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Abstract
We consider two popular, permutation-based, step-down procedures of p-values adjustment in
multiple testing problems known as min P and max T and intended for strong control of the
family-wise error rate, under the so-called subset pivotality property (SPP). We examine key but
subtle issues involved in ascertaining validity of these methods, and also introduce a new, slightly
narrower notion of strong control which ensures proper bounds on the family-wise error rate in
min P and max T without SPP.
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1. INTRODUCTION
Over the last decade, permutation-based methods for strong control of the family-wise error
rate have received considerable attention in genomic applications (e.g, microarray data
analysis under treatment and control) in the context of multiple testing. Naturally, one may
test the difference between control and treatment separately for each gene. However, since
typically a large number of genes (thousands or more) are investigated in a modern
microarray-based or other genomic experiment, the simple-minded approach of conducting
the tests one at a time is bound to have enormous probability of type I error due to the
familiar problem of multiple testing. This is why the multiple-testing-adjusted statistical
procedures have received much attention in genomic data analysis. For a general
introduction to the topic, see, e.g. the recent monograph by Dudoit and van der Laan (2008).

The familiar single-step Bonferroni procedure and the likes provide strong control of the
error rate, but they are typically too conservative. Westfall and Young (1993) proposed less
conservative step-down min P and max T procedures (see Appendix) intended to properly
take the dependence between tests into account in a non-specific way. Westfall and Young
(1993) also pointed out that since under most circumstances the joint and marginal null
distributions of test statistics are unknown, a practical way of implementing proper family-
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wise error control is via the usual permutation (or randomization) approximation to these
null distributions.

One of the widely debated issues (see e.g., Westfall and Troendle 2009 and references
therein) is the precise nature of the family-wise error rate control provided by these
permutation-based, multiple-testing adjustment procedures and the appropriate assumptions
which are required for such control. As pointed out in Chapter 2 of Dudoit and van der Laan,
in order to properly control the rate of type I errors, whether in multiple testing problem or
not, one needs to specify the joint distribution of the test statistics. Hence, the key idea
seems to lie in the specification of the appropriate test statistic null distribution (as opposed
to the data generating distribution) which ensures the control of the error rates under the true
null distribution (often partially unknown). Whereas in their monograph Dudoit and van de
Laan (2008 Chapter 2) considered the asymptotic control properties of the min P and max T
procedures under the null dominance assumption, Westfall and Young (1993) argued that
min P and max T provide exact (non-asymptotic) strong control under the null distributions
of the test statistics having the subset pivotality property or SPP (see, Westfall and Young
1993, Chapter 2; Dudoit and van der Laan Chapter 2, as well as Definition 3 below).
Seemingly, there has been some confusion/misunderstanding/debate surrounding the SPP
concept itself as well as its validity in the specific context of the microarray data. For
example, it was stated in the literature that if each individual test on a gene depends only on
the observations on that gene, then SPP holds. It seems, however, that the issue is quite
subtle, and the above statement may or may not be correct, depending on the setup of the
hypotheses. In particular, as we demonstrate herein, a strange paradox about this
requirement seems to be at work when considering permutation-based methods in pursuit of
strong control. On one hand, we can argue that SPP does not hold generally in the gene
expression data context; but on the other hand, we can also argue that it does not really
matter if subset pivotality holds or not. This casts some doubt on the validity of the
permutation-based methods, which is further supported by our examples. However, as we
show in the current paper, despite these difficulties, it turns out that for adjusting p values
based on marginal tests, the min P and max T always provide strong control in a weaker
sense exactly (not just approximately), whether or not SPP holds.

In the current paper, for the sake of clarity and simplicity, we focus on one specific setting,
that is, the microarray experiment comparing a treatment condition with a control one. We
first illustrate some subtle issues/difficulties surrounding the problem of multiple testing in
this setting and subsequently propose potential remedies and offer several clarifications. In
the next section (Section 2) we introduce our notation and briefly review the main concepts.
Section 3 of the paper discusses the meaning of the multiple testing null hypotheses and
points to some difficulties with applying the notion of partial null hypothesis in permutation-
based step-down procedures. In Section 4, we address SPP and the issue of its validity in
microarray data. In particular, we give there a general result on broad existence of families
with SPP (Theorem 1). In Section 5 we show that the permutation min P and max T
procedures do provide strong control in a less strict sense. To make this concept rigorous we
introduce a notion of partial strong control and give a formal result as Theorem 2. Finally,
in Section 6, some concluding remarks are given. The relevant proof and auxiliary results
are deferred to the appendix.

2. FAMILY-WISE ERROR RATE
Throughout the paper we shall use the following notation. Let X̲j = (X1j, …, XNj), 1 ≤ j ≤ n1
be iid observations of gene expression levels (possibly after a suitable transformation of the
raw data) of N genes under the experimental (treatment) condition and Y̲j = (Y1j, …, YNj), 1
≤ j ≤ n2 be iid observations of the expression levels of the same genes, in the corresponding
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order, but under the control condition. Herein X̲ and Y̲ are always assumed to be
independent. Note that N is typically much larger than n1 and n2. We are interested in
whether the treatment affects the gene expression relative to the control condition.

