table 4, we see that most subtopics in
biological sciences have major components from more than one
aspect (extreme or basis category). Examining the columns, we
can gain additional insights in interpretation of the extreme
categories. Aspect 8, for example, is the aspect of origin for a
combined 37% of physiology, 30% of pharmacology, and 25% of
medical sciences articles, according to the mixed-membership
model. The most prominent subtopic is evolution; it has the
greatest influence in defining an extremal category, aspect 2.
This is consistent with a special place that evolution holds among
the biological sciences by standing apart both conceptually and
methodologically.

Finally, we compare the loadings (posterior means of the
membership scores) of dual-classified articles to those that are
singly classified. We consider two articles as similar if their
loadings are equal for the first significant digit for all aspects.
One might interpret singly classified articles that are similar to
dual-classified as articles that should have had dual classification
but did not. We find that, for 11% of the singly classified articles,
there is at least one similar dual-classified article. For example,
three biophysics dual-classified articles with loadings 0.9 for the
second and 0.1 for the third aspect turned out to be similar to 86
singly classified articles from biophysics, biochemistry, cell bi-
ology, developmental biology, evolution, genetics, immunology,
medical sciences, and microbiology.

Concluding Remarks
We have presented results from fitting a mixed-membership
model to PNAS biological sciences publications, from 1997 to
2001, providing an implicit semantic decomposition of words and
references in the articles. The model allows us to identify
extreme internal categories of publications and to provide soft
classifications of articles into these categories. Our results show
that the traditional discipline classifications correspond to a
mixed distribution over the internal categories. Our analyses and
modeling were intended to capture a high-level description of a
subset of PNAS articles.

In an often-quoted statement, Box remarked: ‘‘all models are
wrong’’ (17). In our case, the assumption of a bag of words and
references in the mixed-membership model clearly oversimpli-
fies reality; the model does not account for the general structure
of the language, nor does it capture the compositional structure
of bibliographies. Many interesting extensions of the basic model
we have explored are possible, from hierarchical models of topics
to more detailed models of citations and dynamic models of the
evolution of scientific fields over time. Nevertheless, as Box
notes, even wrong models may be useful. Our results indicate
that mixed-membership models can be useful for analyzing the
implicit structure of scientific publications.
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