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Abstract
Thermal modulation reversibly switches poly(N-isopropylacrylamide) (PNIPAAm) hydrogels
between a water-swollen and a deswollen state which is useful for a variety of biomedical
applications. The utility and efficiency of PNIPAAm hydrogels requires tailoring their rate of
deswelling/reswelling, mechanical properties and/or optical clarity. In the current work, we
prepared novel thermoresponsive nanocomposite hydrogels comprised of a PNIPAAm hydrogel
matrix and polysiloxane colloidal nanoparticles (~54 nm ave. diameter) via in situ
photopolymerization of aqueous solutions of NIPAAm monomer, N,N′-methylenebisacrylamide
(BIS, crosslinker), photoinitiator and 0.5–4.0 wt% polysiloxane nanoparticles (wt% solids of
nanoparticles with respect to NIPAAm weight) at ~7 °C. At these nanoparticle concentrations, the
nanocomposite hydrogels were more optically transparent versus those prepared with analogous
larger nanoparticles (~219 nm ave. diameter). The volume phase transition temperature (VPTT) of
the nanocomposite hydrogels was conveniently unaltered versus that of the pure PNIPAAm
hydrogel. Incorporation of nanoparticles caused enhancement in modulus as well as the extent and
rate of deswelling. When cooled from 37 °C to 25 °C, mouse smooth muscle precursor cells
(10T1/2) were effectively detached from nanocomposite hydrogel surfaces due to hydrogel
swelling.
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1. INTRODUCTION
Thermoresponsive hydrogels reversibly switch from a water-swollen to a deswollen state in
response to a temperature change.1 They are produced via formation of crosslinked networks
based on polymers which exhibit a lower critical solubility temperature (LCST) such as
poly(N-isopropylacrylamide) (PNIPAAm) (LCST, ~32 °C).1–3 Crosslinked PNIPAAm
hydrogels exhibit a reversible volume phase transition in water from a swollen, hydrophilic
state to a deswollen, relatively hydrophobic state when heated above its volume phase
transition temperature (VPTT, ~33–35 °C).4–6 Their thermoresponsive behavior has been
studied for microfluidic actuation,7–10 separation,7, 11–12 controlled drug delivery7, 13–15 and
controlled detachment of adsorbed cells and proteins for applications such as cell sheet
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tissue engineering,7, 16–17 anti-fouling coatings18–20 and “self-cleaning” membranes for
implanted biosensors.21–24

Enhancing the efficiency and expanding the utility of PNIPAAm in the aforementioned
applications may require improvement in properties exhibited by conventional PNIPAAm
hydrogels prepared via copolymerization of N-isopropylacrylamide (NIPAAm) and a
bifunctional crosslinker such as N, N′-methylenebisacrylamide (BIS). Specifically, these
properties may include deswelling/reswelling kinetics, mechanical properties and/or optical
properties. Several design strategies to enhance the response rate of PNIPAAm hydrogels
have been studied, including: comb-type networks,25–27 heterogeneous morphologies,28–31

poration,32–35 or open channel structures36 and inclusion of PNIPAAm nanoparticles37 or
discrete fillers.38–41 However, in addition to the complexity of some of the aforementioned
routes, the enhancement in deswelling-reswelling may produce diminished mechanical and/
or optical properties. For instance, PNIPAAm hydrogels which are highly porous or exhibit
a heterogeneous morphology are typically associated with reduced mechanical properties
(e.g., modulus and strength) as a result of increased water content in the swollen state.42–43

The turbidity of PNIPAAm hydrogels is also increased with a heterogeneous morphology as
well as with the inclusion of certain fillers.41–42, 44–45

In this present work, we sought to design a PNIPAAm hydrogel system which maintains the
VPTT of pure PNIPAAm hydrogel but enhances deswelling/reswelling kinetics as well as
mechanical properties without significant loss of optical clarity. Thus, thermoresponsive
nanocomposite hydrogels were prepared consisting of a PNIPAAm matrix and variable
levels of colloidal polysiloxane nanoparticles (54 nm ave. diameter). The polysiloxane
nanoparticles were prepared via anionic emulsion polymerization of
octamethylcyclotetrasiloxane (D4) and 1,3,5,7-tetramethyl-1,3,5,7-

tetravinylcyclotetrasiloxane ( ). The resulting nanoparticles were subsequently stabilized
by free radical crosslinking the copoly(dimethylsiloxane/methylvinylsiloxane) chains inside
the nanoparticles. The nanocomposite hydrogels were formed by photopolymerization (~7
°C) of aqueous solutions of NIPAAm, BIS and variable levels of polysiloxane nanoparticles
(0.5–4 wt%). The effect of polysiloxane nanoparticle concentration on VPTT, optical clarity,
morphology, deswelling/reswelling kinetics, mechanical properties and cell-release
properties is presented.