Let Xi and Yi denote the random expression levels for gene i under the treatment and under
the control, respectively. A gene i (1 ≤ i ≤ N) is said to be differentially expressed if the
distribution of Xi is different from that of Yi. Note that a more restrictive definition is also
often used: gene i is differentially expressed if the mean of Xi is different from that of Yi.
Clearly, the latter definition addresses only the difference in mean. In this work, we will
focus on the former definition.

Let ℋi denote the hypothesis that gene i is not differentially expressed and let Hi ∈ {0, 1} be
the corresponding indicator function, i.e., Hi = 0 when the null hypothesis ℋi is true and Hi
= 1 otherwise. Following Ge, Dudoit and Speed (2003) in the sequel we shall use ℋi and Hi
interchangeably. For testing ℋi (or Hi) a test statistic Ti is proposed, and large values of |Ti|
or large (small) values of Ti provide evidence against ℋi, depending on the specification of
the alternative hypothesis as two-sided or one-sided. Herein we assume that Ti depends only
on the observations on gene i, that is, Ti is a function of (Xi1, …, Xin1) and (Yi1, …, Yin2).
We call such a test statistic a marginal one. Examples of Ti include two-sample t-statistic, F-
statistic and many other test statistics (e.g. Wilcoxon and Mann-Whitney statistic, see, for
instance, Bain and Engelhardt 1992). The main statistical issue in analyzing microarray data
stems from the fact that, since many tests are performed, the size of the critical set for an
individual test may no longer be a meaningful quantity for characterizing the confidence
level associated with the set of genes declared to be differentially expressed based on the
individual tests.

Let M0 = {i : Hi = 0} be the collection of indices corresponding to true null hypotheses and
M1 = {i : Hi = 1} be its complement (i.e., the false null hypotheses). We let M = {i : 1 ≤ i ≤
N} and note that M = M1 ∪ M0 and M1 ∩ M0 = ∅. For a given multiple testing procedure, if
any hypothesis in M0 is rejected, a type I error occurs. The associated probability is called
the family-wise error rate (FWER).

Following Ge et al. (2003) (with some abuse of notation, see below), let HM0 = ∩i∈M0{Hi =
0} denote the state that all the null hypotheses in M0 are true but all the hypotheses in M1 are
false. Let HM = ∩i∈M{Hi = 0} denote the complete null hypothesis (i.e., the state of nature
when all the gene-specific null hypotheses are true). We note that HM0 with M\M0 ≠ ∅ is
also referred to in the sequel as the partial null hypothesis.

Let δ be a multiple testing procedure with δ(i) indicating the decision on gene i: δ(i) = 0 if Hi
is accepted (or not rejected) and δ(i) = 1 if Hi is rejected. Thus the family-wise error rate of δ
is

Deferring the discussion of the meaning of the above conditional probability to the next
section, we note also the following definitions (see Ge et al. 2003, Westfall and Young
1993, p. 10, Hochberg and Tamhane 1987, p. 3, Dudoit and van der Laan 2008, p. 95).
Throughout the paper we assume 0 < α < 1.

Definition 1. (Weak control) A multiple testing procedure δ is said to weakly control the
FWER at level α if
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Definition 2. (Strong control) A multiple testing procedure δ is said to strongly control the
FWER at level α if for every possible choice of M0 ⊂ M, we have

It is obvious that the strong control implies the weak control. The concept of strong control,
at first glance, seems to be well-defined in the context of microarrays and elsewhere.
However, in a rigorous sense, the definitions are not completely clear since, as discussed e.g.
in Dudoit et al. (2004) and Pollard and van der Laan (2004), each subset M0 of null
hypotheses corresponds to a family of possible null distributions of the test statistics. As we
argue below, the issue seems fundamental for interpreting correctly the outcomes of any
permutation-based analysis intended for strong control.

3. ISSUES WITH HM0

3.1 Joint or marginal distributions?
Peter Westfall in his discussion of the paper by Ge, Dudoit and Speed (Ge, Dudoit and
Speed 2003, p. 63), brings up the issue of how to interpret the joint null hypotheses HM and
HM0 (see also Westfall and Troendle 2008). He points out that there are two interpretations.
One is that HM0 and HM do not address the joint distributions of the expressions of the
genes. That is, HM0 (or similarly HM) means that the marginal distributions of Xi and Yi are
the same for each i ∈ M0 (or i ∈ M) but nothing else can be said about the joint distributions
of {Xi, i ∈ M0} and {Yi, i ∈ M0} (or {Xi, i ∈ M} and {Yi, i ∈ M}). This interpretation
matches the interest of comparing the treatment and control marginally over the genes. As
expected, there can be infinitely many different joint distributions of {Xi, i ∈ M0} and {Yi, i
∈ M0} that yield the same marginal distribution for Xi and Yi for i ∈ M0.

