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Abstract
Gastric cancer is the most common cancer in Asia and most developing countries. Despite the use
of multimodality therapeutics, it remains the second leading cause of cancer death in the world. To
identify the molecular underpinnings of gastric cancer in the Asian population, we applied an
RNA-sequencing approach to gastric tumor and noncancerous specimens, generating 680 million
informative short reads to quantitatively characterize the entire transcriptome of gastric cancer
(including mRNAs and microRNAs). A multi-layer analysis was then developed to identify
multiple types of transcriptional aberrations associated with different stages of gastric cancer,
including differentially expressed mRNAs, recurrent somatic mutations and key differentially
expressed microRNAs. Through this approach, we identified the central metabolic regulator
AMPK-α as a potential functional target in Asian gastric cancer. Further, we experimentally
demonstrated the translational relevance of this gene as a potential therapeutic target for early-
stage gastric cancer in Asian patients. Together, our findings not only provide a valuable
information resource for identifying and elucidating the molecular mechanisms of Asian gastric
cancer, but also represent a general integrative framework to develop more effective therapeutic
targets.
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Introduction
Gastric cancer is the fourth most common cancer and the second leading cause of cancer-
related deaths in the world (1). The incidence of cancer affecting the distal stomach has
significantly declined over the past 40 years, but the incidence of proximal gastric and
gastroesophageal junction adenocarcinoma in the United States and Europe has increased at
a rate substantially exceeding that of prostate cancer, brain cancer, or melanoma (2).
Moreover, the 5-year relative survival rate of patients with gastric cancer has not improved
significantly in recent decades, remaining at approximately 20-30%.

The high mortality rate of gastric cancer is due largely to late-stage diagnosis of the cancer
and a lack of effective medical treatment options. Treatment often consists of drug
combinations that have provided survival advantages for patients with other cancer types (3,
4). Thus, there is clearly a need for new therapies specifically targeting gastric cancer. A
comprehensive molecular profile of gastric cancer would provide important information
about the disease pathways and targets that could facilitate the development of new
therapeutic agents and strategies (5, 6).

So far, most transcriptional profiling studies in gastric cancer have used hybridization
microarrays. For example, aberrant microRNA (miRNA) expression signatures in gastric
tumor samples from Japanese and Italian patients have been reported using miRNA
expression microarrays (7, 8), and mRNA expression signatures from Chinese patients have
been recently reported using exon microarrays (9). RNA sequencing (RNA-seq) technology
is rapidly supplanting hybridization-based approaches. This approach not only enables
investigators to quantify gene expression levels, but to simultaneously assess alternative
splicing and gene fusion events and to detect nucleotide variations in transcribed regions
(10, 11). Thus, multidimensional datasets from a single platform can generate a rich profile
of cancer progression and development. In particular, whole-transcriptome RNA-seq
provides a detailed and precise view of the entire spectrum of expressed transcripts for both
mRNA and non-coding RNA.

In this study, we generated comprehensive mRNA and miRNA profiles for Asian gastric
tumors. First, we performed transcriptome-wide, unbiased analyses of the RNA-seq data to
identify different types of transcriptional aberrations (mRNA, miRNA and somatic mutation
candidates) to leverage the existing knowledge of the pathogenesis. Second, integrating the
results of our multi-layer analyses, we identified a potential role in cancer progression for
PRKAA2, which encodes AMPK-α2, a subunit of the AMPK serine/threonine protein kinase
complex involved in the regulation of cellular and organismal metabolism. We
experimentally validated the expression changes of PRKAA2 between early- and late-stage
gastric cancers. Third, through functional studies in gastric cancer cell lines, we
demonstrated the translational relevance of PRKAA2 as a potential therapeutic target. Our
work provides a valuable information basis for elucidating the molecular mechanisms of
gastric cancer progression, and also represents a general framework for the more effective
development of disease-focused therapeutic targets.
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Methods and Materials
Sample collection and characterization

This is a retrospective study conducted in archival fresh frozen human tissue specimens
obtained from the National Research Resource Bank Program of the Korea Science and
Engineering Foundation in the Ministry of Science and Technology. Patients consented to
the use of the tissue specimens for research purpose, and the Institutional Review Boards of
the College of Medicine, Yonsei University (Seoul, Korea), and the University of Texas MD
Anderson Cancer Center (Houston, TX, USA) approved the use of the specimens.
Histological classification and tumor stage were reviewed by a pathologist at the Gene Bank
at Yonsei University Severance Hospital. Among 82 initially enrolled gastric cancer cases,
24 tumors and 6 noncancerous gastric tissues that met the criteria (sufficient amount and
quality of RNA) were included in this study. Clinical and histopathological characteristics
obtained from the patients are summarized in Supplementary Table 1.