2. MATERIALS AND METHODS
2.1. Materials

Octamethylcyclotetrasiloxane (D4) and 1,3,5,7-tetramethyl-1,3,5,7-

tetravinylcyclotetrasiloxane ( ) were purchased from Gelest Inc. Brij 35, Brij 78, Tergitol
solution (70% in H2O), potassium hydroxide (KOH), potassium persulfate (K2S2O8) and N-
isopropylacrylamide (NIPAAm, 97%) were purchased from Aldrich. N, N′-
methylenebisacrylamide (BIS, 99%) was obtained from Acros Organics. 1-[4-(2-
Hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure® 2959) was
obtained from Ciba. Acetic acid was received from Fisher Scientific. All reagents were used
as received. Mouse smooth muscle precursor cells (10T1/2) were obtained from American
Type Culture Collection (ATCC).

2.2. Preparation of Crosslinked Polysiloxane Colloidal Nanoparticles

Polysiloxane colloidal particles were prepared by emulsion polymerization of D4 and 
(Fig. 1). In a 500 mL water-jacketed polymerization vessel equipped with a mechanical
stirrer and Teflon stirring paddle, reflux condenser, and addition funnel was dissolved Brij
35 [C12H25(OCH2CH2)23OH, 3.0 g, 2.5 mmol], Brij 78 [C18H37(OCH2CH2)20OH; 6.75 g,
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5.9 mmol) and Tergitol NP-40 [C9H19Ph-(OCH2CH2)40OH; 5.35 g, 2.7 mmol) were

dissolved in deionized (DI) water (147.0 g). A mixture of D4 (31.2 g, 105.2 mmol) and 
(7.8 g, 22.6 mmol) was added dropwise via the addition funnel to the aqueous solution with
constant stirring (300 rpm). Then, 5 g of an aqueous solution of KOH (25 wt%) was added
dropwise via the addition funnel. The resulting stable emulsion was then heated to 80 °C for
24 h with constant stirring (450 rpm). The final emulsion was cooled, filtered through a 10
µm filter bag, and the pH adjusted to 7 with aqueous acetic acid (25 wt%). The solid content
of the emulsion was determined by weight loss from an aliquot after drying (115 °C, 8 h).
Emulsion solid content: 26.5% (98.5% conversion).

Linear copoly(dimethylsiloxane/methylvinylsiloxane) was isolated from the aforementioned
colloidal nanoparticles for subsequent characterization. A portion of the final emulsion was
precipitated into ethanol, centrifuged and the isolated clear oil dried under vacuum. 1H NMR
(300 MHz; CDCl3, δH): 0.1 (bs, Si–CH3), 5.7–6.0 (m, Si–CH=CH2); ratio of 10.1. Gel
permeation chromatography (GPC): Mw/Mn = 47,100/16,500 g/mol, PDI = 2.85.

The colloidal nanoparticles were subsequently stabilized by crosslinking of the
copoly(dimethylsiloxane/methylvinylsiloxane) chains within the nanoparticles via their
vinyl groups (Fig. 1). The above final emulsion (50 g) was added to a 3-neck round bottom
(rb) flask equipped with a Teflon-covered stir bar, reflux condenser, and nitrogen (N2) inlet.
After the addition of K2S2O8 (0.5 g), the mixture was reacted at 80 °C for 10 h under N2.
The emulsion was cooled and filtered through a 10 µm filter bag. The resulting colloidal
nanoparticles were purified via dialysis (Slide-A-Lyzer® Dialysis Cassette, MWCO =
10,000, Pierce Chemical Co.) against daily changes of DI water for 3 days. Emulsion solid
content: 10.4%. Dynamic light scattering (DLS): 54 nm (average diameter) and 0.2
(polydispersity, PD) with particles ranging in size from 40 to 200 nm.