An alternative interpretation of HM0 is that the joint distribution of {Xi, i ∈ M0} is the same
as that of {Yi, i ∈ M0}. Westfall views that in order to ensure the validity of the procedures
min P and max T this latter interpretation of HM0 should be adopted, and even though not
explicitly stated, Ge, Dudoit and Speed (2003) seem to share this view. While not
disagreeing with this, our main point of this subsection is that each interpretation above has
some undesirable consequences, and adopting the joint interpretation does not necessarily
solve the problem. In fact, under joint interpretation a permutation-based procedure may
wrongly find “differentially expressed” genes with high probability due to the difference of
the joint distributions of {Xi, i ∈ M0} and {Yi, i ∈ M0}. Thus, with the second interpretation
of HM0, the nature of the problem is no longer that of the usual multiple testing (i.e., finding
the marginally differentially expressed genes in our context of microarray analysis). This
point may be illustrated in the following computer simulation example.

Example 1. Consider N = 10 genes and two sets of microarray replicates under treatment
and control, with n1 = 2 and n2 = 3. We shall compare the max T permutation procedure for
the nominal control of FWER = α = 0.1 under two scenarios in which the marginal
distributions of gene expressions in both conditions are the same, but their joined
distributions differ. Under the first scenario, we take X̲i, i = 1, 2 as two independent vectors
of replications of two generated standard normal variables X1, X2 respectively, and take Y̲i,
i = 1, 2, 3 as three independent vectors of independent standard normal variables. Under the
second scenario, all five vectors are iid with iid standard normal components. In both cases
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the one-sided t-statistic is used for the max T procedure. In this setting, the number of
possible permutations is 10 and hence the permutation procedure can be performed exactly
for α = 0.1. By repeating each of the scenarios a large number of times, we compare the
nominal and empirical FWER in the strong control problem in one-sided test for both
scenarios. The results of the analysis performed with the help of R software (http://cran.r-
project.org/) and the associated Bioconductor library “multtest” are presented in the last
section of the Appendix. As we can see from the computer output, under the 100000
replicates of our first scenario, the empirical rate is seen to be about 20% above the
nominal α = 0.1 rate, with the difference exceeding the size of the simulation error. This is
in contrast to our second scenario where the empirical error rate is seen to agree well with
the nominal one, based on the same number of replicates. It seems, therefore, that in the first
scenario the max T procedure implemented in the “multest” library does not really strongly
control FWER, even in the approximate sense.

As seen in the next example, the difference between the nominal and true FWER for step-
down permutation procedures may be even more pronounced in some specific
circumstances.

Example 2. Suppose that Xi and Yi all have the same continuous distribution with mean μX,i
and μY,i respectively and unit variance. We assume that the common distribution has an
unbounded support on (−∞, ∞). We are interested in testing H0i : μX,i = μY,i ≤ μ0 versus
H1i : μY,i > max(μ0, μX,i) for the genes for a given constant μ0. For illustration purposes,
suppose that there is only one observation for each of the treatment and control. Consider
the test statistic Ti = Yi − max(μ0, Xi) which provides evidence against H0i when Ti ≥ c for
some constant c. As we briefly outline below, in this setup and with large N, the
permutation-based methods reject at least one gene with very high probability, even when
none of the genes are differentially expressed.

Suppose that, similarly to Example 1, the true distributions of the observations are given by
X1 = X2 = … = XN with X1 normally distributed with mean μ1 and unit variance and Y1, …,
YN independent and identifiably distributed with mean μ2 and unit variance. Consider max T
step-down procedure with α = 0.5. For the permutation distribution of the two observations,
there are only two possibilities: the original data or the switch of X̲ and Y̲ each occurring
with equal probability of 1/2. Let Tmax denote the maximum of the test statistics over all the
genes. Then it has the value max Yi − max(μ0, X1) under the original observations, or the
value X1 − min{Yi : Yi ≥ μ0} otherwise (define min{Yi : Yi ≥ μ0} to be μ0 when Yi < μ0 for all
i). Clearly X1 − min{Yi : Yi ≥ μ0} ≤ X1 − μ0 and max Yi is large with high probability when
N is large. Therefore, under the null hypotheses μ1 = μ2, with large enough N, for any given
ε > 0 the value of Tmax under the original observation is greater than that under the switch
of X̲ and Y̲ with probability ≥ 1 − ε. Thus for α ≥ 0.5, with the permutation approach, we will
make type I error with probability close to one when N is large. In other words, the
permutation-based approximations to the adjusted p-values for the max T procedure are not
trustworthy in this case, and a similar argument can be also made for the min P procedure.

The above examples illustrate the following point. In general, with the dependence structure
unaccounted for, the permutation approach to the multiple testing problem can perform very
poorly and wrongly declare genes to be differentially expressed, due to the changes of the
genes dependence structure across the experimental conditions, rather than due to the
changes of the marginal distributions. As seen in Example 1, even in the case when there are
multiple observations for both the treatment and the control, the problem still exists to some
degree. The difficulty is compounded by the nature of the gene expression data, which
makes it unclear if the standard asymptotic analysis that assumes a large sample size (n1, n2
→ ∞ relative to N) would be practically useful/relevant.
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The problem described in Examples 1 and 2 also indicates that if one is interested in
marginal testing, the permutation approach does not serve that purpose correctly. If one
conducts a permutation procedure, its conclusion seems to be about the joint distributions
under the control and treatment. Thus the permutation approaches intrinsically are not quite
in line with multiple marginal testing.