RNA-seq library preparation and SOLiD sequencing
The Miravana Kit (Ambion/Applied Biosystems, Foster City, CA, USA) was used to isolate
total RNA according to the vendor’s protocol. The whole-transcriptome-sequencing (WT-
seq) and small RNA-seq libraries were prepared using the small RNA expression kit (SREK,
PN 4397682) of Applied Biosystems Inc. (ABI), based on SOLiD WT and small RNA
standard protocols provided by ABI. The individual prepared “barcode” libraries were
quantified and pooled equally together for multiplexing. The sequencing runs were
performed on SOLiD v 3.0 for both WT-seq and small RNA-seq. WT-seq samples were
sequenced in 1/4 slide per sample using 50-nucleotide (nt) single tags; and small RNA-seq
samples were sequenced in 1/10 slide per sample using 35-nt single tags. Detailed
information is provided in the Supplementary Materials and Methods.

Computational analyses of RNA-seq data
WT-seq short reads were mapped to the human reference genome (hg19) and exon junctions
(defined as RefSeq gene annotation) using the ABI Bioscope™ (version 1.21) WT-seq
analysis pipeline with default parameters. The reads mapped to the sequences that were not
of biological interest, such as rRNAs, tRNAs, and repetitive elements, were first filtered.
Then mapped reads with mapping quality ≥10 were defined as uniquely mapped reads and
used in the downstream analysis. The SOLiD System Small RNA Analysis Pipeline Tool
(corona RNA2MAP version 0.50) was used to analyze small RNA-seq reads: after filtering,
the reads were mapped to mature miRNAs in miRBase (verson13.0) (12) and the human
reference genome, respectively.

To identify gastric-cancer-related differentially expressed genes, the “reads per kilobase of
exon per million mapped sequence reads” (RPKM) (13) values of the human RefSeq genes
were calculated using the RNA-seq flow in the Partek® Genomics Suite™ (version 6.5 beta,
Partek Inc., St. Louis, MO, USA) and then log transformed. Single-factor analysis of
variance (ANOVA) was used to detect differentially expressed genes among 18,890 protein-
coding genes: P < 9.5×10−4 (false discovery rate [FDR] < 0.05) was used as the cut-off in
the five-group comparison (normal, tumor stage I, II, III or IV); and P < 7×10−4 was used in
the four-stage comparison (tumor stage I, II, III or IV). A similar analysis was performed on
2,569 long non-coding RNAs. Cross-platform gene expression comparison was performed
with a recent microarray study in gastric cancer (14). A gene ontology analysis was
performed using GOminer (15) and a disease association analysis was performed using
Ingenuity Pathway Analysis software (version 7.0). Recurrent somatic mutations were
identified based on a recent exome-sequencing study on Asian gastric cancer patients (16).
MiRNA expression was quantified as reads per million (RPM) of reads mapped to known
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miRNAs, and key differentially expressed miRNAs were defined based on their differential
expression and expression anti-correlation with their potential target genes. Detailed
information is provided in the Supplementary Materials and Methods.

Experiments on biological function
Cell culture—Human NCI-N87 and AGS gastric cancer cells were obtained from the
American Type Culture Collection (http://www.atcc.org/). The study was conducted within
6 months of resuscitation, and they were cultured in RPMI-1640 (Cellgro) and 10% fetal
calf serum (FCS; Hyclone) at 37°C in 5% CO2. ATCC uses short tandem repeat (STR)
profiling. For a hypoxia assay, culture flasks were incubated for various times at 37°C in
humidified air, 5% (normoxia), or 1% O2, 5% CO2, and 94% N2 (hypoxia) using an in vivo
Hypoxia Workstation 500 with Ruskin hypoxic gas mixer (Biotrace International, Bothell,
WA, USA). Cells (2.5×105) were seeded and incubated under normoxic conditions to 70%
confluence, and then incubated under hypoxic conditions for 18 h in the presence or absence
of metformin at 10 mM concentration. The NCI-N87-HRE cells were established according
to the manufacturer’s protocol, Cignal HIF Reporter (luc) (SA Biosciences, QIAGEN Co.,
Frederick, MD, USA). Firefly luciferase activity was measured using the Dual Luciferase
Reporter Assay System (Promega, Sunnyvale, CA, USA) according to the manufacturer’s
protocol.