2.3. Characterization of Polysiloxane Colloidal Nanoparticles
Particle size of colloidal nanoparticles was determined by dynamic light scattering (DLS)
(Brookhaven Instruments) with a detection angle of 90°. Measurements were carried out at
25 °C. An aliquot of the designated emulsion was highly diluted with DI water just prior to
measurement in order to rule out interaction and multiple scattering effects. Cryogenic
transmission electron microscopy (Cryo-TEM) was used to visualize the nanoparticles and
confirm their lack of aggregation in water. A FEI-Q20 TEM, operated at 120 kV and
equipped with a Gatan 626 cryo holder, was used for imaging. Further details on sample
preparation and imaging analysis were previously described.46

2.4. Preparation of Nanocomposite Hydrogels
Nanocomposite hydrogels were prepared by in situ photopolymerization of aqueous
precursor solutions containing NIPAAm monomer, BIS crosslinker, Irgacure-2959
photoinitiator, and crosslinked polysiloxane nanoparticles (Fig. 1, Table I). In a 50 mL rb
flask equipped with a Teflon-covered stir bar, NIPAAm (1.0 g, 8.84 mmol), BIS (0.02 g,
0.13 mmol), and Irgacure-2959 (0.08 g, 0.36 mmol) were dissolved in DI water (the total
volume equal to 7 mL including the volume of water introduced later by the nanoparticle
emulsion) and the solution stirred under N2 for 15 min. Finally, the appropriate amount of
emulsion containing crosslinked colloidal nanoparticles was added and the mixture stirred
for 10 min under N2. In total, four different hydrogel compositions were prepared with
varying amounts of colloidal nanoparticles:

a. pure NIPAAm (no nanoparticles; a control),

b. 0.5 wt%,
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c. 1.0 wt%,

d. 2.0 wt%,

e. 3.0 wt%, and

f. 4.0 wt%

(wt% solids of nanoparticles with respect to NIPAAm weight).

Hydrogel sheets (1.5 or 0.5 mm thick) were prepared by first pipetting a precursor solution
between two clamped glass microscope slides (75 × 50 mm) separated by polycarbonate
spacers of appropriate thickness (1.5 mm for mechanical test and 0.5 mm for cell release
test). The mold was submerged in an ice water bath (~7 °C) and exposed to longwave UV
light (UV-Transilluminator, 6 mW/cm2, 365 nm) for 30 min. After removal from the mold,
hydrogel sheet was rinsed with DI water and then soaked in DI water for 2 days with daily
water changes to remove impurities. Hydrogel sheets (1.5 mm thick) were used to prepare
samples for morphological, VPTT, swelling, mechanical, and contact angle studies.
Hydrogel sheets (0.5 mm thick) were used for cell-release studies.

2.5. Extent of Crosslinking
The amount of uncrosslinked material in select hydrogels was determined by weight loss
following Soxhlet extraction. For a given hydrogel, three hydrogel discs (13 mm diameter,
1.5 mm thickness) were punched from a single hydrogel sheet with a die and immediately
dried in a vacuum oven (30 in. Hg, 60 °C, 24 h) and weighed. The dried discs were extracted
with dichloromethane in a Soxhlet apparatus for 12 h and weighed after similarly drying in a
vacuum oven. The percentage of uncrosslinked material was calculated as the average
weight difference of the extracted versus unextracted weight divided by the unextracted
weight.

2.6. Morphology
The morphology of hydrogels was studied by scanning electron microscopy (SEM). The
swollen hydrogel specimens were exposed to liquid nitrogen for 1 min and subsequently
dried in lyophilizer (Labconco CentriVap Gel Dryer System) overnight. Cross-sections of
the freeze-dried gels were subjected to Pt-sputter coating and viewed with a field emission
SEM (FEI Quanta 600) at accelerated electron energy of 5–15 keV.

2.7. Volume Phase Transition Temperature (VPTT)
VPTT of swollen hydrogels were determined by differential scanning calorimetry (DSC, TA
Instruments Q100). Water-swollen hydrogels were blotted with filter paper and a small piece
sealed in a hermetic pan. After cooling to −50 °C, the temperature was increased to 50 °C at
a rate of 3 °C/min for 2 cycles. The resulting endothermic phase transition peak is
characterized by the initial temperature at which the endotherm starts (To), the peak
temperature of the endootherm (Tmax) and the enthalpy change (ΔH) of the phase transition.
Data reported is from the 2nd cycle.