From the literature, one may get the impression that the permutation procedures min P and
max T are less conservative compared to the Bonferroni method (or the like). Based on the
discussion above, this may not be correct. In fact, Bonferroni method does control the
FWER in the multiple marginal testing sense (note that our use of the term “multiple
marginal testing” is to emphasize that each test concerns a “marginal” distribution in the
sense that there is no real interest in the relationship between the tests, even though a
“marginal” distribution can be multi-dimensional), but the permutation procedures do not
necessarily control FWER in that sense, as shown in the examples.

Clearly, the definitions of weak and strong controls still make sense when we follow the first
interpretation of HM0. However, in that direction, to our knowledge, there is no multiple
marginal testing method with strong control of FWER that goes much beyond the
Bonferroni-type procedures (like, e.g., the method introduced in Holm 1979). This
considerably weakens the usefulness of the concept of strong control of FWER. Intuitively,
this is not too surprising, because with large N and small n1 and n2 it seems unlikely that one
can get very far without additional restrictions on the joint distribution of X and Y.

In defense of the permutation procedures, one can argue that the multiple marginal testing
may not be the correct objective in the first place. Ultimately, if possible, one wants to know
the difference between the joint distributions under the control and treatment. However,
since genes are often related to one another in nontrivial manners, the statement that the
treatment and control are different, by itself may not be very useful, and searching for
marginally differentially expressed genes is a constructive way to proceed. It seems that
even though challenging, understanding how treatment affects genes both marginally and
jointly is an important direction in microarray data analysis.

3.2 What is the state of nature?
Another difficulty with the definition of strong control under the joint interpretation of HM0
is that the state of nature may not be uniquely defined or even cannot be defined at all. This
obviously makes the joint interpretation somewhat problematic. Let’s consider two
examples.

Example 3. Suppose N = 2 and that X1 and X2 are iid with N(0, 1) distribution and Y1 = Y2
also with N(0, 1) distribution. Then what is the state of nature? When the marginal
distributions are concerned, clearly, we have H1 = H2 = 0. Thus, following the first
interpretation of HM0, M0 = {1, 2}. With the second interpretation, however, what is HM0?
Actually, we see clearly that HM0 cannot be {H1 = 0, H2 = 0}. Further, it cannot be {H1 =
0} because otherwise for gene no. 2, the distributions of X2 and Y2 would have to be
different (recall that M1 is the collection of the false null hypotheses), and the same
argument applies to {H2 = 0} as well. Thus M0 is not well-defined.

Example 4. Let X1, X2, X3, Y1, Y2 be iid with Unif[0, 1] distribution, and Y3 = Y1 + Y2 mod 1
(i.e., Y3 = Y1 + Y2 if Y1 + Y2 ≤ 1 and Y3 = Y1 + Y2 − 1 otherwise). Then, like in Example 3,
marginally we have H1 = H2 = H3 = 0. Again, under the second interpretation of HM0, the
state of nature is unclear. Obviously HM0 cannot be {H1 = 0, H2 = 0, H3 = 0}, but how
about {H1 = 0, H2 = 0}, or {H1 = 0, H3 = 0}, or {H2 = 0, H3 = 0}? Apparently, HM0 cannot
be any of them because otherwise there is only one gene left in M1 yet the distributions
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under the two conditions are not different for that gene. Similarly HM0 is none of {H1 = 0},
{H2 = 0}, {H3 = 0}.

From the above two examples, we see that M0 (for the concept of strong control) is not
properly defined when HM0 (the state of nature) is interpreted in terms of the joint
distribution instead of marginally. For Example 3, {H1 = 0}, {H2 = 0} hold separately, but
their intersection {H1 = 0, H2 = 0} does not hold in terms of the joint interpretation. Thus
the approach of adding a joint distribution requirement on top of marginal assumptions for
conducting a permutation test has an essential difficulty, related to the very validity of the
permutation approach.

One may consider two ways in an attempt to overcome the aforementioned problem. One is
to define M0 to be a largest collection of the unaffected genes in the sense that the genes in
the set have the same joint distribution of expressions under both the treatment and control
conditions but adding any additional gene in the set would make the joint distributions
different. This ensures that HM0 does always exist, but it is not hard to see that M0 is not
necessarily unique. Indeed, with this definition, in Example 3, M0 can be both {1} and {2}.
Another thought may be to reinterpret HM0 and HM1 to mean that the genes in M0 have the
same joint distribution under the two conditions and that the genes in M1 have non-identical
joint distributions under the two conditions. Then, in both examples, M0 = ∅ is the only
choice for the state of nature (which does not seem to agree well with intuition). However,
in general, if a choice of M0 is not empty, then moving any member to M1 still satisfies the
requirement. Even if one puts a maximal requirement on M0, one still cannot overcome the
non-uniqueness of the state of nature.