Western blotting—Cells were grown under hypoxic conditions in the presence or absence
of 10 mM metformin. The cells were washed twice in a phosphate-buffered saline solution
and Western blotting was conducted, as previously described (17).

Real-time reverse transcription-PCR—Total RNA was isolated from cell lysates using
the PARIS kit (Ambion/Applied Biosystems, Foster City, CA, USA) according to the
manufacturer’s protocol. Next, TaqMan quantitative reverse transcription (RT)-PCR was
performed on the ABI 7300 system using the TaqMan one-step RT-PCR Master Mix kit and
predesigned primer/probe pairs for PRKAA1, PRKAA2, PRKAB1, PRKG1, STK11, HNF4α,
and β2-microglobulin (Applied Biosystems, Foster City, CA, USA). Normalization
procedures and analyses were carried out with β2-microglobulin using the 2(−ΔΔCt) method
as the internal reference (18) and using Applied Biosystems GeneAmp 5700 SDS software.
All measurements were performed in triplicate.

Small interfering RNA transfection—Small interfering RNA (siRNA) SMARTpool
sequences were obtained from Dharmacon/Thermo Fisher Scientific (Waltham, MA, USA).
The cells were transfected with 25 nM siRNA-PRKAA2, siRNA-PRKAB1, siRNA-PRKAG1,
siRNA-PRKAG2, or a siRNA non-targeting control using Dharma-FECT 1 lipid transfection
reagent. The transfection medium was removed after 24 h and replaced with fresh medium,
and the cells were grown in 5% CO2 at 37°C for an additional 48-72 h. RT-PCR and/or
Western blot analyses were performed to confirm target knockdown by siRNA. The
transfected cells were treated with metformin and cultured under hypoxic conditions for an
additional 18 h.

Statistical analysis—For the experiments on individual genes in this section, statistical
significance (P < 0.05) was determined using a student’s t test to compare data points with
control data.
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Results
Overview of the gastric cancer RNA-seq data

Using Life Technologies SOLiD™ sequencing platform, we performed transcriptome-wide
profiling of gastric cancer samples from 30 anonymous, unrelated Asians of both sexes.
Included were six noncancerous gastric tissue samples and 24 gastric tumor samples that
represented stages I through IV of tumor development (Clinical characteristics of patients
are shown in Supplementary Table 1). Applying two protocols that complementarily cover
RNA fragments of different sizes from each sample resulted in two parallel large-scale
datasets that allowed us to simultaneously measure mRNA and miRNA expression.

From the WT-seq protocol we generated a WT-seq dataset of 2.1 billion 50-nt short reads
from the 30 samples (mean of 70.8 million; Supplementary Table 1). Using the ABI
Bioscope™ WT-seq analysis pipeline, 62.3% of the short reads, on average, were mappable:
28.4% were mapped to sequences of no biological interest for this study (e.g., rRNAs and
tRNAs), so we removed them from further analysis. On average, 26.0% (18.4 million per
sample) of the short reads were uniquely mapped to the human reference genome (hg19) or
exon-junction sequences (0.5 million per sample); we used these in the downstream analysis
(Fig. 1A and Supplementary Table 1).

Applying the second small RNA-seq protocol to 19 gastric tumor samples (5 of the original
24 yielded insufficient sample amounts) and 6 noncancerous gastric tissue samples resulted
in a small RNA-seq dataset of 894 million 35-nt short reads (mean of 36.4 million;
Supplementary Table 1). Using the SOLiD System Small RNA Analysis Pipeline Tool,
52.4% of the short reads, on average, were mappable: 33.6% were mapped to sequences of
no biological interest, as in the whole-transcriptome analysis, and we removed them from
further analysis. On average, 13.9% (5.1 million per sample) were mapped to known
miRNAs in the miRBase database (Fig. 1B and Supplementary Table 1) (version 13.0) (12).
To our knowledge, this is one of the largest RNA-seq datasets on human cancer available to
date.