2.8. Deswelling Kinetics
Three hydrogel discs (13 mm diameter) were punched from a single sheet with a die. Water
retention (WR) is defined as: WR = (Wt − Wd)/Ws. Each disc was sealed inside a vial
containing 20 mL DI water, immersed in water bath for 24 h at 22 °C to achieve equilibrium
(Ws) and quickly transferred into a 50 °C water bath. At 10, 20, 40, and 80 min, each disc
was removed, blotted with a Kimwipe to remove surface water, immediately weighed (Wt)
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and returned to the vial for subsequent measurements. After 80 min, the discs were dried in
a vacuum oven (30 in. Hg, 60 °C, 24 h) and weighed (Wd).

2.9. Reswelling Kinetics
The kinetic reswelling ratio is defined as: rSR = (Wt − Wd)/Wd. The aforementioned
previously dried discs (Wd) were each placed inside a sealed vial containing 20 mL DI water
and immersed in a water bath at 22 °C. At 10, 20, 40, 80, 120, 200, 320 and 450 min, the
samples were removed from the water bath and the masses were recorded as above (Wt).

2.10. Dynamic Mechanical Analysis (DMA)
DMA of hydrogels were measured in the compression mode with a dynamic mechanical
analyzer (TA Instruments Q800) equipped with parallel-plate compression clamp with a
diameter of 40 mm (bottom) and 15 mm (top). Swollen hydrogel discs of constant
dimension (13 mm diameter, 1.5 mm thickness) were punched from a hydrogel sheet and
clamped between the parallel plates. Silicone oil was then placed around the exposed edges
of the hydrogel to prevent dehydration. Following equilibration at the 25 °C (5 min), the
samples were tested in a multi-frequency-strain mode (1 to 25 Hz) at the temperature of 25
°C (below the VPTT). Results reported are based on the average of five individual
specimens.

2.11. Temperature-Dependent Cell Release
Hydrogel sheets (a–f) were prepared as above under sterile conditions. A “PEO-RGDS”
hydrogel was prepared from poly(ethylene oxide)-diacrylate (PEO-DA, Mn = 6000 g/mol)
containing the acrylate-derivatized cell adhesion peptide RGDS (acryoyl-PEO-RGDS) using
standard procedures.47 Photoinitiator solution (10 µL of 30 wt% solution of DMAP in NVP)
was added for every one mL of aqueous solution containing 10 wt% PEO-DA macromers
and 1 µmol/mL acryoyl-PEO-RGDS in PBS. The PEO-DA and PNIPAAm-based precursor
solutions were each cured between two glass sheets separated by 0.5 mm polycarbonate
spacers by exposure to 365 nm UV light (UV-Transilluminator, 6 mW/cm2) for 2 min. All
hydrogel formulations were permitted to swell for two days in phosphate-buffered saline
(PBS; pH = 7.4) with daily PBS changes to remove hydrogel impurities. Swollen hydrogel
discs of constant dimension (9 mm diameter, 0.5 mm thickness) were punched from each
hydrogel sheet and transferred to a 24 well plate containing media in each well. The plate
was then incubated at 37 °C (above VPTT) for 2 h. Mouse smooth muscle precursor cells
(10T1/2) were seeded onto each hydrogel surfaces at 25,000 cells/cm2. After incubation at
37 °C for 4 h, the 24 well plate was transferred to a Zeiss Axiovert A200 microscope and
air-cooled to 25 °C (below VPTT) at a rate of ~2 °C/min thereby causing a–f to swell. The
media within each well containing the hydrogel disc provided water for the swelling
process. The well plate was then transferred back to a 37 °C incubator for 4 h and a second
cooling cycle was similarly performed. For each cooling cycle, images were captured at two
second intervals.