In any event, due to undefiniteness or non-uniqueness of HM0, when one performs the
permutation procedures, it is unclear how one should interpret the outcome, which is,
obviously, undesirable and challenges the usefulness of permutation-based methods for
strong control. One might consider putting some restrictive conditions on the joint
distributions, so that the state of nature is well defined. This, however, moves away from
one’s desire of not making strong assumptions on the joint distributions of the test statistics
in the multiple test problems.

4. SUBSET PIVOTALITY
Strong control of the FWER, in theory, can be obtained by using the so called closed testing
method of Marcus, Peritz and Gabriel (1976) (see also Hochberg and Tamhane 1987, p. 54
and Hsu 1996, p. 137). To implement this method, however, one must have a size α test for
every possible intersection of the individual hypotheses. In the context of gene expression
data, it seems difficult (to say the least) to construct a meaningful size α test for an
intersection hypothesis in which many genes are involved, without restrictive assumptions
on the dependence among the genes.

Westfall and Young (1993) proposed two permutation based procedures, min P and max T,
designed to control the family-wise error rate without modeling the dependence among the
individual tests. For readers convenience, the details of these procedures are presented in the
appendix. For understanding min P and max T properties, it is critically important to make a
clear distinction between the theoretical probability distributions of the minimal p-value
statistics and the permutation distributions. It seems that failing to do so when arguing for
strong control property in the literature contributed much to the confusion on the validity of
the permutation-based methods. When the theoretical adjustments of the p-values are done
by min P and max T procedures (by assuming that the distributions of the minimal p-value
statistics are known), it is quite clear that the methods are closed without any additional

Rempala and Yang Page 7

Stat Interface. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



assumptions, like e.g. SPP (see below). Nevertheless, when the implementations of these
methods are done via permutations, the matter becomes complicated and subtle. It is not
hard to see that the methods are closed with respect to the permutation distributions, this
however, may not be sufficient for the strong control in min P and max T. Indeed, the
permutation distribution depends on the data and when the state of nature of the data is not
the complete null (that X ̲ and Y̲ have the same distribution), the conditional permutation
distribution may have little in common with the true state of nature. Thus the min P and max
T procedures when practically implemented via permutations, are not really necessarily
closed methods in the sense of Marcus, Peritz and Gabriel (1976) since the sizes for all the
tests are not necessarily properly controlled under the true data distributions.

The strong control properties of the permutation-based min P and max T procedures are
stated under a critical assumption, namely, the subset pivotality property (SPP) defined
below. In a sense, SPP seems to be an attempt to obtain the closed testing method in a
practical way. Let us now consider SPP assumption and examine whether it is likely to be
satisfied or not, in the context of gene expression data analysis.

Let P1, …, PN be the p-value statistics of the test statistics T1, …, TN. Let P̲ = (P1, …, PN).
The following definition is given in Westfall and Young (1993, p. 42). (We note that the
concept is revisited on p. 115 of the book in a less formal fashion).

Definition 3. (Subset pivotality) The distribution of P has the subset pivotality property if

the joint distribution of the sub-vector  is identical under the restrictions 

and HM, for all subsets  of true null hypotheses.

The definition may seem to be quite clear, but there are subtleties in its statement. Actually,
we are aware of two understandings of the definition and the part in question is “for all

subsets  of true null hypotheses”. One interpretation of the requirement in

the definition is that the joint distribution of the sub-vector  is identical under

the restrictions  and HM for all subsets  (see Ge, Dudoit, Speed 2003,
p. 14). Another interpretation is that there is a fixed true HM0 and the definition requires that

the joint distribution of the sub-vector  is identical under the restriction  and

HM for all subsets  of M0. Obviously the first interpretation is more stringent. We will
focus on the first interpretation in the following discussion (however we note that some of
the difficulties described below are also encountered under the second interpretation).

From the definition, the property is pertaining to the distribution of P̲. Of course, the joint
distribution of X̲ and Y̲ and the test statistics are also in the picture through their effects on P̲.
Given the choice of the test statistics, is it a property for the single joint distribution of X̲ and
Y̲ or for a family of distributions? Apparently the answer should be the latter, because in the

statement, different choices of  are allowed (and obviously they correspond to different
distributions of X̲ and Y̲). But then the meaning of the definition is not quite clear: Does it
mean that we start with a collection of the joint distributions of (X̲, Y̲) and the condition is
required on the corresponding set of distributions of the test statistics? Or can we start with
all possible joint distributions of (X̲, Y̲) and just consider the subset of the distributions that
satisfy the requirement?

The first interpretation seems to be legitimate. The second one may look legitimate at first
sight, but it is actually misleading since the restriction to a set of distributions that satisfy
SPP cannot be verified in any meaningful way in practical settings. With the understanding
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that SPP really is a property of a given (verifiable) collection of joint distributions of (X̲, Y̲),
let Ω denote such a collection. An important question then is: Under what conditions on Ω
and T = (T1, …, TN), can we expect SPP to hold?