Identification of gastric-cancer-related differentially expressed genes
With millions of short reads mapped to the human genome/transcriptome, we quantified the
expression levels of known genes in each sample using the conventional parameter, RPKM
(13). Among 18,890 annotated RefSeq coding genes, 15,421 genes, on average, per sample
had detectable expression (RPKM > 0.05, about one mapped read for a gene with 1kb
exons) (Supplementary Table 1). To evaluate the reproducibility of our RNA-seq approach
on expression quantification, for a subset of samples with available microarray data from a
previous study (14), we compared the gene expression data from the two platforms
(microarray and RNA-seq) and found sample-by-sample correlations, RS = 0.73 ± 0.04
(Spearman rank correlation, Supplementary Fig. 1A) that are similar to those reported in the
literature (11, 13). The clustering pattern from an unsupervised analysis largely reflected the
disease/staging status of the samples under survey (Supplementary Fig. 2). Moreover, a
principal component analysis of the global gene expression profiles showed that gastric
cancer samples differed from gastric intestinal stromal tumor samples, thereby confirming
the pathological classification of our tumor samples (Supplementary Fig. 3).

To identify gastric-cancer-related differentially expressed genes, we performed a single-
factor ANOVA on the RPKM (log-scale transformed) data of 18,890 protein-coding genes
across five groups (tissue type = normal or stage I, II, III or IV as the independent variable).
At FDR < 0.05 (19) (P < 9.5×10−4), we identified 356 differentially expressed genes
(Supplementary Table 2). As an independent validation, we performed the same analysis on
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a published microarray dataset (14) consisting of 83 Asian gastric samples taken from
normal tissue and four tumor stages. In that analysis, 78% of the differentially expressed
genes identified by our RNA-seq analysis showed significant expression changes in the
same direction (tumor vs. normal) based on the microarray data; whereas only 17% would
be expected if a same-size gene set were randomly chosen (P < 1×10−4; Supplementary Fig.
1B). In addition, we performed a similar analysis on 2,569 long non-coding RNA genes and
identified seven differentially expressed genes (Supplementary Table 2).

To identify biological characteristics of the differentially expressed genes, we performed a
gene ontology analysis using GOminer (15). We found that the 356-gene dataset showed
high enrichment of genes involved in the biological processes of digestion and phosphagen
metabolism, and the molecular functions of transmembrane transport and ATPase activity
(Table 1). Using the Ingenuity Pathway Analysis software, we identified 101 of the 356
genes (28.4%) as associated with cancer (Fisher’s exact test, P = 2.8×10−4), and 46 of them
(12.9%) as related to gastrointestinal disease (Fisher’s exact test, P = 1.1×10−4). Fig. 2A
categorizes these 356 genes by biological and molecular functions (Supplementary Table 2).
Since highly expressed genes tend to be identified in RNA-seq-based differential analysis
(20), we used 12,213 genes with the same expression distribution as that of the 356 genes,
rather than the whole gene set, as a reference set in the above analyses (see Supplementary
Methods and Materials). As shown in Fig. 2B, these differentially expressed genes provided
substantial power for classifying normal vs. tumor tissue, as well as for distinguishing
different clinical stages of the gastric tumors (although the distinction between stages III and
IV became a little fuzzy). In comparison with the expression levels in the normal tissue,
genes related to gastrointestinal disease were downregulated in four tumor stages (Fig. 2B).
For example, loss of expression of gastrokines GKN1 and GKN2 occurs frequently in gastric
adenocarcinoma, which is associated with shorter overall survival in the intestinal subtype of
distal gastric cancer (21). Our results showed a dramatic tumor-related loss of expression
level in both GKN1/2 and trefoil factor family peptides 1/2 (TFF1/2), supporting their
potential use as predictive biomarkers (9).