3. RESULTS AND DISCUSSION
3.1. Preparation of Crosslinked Polysiloxane Colloidal Nanoparticles

Polysiloxane colloidal nanoparticles were prepared by anionic ring-opening emulsion

polymerization of D4 and  and subsequent crosslinking (Fig. 1).48 The colloidal
nanoparticles were internally crosslinked via free radical reaction of the vinyl groups.
Surfactant and other reaction impurities were removed from the resultant emulsion via
dialysis. This process yielded stable polysiloxane colloidal nanoparticles having an average
diameter of 54 nm (PD = 0.2).
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3.2. Preparation of Nanocomposite Hydrogels: Crosslinking, Transparency and
Morphology

Nanocomposite hydrogels (b–f) were formed by UV-cure at ~7 °C for 30 min (Fig. 1, Table
I). UV-cure is advantageous versus free radical cure crosslinking6, 49–50 as it involves
shorter times and can be done at lower temperatures.51–53 The efficacy of UV-cure was
confirmed by Soxhlet extraction (CH2Cl2, 12 hr) of hydrogels containing 4 wt%
nanoparticles (f) and pure PNIPAAm hydrogel (a) which both exhibited no detectable
weight loss (<0.1 wt%). Nanocomposite hydrogels gradually became less transparent with
higher polysiloxane nanoparticle content. However, hydrogels (b–f), prepared with 54 nm
(ave. diam.) nanoparticles, were significantly more transparent than those prepared with
lower amounts of analogous 219 nm (ave. diam.) polysiloxane nanoparticles (g).54

UV-cure was conducted at a preparation temperature (Tprep) of <20 °C in order to achieve a
homogeneous PNIPAAm hydrogel morphology which is associated with transparency and
enhanced mechanical properties.42–45 In contrast, a Tprep > 20 °C produces a heterogeneous
PNI-PAAm hydrogel which display enhanced swelling but are opaque and mechanical
weaker. The homogeneity of the PNIPAAm hydrogel matrix was confirmed by the optical
transparency of the PNIPAAm hydrogel (a, no nanoparticles). SEM imaging of lyopholized
hydrogels was used to assess their morphology.55 Hydrogels a–f all exhibited a similar
homogeneous morphology characterized by a uniform porous structure (Fig. 2).

3.3. Volume Phase Transition Temperature (VPTT)
During the volume phase transition, PNIPAAm hydrogels exhibit an endothermic peak due
to breaking of hydrogen bonds of surrounding water molecules.56–57 The peak is detectable
by DSC and the may be designated by the peak’s onset (To) or maximum temperature
(Tmax).53, 58–59 The DSC thermograms of swollen samples of a–f were used to determine
VPTT (Fig. 3, Table I). To values were determined from the intersecting point between two
tangent lines from the baseline and slope of the endothermic peak.58 Polysiloxane
nanoparticles did not produce a significant change in the VPTT (To) of nanocomposite
hydrogels (b–f) compared to that of a pure PNIPAAm hydrogel (a). This was similarly
observed for nanocomposite prepared with larger polysiloxane nanoparticles.41 Because of
their discrete nature, nanoparticles apparently do not interfere with the dissociation of water
molecules from hydrophobic groups when heated above the VPTT.

3.4. Deswelling and Reswelling Kinetics
Nanocomposite hydrogels containing 3 and 4 wt% nanoparticles (e and f, respectively)
exhibited a dramatic enhancement in both the rate and extent of deswelling compared to the
pure hydrogel (a) and as well as that containing larger polysiloxane nanoparticles (g) (Fig.
4). Within only ~40 min at 50 °C, WR of e and f reached equilibrium and the final WR of f
is nearly 70% lower than that of e. Because the morphology of the nanocomposite hydrogels
did not change significantly with nanoparticle content, we suggest that the hydrophobic
nature of the polysiloxane particles facilitates the rapid removal of water from the hydrogel
upon heating above the VPTT. Reswelling equilibrium was achieved more quickly for
nanocomposite hydrogels (b–g) versus the pure hydrogel (a). The final rSR systematically
decreased with nanoparticle content and may be attributed to their hydrophobic nature which
reduces total water uptake.

3.5. DMA
To maintain their swollen state, silicone oil was placed around the hydrogel disc during
DMA. Storage modulus (G′) is related to a materials stiffness or resistance to deformation.60

G′ of the nanocomposite hydrogels (b–f) increased with higher levels of polysiloxane
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nanoparticles (Fig. 5). Hydrogel modulus is directly influenced by its swelling such that
routes to enhance stiffness and strength often rely on reduction of swelling.43 Thus, the
relative differences the G′ of b–f can be related to their swelling (i.e., rSR at 450 min, Fig.
4). With increased levels of 54 nm nanoparticles, swelling is reduced which contributed to
an increase in G’. Interestingly, despite higher swelling, the nanocomposite hydrogel
containing larger nanoparticles (1 wt% 219 nm; g) exhibited higher G′ values versus that of
b–f. While g and c both contained 1 wt% nanoparticles, c contains a higher number of
nanoparticles with a higher nanoparticle surface area. Given the relatively lower G′ of c, it
suggests that the nanoparticles due not form a strong interface with the hydrogel matrix so as
to have a reinforcing effect.