With ℋi clearly defined, but nothing specifically said otherwise, one may think about
interpreting the setup in Ge, Dudoit and Speed (2003) as one with Ω including all possible
joint distributions of (X̲, Y̲) (of course, we still assume that X̲ and Y̲ are independent). In their
argument on why SPP is usually satisfied for the case of gene expression data analysis, they
appeal to the fact that Ti depends only on gene i. However, without further assumptions on
the joint distributions of genes, this generally seems unlikely be true, as will be seen.

4.1 Is SPP typically satisfied for gene expression data?
As before, let M0 denote the set of genes that have the same marginal distributions under the
treatment and control. According to Definition 3, SPP requires that the joint distribution of
{Pi : i ∈ M0} stay unchanged under HM0 and HM. However, when the treatment and control
conditions can have complicated effects on the dependence structure between the genes
expressions, even though the tests are done with one gene at a time, one cannot expect SPP
to hold in general. To see this, let us consider a simple setting with only three genes.

Example 5. Suppose that Y1, Y2, Y3 are iid standard-normally distributed (thus, under the
control condition, the expression levels of the genes are independent). The treatment may or
may not change this distribution. Under the complete null hypothesis, X1, X2, X3 are also iid
with standard normal distribution. Now suppose that one possible effect of the treatment is
that X1 equals in distribution to β11Y1 + β12Y2 + β13Y3 + μ1, X2 equals in distribution to
β21Y1 + β22Y2 + β23Y3 + μ2, and X3 equals in distribution to β31Y1 + β32Y2 + β33Y3 + μ3,
where μ1, μ2, μ3, and the β parameters are real numbers. Then one can easily arrange the
constants so that X1, X2, X3 all have mean zero and variance one, marginally. However,
their joint distribution is not necessarily the same as that of Y1, Y2, Y3.

Note again that in the above example true M0 may not be well-defined when the joint
interpretation of HM0 is used and it is then not meaningful to consider SPP under the joint
interpretation. On the other hand, under the marginal interpretation of M0 it is clear that in
this family of distributions, SPP fails. Conceptually, this is quite possible to happen in gene
expression: the treatment can make some genes co-expressed. This simple example indicates
that for a general family of distributions SPP in the gene expression context may not hold
without imposing restrictions that are hard to verify/justify (e.g., the assumption that the
genes in M0 are independent among themselves, regardless of the treatment conditions, or
that the treatment and control distributions differ only by location parameter shifts).

4.2 A sufficient condition for SPP
If the control and treatment differ in the gene expressions only in terms of location-shift,
then SPP holds for the location family. More precisely, consider the following. Let q(x1, …,
xN) be a given joint probability density function. Assume that the joint distribution of (X1,
…, XN) is qμ(x1, …, xN) = q(x1 − μ1, …, xN − μN) for μ = (μ1, …, μN) ∈ RN and the joint
distribution of (Y1, …, YN) is of the form of qμ̃ for some μ̃ ∈ RN. Then we say that the
treatment and control differ in location-shifts. In this case, SPP obviously holds. For related
discussion and more example in other multiple testing scenarios, see Chapter 3 of Westfall
and Young (1993).

4.3 A paradox?
In the discussion of the previous sub-section we pointed out that for a given family of
marginal distributions of the observations, with no additional assumptions made on their
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joint dependence structure across the experimental conditions, SPP does not hold generally.
We emphasize that here we have a fixed family to begin with (which is required for
considering SPP). Very surprisingly and interestingly, however, when we somewhat change
the angle of looking at the problem, it seems that we may claim that in a sense SPP always
holds for permutation-based methods via the following result which is argued in the
appendix.

Theorem 1. Let FM be a true joint distribution of all the genes under both treatment and
control, i.e., the true distribution of the vector (X̲, Y̲) where X̲ = {Xi, i ∈ M} and Y̲ = {Yi, i ∈
M} as well as M = M0 ∪ M1 with M0 ≠ ∅. Under joint interpretation of HM0 there exists a
collection of joint distributions of (X ̲, Y̲) which contains FM and satisfies SPP.

The result of Theorem 1 leads to a paradox in the justification of the use of the permutation-
based procedures when pursuing strong control via the step-down adjusting methods. If we
start with a given family of the joint distributions of X̲ and Y̲, we are told that we need SPP
for the permutation-based procedures to work. As already mentioned, when the treatment
and control conditions give rise to different dependence structure among the genes, SPP
does not hold generally. This suggests that the permutation procedure may not be valid (if
SPP is really relevant). On the other hand, if one starts from whatever the true joint
distribution of (X̲, Y̲) is, one can construct a “friendly” family in which SPP always holds.
The key point here is that the permutation-based step-down procedures (min P and max T)
do not in any way depend on the specification of the family of the joint distributions and
thus it doesn’t matter whether the “friendly” family is known explicitly or not.
Consequently, any properties of the permutation procedure for approximating type I error
probabilities that hold under the true distribution in the “friendly” family have to hold in the
original family (whatever it might be) as well. Therefore, in our context, when using the
permutation procedures, it seems that one does not need SPP after all under whatever state
of nature!