In addition, we performed a similar analysis on the 24 tumor samples using single-factor
ANOVA (tissue type = stage I, II, III or IV). In general, the expression variation among
tumor samples was much less than that between normal and tumor samples. At P < 7×10−4,
we identified 28 genes with significant stage-specific expression change. Based on these
genes, the tumor samples clearly clustered according to their stage, with the largest
distinction between stages I, II vs. III, IV (Supplementary Fig. 4).

Identification of recurrent somatic mutation candidates in gastric cancer
To take full use of our RNA-seq data, we also made efforts to identify somatic mutation
candidates in gastric cancer. Since we did not sequence the normal DNA from the same
patients, we had a very limited power to infer somatic mutations based on our RNA-seq data
alone. Instead, we took advantage of a recent exome-sequencing study on Asian gastric
cancer patients (16) and obtained a list of 2,651 somatic mutations with a potential
functional effect (nonsynonymous/nonsense mutations and those at splicing sites). Among
these reported somatic mutation positions, we detected the exact mutant alleles at 14
mutation positions in our WT-seq data, suggesting that they are recurrent somatic mutations
(Supplementary Table 3). TP53 is the only gene with multiple recurrent mutation candidates
(four mutations), consistent with its known high mutation frequency in gastric cancer (22).
In addition, we detected 92 potential recurrent coding somatic mutations based on the
COSMIC database (23) (although these recurrent mutations may not be specific to gastric
cancer) (Supplementary Table 4).
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Identification of key differentially expressed miRNAs related to gastric cancer
In parallel with the analysis of gene expression using the WT-seq dataset, we used the small
RNA-seq dataset to quantify the expression levels of known miRNAs in each sample using
RPM, a measure analogous to RPKM for coding genes. Among 698 annotated, non-
redundant mature miRNAs in the miRBase (version 13.0), on average, ~60% of the
miRNAs had mapped reads. The observation that a large proportion of annotated miRNAs
(40%) have zero or very low expression levels may be partially due to the inflation of the
current miRBase annotation, as suggested by recent studies (24, 25). Therefore, we focused
on 402 miRNAs with reliable expression (max RPM > 4 in 25 samples) in the subsequent
analysis (see Supplementary Methods and Materials).

To identify the miRNAs that play a key role in gastric tumor development, we reasoned that
(i) the key miRNAs themselves should show significant expression variations across
different sample groups; and (ii) they should have detectable repression effects on the
expression of their target genes (26). Therefore, we performed a two-step analysis. First, we
performed single-factor ANOVA (tissue type as the independent variable) on the RPM data
(log-scale transformed) across five groups (normal tissue and four tumor stages). At P <
0.01 (FDR < 0.15), 26 miRNA genes showed significant differential expression: nine
upregulated and 17 downregulated (Fig. 3A and Supplementary Table 5). One of the
upregulated miRNAs, miR-21 is the most commonly upregulated miRNA in both solid and
hematological tumors (8). Seven of the 26 differentially expressed miRNAs (Supplementary
Table 5) were also identified by a recent microarray study on the miRNA biomarkers for the
progression/prognosis of gastric cancer using samples from Japanese patients (7).

Second, for each of the 26 miRNAs, we used Spearman’s rank correlation (Rs) to quantify
its expression correlations with protein-coding genes across 25 samples with both the
available coding gene and the miRNA expression data. We then tested whether the Rs values
of its potential target genes were significantly lower than those of other genes using
Wilcoxon’s rank sum test, resulting in six miRNAs showing significant anticorrelation with
their potential targets (Wilcoxon’s rank sum test P < 0.01, see Supplementary Methods and
Materials). We defined these six miRNAs as key differentially expressed miRNAs of Asian
gastric cancer (Fig. 3B).

Integrative analysis suggests a potential role of PRKAA2, an AMPK activator in early-stage
gastric cancer

To identify candidate genes with the highest potential functional impact in gastric
tumorigenesis, we surveyed all three types of transcriptional aberrations: (i) differentially
expressed genes; (ii) genes related to recurrent somatic mutation candidates; and (iii)
potential target genes of key differentially expressed miRNAs. Through a simple scoring
analysis, PRKAA2 (AMPK-α2) was the only gene identified by all the three criteria,
suggesting that it is a potential key modulator in gastric cancer progression (Supplementary
Fig. 5). PRKAA2 is the catalytic subunit of AMP-activated protein kinase, which is a
heterotrimer consisting of a catalytic α-subunit and regulatory non-catalytic β- and γ-
subunits, each with two or three isoforms (27). AMPK is an energy-sensing enzyme and
plays a central role in the regulation of energy homeostasis (28).