3.6. Temperature-Dependent Cell Release Behavior
On the basis of their change to a round cell morphology, PNIPAAm-based hydrogels (a–f)
cooled from 37 °C (above VPTT) to 25 °C (below VPTT) caused the release of 10T1/2 cells
due to hydrogel swelling (Fig. 6). In contrast, cells cultured on the cell-adhesive, non-
thermoresponsive PEO-RGDS hydrogel61 maintained an extended morphology indicative of
cell adhesion and spreading. It was observed that more cells adhered to the nanocomposite
hydrogels (b–f) compared to the pure PNI-PAAm hydrogel (a) which may be explained by
the higher hydrophobicity of b–f which promotes protein and cell adhesion.62–64 After the
first cooling cycle, a round cell morphology indicative of end stages of cell detachment was
observed for cells on a–f. Following a subsequent second heating-cooling cycle, the round
morphology was even more pronounced on a–f (Fig. 6).

4. CONCLUSIONS
Thermoresponsive nanocomposite hydrogels comprised of a PNIPAAm hydrogel matrix and
polysiloxane colloidal nanoparticles (54 nm ave. diameter) were prepared via in situ
photopolymerization of aqueous solutions of NIPAAm monomer, BIS crosslinker,
photoinitiator and 0.5–4.0 wt% polysiloxane nanoparticles (wt% solids of nanoparticles with
respect to NIPAAm weight) at ~7 °C. The convenient VPTT of PNIPAAm hydrogels was
maintained due to the discrete, chemically independent nature of the embedded polysiloxane
nanoparticles. SEM analysis confirmed their homogeneous morphology due to the low
preparation temperature. The optical clarity of the nanocomposite hydrogels prepared with
~54 nm nanoparticles progressively decreased with higher nanoparticle concentration.
However, their optical clarity was greater than that of nanocomposite membranes prepared
with 219 nm polysiloxane nanoparticles. Increasing the nanoparticle content led to an
increase in storage modulus (G′) as well as an enhanced rate and extent of deswelling. When
cooled from 37 °C to 25 °C, mouse smooth muscle precursor (10T1/2) cells were shown to
effectively detach from nanocomposite hydrogel surfaces. Thus, this design permits
simultaneous improvement in PNIPAAm hydrogel deswelling kinetics, mechanical
properties and optical properties.
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Fig. 1.
(a) Preparation of colloidal polysiloxane nanoparticles via emulsion polymerization and
subsequent crosslinking and (b) preparation of thermoresponsive nanocomposite hydrogels
with variable wt% nanoparticles. [“g”: prepared with 1 wt% polysiloxane nanoparticles, ave.
diam. = 219 nm].
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Fig. 2.
SEM micrographs of hydrogel a (0 wt% nanoparticles) and hydrogel f (4 wt%
nanoparticles).
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Fig. 3.
Measurement of VPTT by DSC.
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Fig. 4.
Deswelling (top) and reswelling (bottom) kinetics.
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Fig. 5.
Storage moduli (G′) in compression.
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Fig. 6.
Mouse smooth muscle precursor (10T1/2) cells displayed a rounded morphology indicative
of detachment on hydrogels a, c and f following two cycles of thermal cooling from 37 °C to
25 °C. A PEO-RGDS hydrogel served as a cell-adhesive but non-thermoresponsive control.
All scale bars are 100 µm.
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Table I

Composition, thermal transition properties and mechanical properties.

Composition Volume phase transition
temperature (VPTT)

Hydrogel Solid wt%
nanoparticles

To (°C) Tmax (°C) ΔH (J/g)

a 0   32.7 35.4 5.25

b 0.5 32.8 35.2 4.60

c 1.0 33.1 35.6 4.65

d 2.0 32.9 35.3 4.42

e 3.0 32.7 35.2 5.56

f 4.0 32.6 35.1 5.47
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