The issue of general utility of SPP seems somewhat unclear and we leave its resolution to
more studies. For instance, as is apparent from the proof of Theorem 1, when the test
statistics involve multiple genes the construction of the family with SPP fails and, in
general, some aspects of the multiple testing procedures in such circumstances differ from
our present setting.

In the next section, we argue that for the step-down permutation-based methods the control
issue becomes much easier with a slight modification of the original definition of strong
control.

5. PARTIAL STRONG CONTROL
The resampling-based methods for p-value adjustment were thought to provide
approximations to the joint distributions of the p-value statistics. Consequently, the strong
control property was not expected to hold exactly. This was clearly stated, for instance, in
Ge, Dudoit and Speed (2003, Section 4). Westfall and Young (1993, Chapter 2) made
general statements that when the adjustments of the p-values cannot be done without error,
the resampling methods only approximately control the FWER in the strong sense.
However, as seen in our Examples 1 and 2 in Section 3, even the approximate control may
be questionable, and therefore the understanding of the accuracy of the permutation-based
approximations to mini∈M0 Pi (or maxi∈M0 Ti) appears to be key for the understanding of the
strong control properties of the permutation-based methods. Unfortunately, it seems that too-
often the accuracy issue is brushed aside in discussing the practical aspects of implementing
the strong control algorithms. In fact, at first glance, one might not be very optimistic about
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the accuracy of the approximations. Imagine, for example, that M0 is of size 150 and n1 = n2
= 30 (which may not be atypical in the gene expression context for the time being). Together
with the complexity of the dependence between the genes, it seems perhaps unrealistic to
expect the distribution of mini∈M0 Pi to be well approximated.

In Section 4 we have made an attempt to illustrate the potential problems regarding the
strong control property (or lack of strong control) of the permutation-based methods and the
nature of SPP. All these seem to cast some doubt on the permutation-based methods for
strong control. Several other researchers (see, for instance, Storey 2003) had expressed some
concerns about the satisfaction of SPP requirement for gene expression data.

It is then perhaps surprising to find out that the issues surrounding SPP are actually largely
irrelevant and the Westfall and Young procedures with permutation do strongly control the
FWER in a certain sense.

The essence of an idea behind a permutation test is in exploiting the symmetry between the
observations from treatment and control conditions under the null hypothesis (i.e.
identification of the appropriate permutation group). In the setting of gene expression data,
this means that under the null hypothesis of no difference between treatment and control, the
observations under the two conditions are exchangeable in distribution. More precisely,
under this null hypothesis, conditionally on the observed values of X̲, Y̲, all subjects have
exactly the same probability to be associated with any given vector of expression levels
from both experimental conditions. Consequently, the control of the type I error probability
conditional on the observed values of X̲, Y̲ ensures the control of the unconditional error
probability.

The key for obtaining strong control for the permutation-based adjustment is to understand
the distribution of mini∈M0 P̃i, where P ̃i is the adjusted p-value. There is no need to require
the accuracy of the permutation approximation for the genes which are not in M0. Therefore,
at the heart of the matter is really the issue of whether or not, under the partial null HM0,
there is still the desired symmetry on the set of null genes M0 that guarantees the validity of
the permutation approach. It turns out to be the case under a bit more restrictive definition of
strong control given in the following

Definition 4. (Partial strong control) A multiple testing procedure δ is said to partially
strongly control the FWER at level α if for every possible choice of M0 ⊂ M, when the joint
distribution of Xi, i ∈ M0 is the same as that of Yi, i ∈ M0, we have

The following result then holds. The proof is presented in the appendix.

Theorem 2. The Westfall and Young’s min P and max T permutation procedures partially
strongly control the family-wise error rate at the exact nominal level α.

Theorem 2 formally justifies the use of min P and max T procedures for strong control in a
bit more restrictive sense (partial strong control instead of strong control). This result is
noteworthy for two reasons: (i) despite the prevailing believe that min P and max T
procedures provide strong control only approximately (and with little ability to assess the
accuracy of the approximation), they actually provide (partial) strong control exactly; (ii)
there is no need for the subset pivotality assumption (nor for considering a distribution
family to which the true distribution is assumed to belong).
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As mentioned already, with the definition of M0 as the collection of all the genes i such that
Xi and Yi have the same distribution marginally, in general the condition that the joint
distribution of Xi, i ∈ M0 is the same as that of Yi, i ∈ M0 may not hold. Then there is no
guarantee that the probability of type I error is under the desired level for the permutation-
based min P and max T procedures (see Example 1). To have a better understanding of
Theorem 2, we introduce the following definition.

Definition 5. (Maximal joint null set) For a subset of {1, …, N}, say S, if the joint
distribution of Xi, i ∈ S is the same as that of Yi, i ∈ S, we call S a joint null set. If a joint null
set S is such that when any additional gene is added to the set, the enlarged set is no longer a
joint null set, then we call S a maximal joint null set.

Note that as shown already in Section 3, there may be multiple maximal joint null sets.
Obviously S has to be a subset of M0. In any case, consider a maximal joint null set S* and
let S′ be the complement of S* in M0 (i.e., S′ = M0\S*). We call S′ the set of individual null
genes.