The most compelling evidence is that PRKAA2 is among the most highly differentially
expressed genes identified in both 5-group and 4-stage expression analyses (5-group
ANOVA, P = 4.65×10−6; 4-stage ANOVA, P = 4.7×10−4; only 22 genes were identified by
both analyses). PRKAA2 showed a differential loss of mRNA level in tumor stage I/II
relative to normal or tumor stage III/IV (Supplementary Fig. 6). Using qRT-PCR on an
independent set of Asian gastric cancer samples (including normal, stage I through IV
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cases), we validated our findings by comparing the expression patterns of PRKAA2 along
with the other three subunits of AMPK, PRKAA1, PRKAB1 and PRKAG1, for which we had
not observed changes in the RNA-seq experiment (Fig. 4).

Moreover, through our mRNA:miRNA integrative analysis (Fig. 4), PRKAA2 mRNA
expression is inversely correlated with miR-19a expression (Pearson correlation test, P <
0.02), one of the six key differentially expressed miRNAs we identified. PRKAA2 is a strong
candidate target gene for miR-19a since its 3′ UTR contains an extremely conserved target
site (29).

AMPK activities are closely related to the balances between ATP and AMP, and we found
that ATPases were significantly enriched in the differentially expressed genes (P = 4.7×10−4

in Table 1). In addition, PRKAA2 directly regulates TP53 (30, 31), the gene with multiple
recurrent somatic mutation candidates detected in our study (although no recurrent
mutations were found in PRKAA2). These observations further support the hypothesis that
loss of PRKAA2 expression might carry important functional consequences for AMPK
activity in the early stages of gastric cancer.

Experimental evaluation of PRKAA2 as a potential functional modulator of energy
homeostasis in gastric cancer

The AMPK enzyme occupies a unique position in the signaling pathways that monitor
energy consumption and balance between glycolysis and lipid metabolism (32). AMPK
directly inhibits hepatocyte nuclear factor 4 alpha (HNF4α), which activates fatty acid and
lipid metabolism. Additionally, AMPK inhibits the mTOR pathway, a major cancer growth
promoting signaling that regulates hypoxia-inducible factor-1alpha (HIF-1α) (33, 34).
Therefore, in order to explore the functional significance of PRKAA2 expression loss, we
used both HNF4α and HIF-1α as downstream readouts for AMPK activity.

We treated two gastric cancer cell lines (NCI-N87 and AGS) with metformin, an AMPK
activator (35). We found increased mRNA expression of LKB1 (liver kinase B1, STK11),
which is known to mediate AMPK activity upon metformin treatment (36). As expected, we
observed a concentration-dependent increase in PRKAA2 mRNA levels, reflecting the
activation of AMPK signaling (Fig. 5A). Importantly, we observed decreased expression of
HNF4α (Fig. 5A for NICN87 data; similar results were observed for AGS, data not shown).
Meanwhile, we observed clear inhibition of the expression and transactivating activity of
HIF-1α by metformin (Fig. 5B, Western blot panel). Furthermore, PRKAA2 knockdown
with siRNA inhibited the decrease of HNF4α with metformin treatment at both the mRNA
and protein levels (Fig. 5C, D and E). We also observed increases of HNF4α expression for
siRNA-PRKAA1, siRNA-PRKAB1, siRNA-PRKAG1, and siRNA-PRKAG2 (the siRNAs
targeting the mRNAs of other subunits of AMPK), regardless of metformin treatment (Fig.
5C, D and E). Consistently, in our RNA-seq data, the expression levels of HNF4α and
HIF-1α in stage I and II were significantly higher than those in stage III, IV and normal
samples (t-test, HNF4α, P < 0.04 and HIF-1α, P < 0.02). Taken together, our results
demonstrated the functional relevance of PRKAA2 loss for the AMPK signaling pathway,
with downstream consequences that increase both HNF4α and HIF-1α. These data suggest
that in early-stage gastric cancer, the loss of PRKAA2 may sustain tumor growth through the
activation of HIF-1α (Fig. 6).

Discussion
Compared with previous RNA-seq studies, our whole-transcriptome RNA-seq approach has
several merits. First, we employed two protocols that complementarily cover RNA
fragments of different sizes in the samples. Thus, we were able to quantify the expression of
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mRNA, long non-coding RNA and miRNA simultaneously, greatly facilitating the
downstream integrative analysis. Second, we sequenced ribosome-depleted RNA samples
rather than polyA-enriched RNA samples, generating a less biased view of the population of
transcribed molecules (37, 38). As a result of this approach, the percentages of informative
reads are relatively low because a considerable proportion of the sequenced short reads came
from rRNAs or tRNAs. Nevertheless, due to the large number of total reads per sample,
there were still sufficient numbers for our downstream analyses (18.4 million per sample for
expression quantification of coding genes; and 5.1 million per sample for expression
quantification of miRNAs). Third, our protocols generated strand-specific short reads, which
allows for more accurate quantification of gene expression since antisense transcription is
widespread in humans (39).

Many challenges exist for the interpretation of transcriptome profiling data, both within and
across individual studies. In the present study, we first performed a multidimensional
analysis to depict different types of transcriptional aberrations related to gastric cancer.
Besides gene expression signatures, we took advantage of recently available somatic
mutation data in gastric cancer and used our RNA-seq data to detect potential recurrent
somatic mutations in transcribed regions, thereby obtaining additional information from
RNA-seq data. Through integrating these analyses, we were able to pinpoint individual key
genes for further functional investigation. Our study demonstrates the importance of multi-
layer data integration, which may more effectively identify candidate genes than
conventional single-dimensional analysis.

While our study provides valuable insights into gastric cancer progression, there are some
limitations. First, our RNA-seq data were single-tag reads generated from fragment libraries
and the read length is relatively short; therefore, we had limited power to study aberrant
splicing and gene fusion events. A key extension to our study will be to perform
transcriptome profiling using paired-end and longer reads. This would provide a more
comprehensive view of the transcriptional aberrations. Second, a lack of normal tissue
samples from the same patients who provided tumor samples limited our ability to detect
differentially expressed genes as well as to identify de novo somatic mutations (e.g.,
distinguishing somatic mutations from polymorphisms and RNA editing changes). Third,
our study is based on only Asian patients, so future studies on gastric cancer in other patient
populations are needed.

Through a multi-dimensional and integrative analysis of RNA-seq data of Asian patients, we
identified a potentially critical role of AMPKα in the early stages of gastric cancer. The
reason for different expression levels between stage I/II vs. III/IV is unclear, and we
speculate that late-stage tumor development may require higher energy-sensing enzymes.
Through our metformin-based functional experiments, we further demonstrated the
translational relevance of PRKAA2, which encodes a central component of the energy-
sensing AMPK enzyme. Since the expression level of PRKAA2 significantly affects key
signaling nodes regulating tumor metabolism and angiogenesis, and shows activation by
metformin, a drug widely used to treat type II diabetes, PRKAA2 may represent a promising
therapeutic target for early gastric cancer. Our functional evidence supporting an important
role of PRKAA2 in gastric cancer is still preliminary, and further functional studies are
essential to elucidate how PRKAA2 modulation contributes to gastric cancer progression and
to evaluate whether this gene is an effective therapeutic target.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of short reads in the WT-seq and small RNA-seq datasets when mapped to
the human reference genome
(A) WT-seq dataset of 2.1 billion 50-nt short reads from the 30 samples. Using the ABI
Bioscope™ (version 1.21) WT-seq analysis pipeline, 62.3% of the short reads were
mappable: 28.4% were mapped to the sequences of no biological interest (e.g., rRNAs and
tRNAs) and were therefore filtered; and 26.0% (18.4 million per sample) were uniquely
mapped to the human reference genome (hg19) or exon junctions. (B) Small RNA-seq
dataset of 894 million 35-nt short reads, mean of 36.4 million reads from the 25 samples.
Using the SOLiD System Small RNA Analysis Pipeline Tool, 52.4% of the short reads were
mappable; 33.6% mapped to sequences of no biological interest were removed from further
analysis. On average 13.9% (5.1 million per sample) were mapped to known miRNAs in the
miRBase database (version 13.0).
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Figure 2. Biological and molecular characteristics of 356 differentially expressed genes related to
gastric cancer
These genes were identified with a single-factor analysis of variance (ANOVA) on RPKM
(log-scale transformed) across five groups (tissue type = normal or stage I, II, III or IV as the
independent variable) (at FDR < 0.05 and P < 9.5×10−4). (A) Biological and molecular
functions of representative genes known to be related to gastric cancer. Their raw P-values
in the ANOVA are shown in red. (B) The clustering heatmap of 30 samples based on the
356 differentially expressed genes, generated with Partek® Genomics Suite™ v 6.5. Each
column is labeled with different colors according to the sample type; several key genes
related to gastrointestinal disease are highlighted with their P-values and fold changes (FC)
for differential expression.
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Figure 3. Integrative approach to identify key differentially expressed miRNAs related to gastric
cancer
(A) Two criteria were used to identify key differentially expressed miRNAs: based on the
ANOVA on miRNA expression data, at P < 0.01, 26 miRNA genes showed significant
differential expression; and integrating miRNA expression, mRNA expression and miRNA
target information, at P < 0.01, six out of the 26 miRNAs showed significant anti-correlation
with their potential target genes. As a result, the six miRNAs were defined as key
differentially expressed miRNAs related to gastric cancer. (B) The expression fold change of
the six miRNAs in the tumor samples related to normal samples.
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Figure 4. qRT-PCR validation of gene expression of AMPK subunits in an independent set of
Asian gastric samples
AMPK is characterized by a heterotrimeric structure, catalytic α1, 2-subunit and regulator
β1,2-and γ1,2,3-subunits. Measurement of qRT-PCR expression level of PRKAA1, PRKAA2,
PRKAB1 and PRKAG1 between normal tissue and tumors, stages I, II, III and IV, in an
independent set of Asian gastric samples (n = 5 per group). Means of the measurements are
shown with black lines.
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Figure 5. Analysis of metformin-activated AMPK function in gastric cancer cells
NCI-N87 and NCI-N87-HRE cells were cultured for 18 h under hypoxic conditions (1% O2,
5% CO2, 94% N2). (A) NCI-N87 cells were treated in different concentrations of metformin.
PRKAA2 expression was measured by RT-PCR and expressed relative to cells without
metformin. Values are the means of three measurements. (B) NC-N87 cells transfected with
HRE-luciferase treated at different concentrations of metformin. HRE-luciferase was used to
measure the HRE response. Values are the means of three measurements. (Panel) Western
blot of HIF-1α protein level in NCI-N87, treated at different metformin concentrations, β-
actin as loading controls. (C, D) NCI-N87 cells transfected for 72 h with different siRNAs
and treated without (open bars) or with 10 mM metformin (filled bars). PRKAA2 and
HNF4α expression was measured by RT-PCR and expressed relative to cells treated without
metformin (control). Values are the means of three measurements. *P < 0.05 compared to
cells without metformin. (E) Western blot of HNF4α protein levels of cells transfected with
different siRNAs, treated without or with 10 mM metformin.
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Figure 6.
Consequences of activation and signaling by the AMP-activated protein kinase in gastric
cancer cells.
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Table 1

Gene ontology analysis of gastric-cancer-related differentially expressed genes.

GO term Description Enrichment
fold LOG10 (P) False discovery

rate

Biological process

GO:0007586 Digestion 6.82 −6.39 0.002

GO:0006599 phosphagen
metabolism 19.35 −3.55 0.059

GO:0006599 ion transport 2.02 −3.80 0.071

Molecular function

GO:0022891
substrate-specific
transmembrane

transporter
1.98 −3.66 0.052

GO:0022804 transmembrane
transporter 2.63 −3.75 0.055

GO:0031420 metal ion binding 3.11 −3.79 0.061

GO:0015662 ATPase activity 6.45 −3.57 0.059

Biological characteristics of the 356 differentially expressed genes identified using GOminer. To adjust the bias towards highly expressed genes in
detecting differential expression analysis, we used as the reference set 12,213 genes with the same expression distribution as that of the 356
differentially expressed genes.
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