Theorem 2 means that for the min P and max T procedures, the probability of making any
false discovery in a maximal joint null set S* is always under the intended control. When
there are multiple maximal joint null sets, the probability control is for each of them
separately (but not necessarily jointly). In general, the type I error in S′ may not be well
controlled. In the extreme case that S* has size 1 (i.e., all the null genes are actually
individual null genes), Theorem 2 is not useful at all.

In applications, it may be proper to envision that sometimes a treatment leaves most genes
completely unaffected or practically unaffected in terms of their joint distribution. Then a
maximal joint null set S can be chosen to be this set. Among the rest of genes, even though
the treatment has changed their joint distribution, there may still be some whose marginal
distributions under treatment happen to be the same as under the control (or almost the same
in a practical sense). If the number of individual null genes in S′ is much smaller compared
to the size of S*, i.e., |S′ |/|S*| is small, say upper bounded by β, then the number of false
discoveries is properly bounded for the permutation based methods. The corollary below
follows immediately from the above considerations.

Corollary 1. Assume that ratio of the number of individual null genes and the size of the
maximal joint null set is upper bounded by β. Let α be the chosen test size when applying the
Westfall and Young’s min P or max T procedure. Then with probability at least 1 − α, the

proportion of the genes in M0 declared to be significant is at most .

Remarks:

1. The proof follows the spirit of Westfall and Young (1993) idea of FWER control in
step-down procedures, even though the original proof there does not lead to
Theorem 2. There are subtleties that are easily confusing in the derivation. It is
crucially important to do the conditioning right. In the complete null case, the
conditioning is straightforward and one does it right away and presents the whole
argument in terms of the conditional probability. However, under the partial null,
working with the conditional/unconditional probabilities is trickier, and seems to be
a major cause of the confusion on the validity of the permutation-based methods for
strong control. If one starts by conditioning on the expressions of all the genes, then
the argument cannot go through. The clever adjustment of the Westfall and Young
procedures allows one to formally drop the irrelevant genes before making a
conditional argument.
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2. As mentioned already, the permutation implementation in the min P and max T
procedures were viewed as approximations to the theoretical distributions of the
minimal p-value statistics. From the proof, it is clear that whether and how well the
permutation distributions approximate the unconditional distributions of the
minimal statistics are not directly relevant for bounding the type I error probability.

3. As pointed out in Ge, Dudoit and Speed (2003), the marginal distributions of the
test statistics for the genes do not need to be the same, and additionally the test
statistics can be completely different across the genes (if desirable).

6. CONCLUSIONS
It seems that the notion of strong control of FWER in gene expressions analysis, even
though appealing, has some challenging difficulties to overcome. Beyond the Bonferroni
and Holm’s methods, the only known methods intended for (partial) strong control without
assuming additional conditions on the distributions of the p-value statistics (e.g.,
independence) rely on permutation in their implementation. This approach, however, moves
away from the starting point of the usual multiple testing problems because it concerns the
joint distributions of the test statistics rather then the marginal ones. Consequently, it could
happen with high probability that some genes might be declared differentially expressed
simply because the joint distributions of the expression levels of the genes under the
treatment and control are different even though the respective marginal distributions remain
identical (or practically identical). In addition, under the joint interpretation of the null
hypotheses of no difference between treatment and control, the state of the nature may be no
longer properly defined.

When one considers a family of joint distribution for the gene expression levels, since the
treatment often has effects on the relationship between the genes (e.g., changing
independently expressed genes into co-expressed genes), the SPP requirement may be
restrictive. Interestingly enough, the step-down methodology utilizing permutations to adjust
the p-values, i.e., the Westfall and Young’s min P and max T procedures actually do ensure
strong control in a partial sense without SPP. The difference between partial strong control
and strong control is that whereas for the latter we require the appropriate probability to be
bounded for all subsets of M0, for the former we only require this for subsets for which the
joint distributions of {Xi} and {Yi} are the same. It seems that the partial strong control,
although weaker than strong control, can still be practically very useful. If a treatment leaves
a large collection of genes totally unaffected (and thus their joint distribution is the same as
that under the control), then the min P and max T procedures will not falsely pick up any of
those genes with a desirably high probability.

7. BIBLIOGRAPHICAL NOTE
The idea of min P and max T was introduced in Chapter 2 of Westfall and Young (1993)
monograph along with the concepts of a subset pivotality and a partial null set. The
permutation based approximations were discussed by Westfall and Young in quite general
setting and not necessarily with gene expressions analysis in mind. The paper of Ge Dudoit
and Speed (2003) gave a more computationally feasible implementation of the min P
procedure for gene expression data. The recent discussion of the issues related to applying
permutation tests in step-down procedures was given in Kropf et al. (2004). Some of the
points raised herein were also discussed in Westfall and Wolfinger (1997) and Westfall and
Troendle (2008).
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Finally, we also note that some results intended to control strongly FWER in an asymptotic
sense under conditions weaker than SPP were presented by Pollard and van der Laan (2004)
in the context of single parameter hypothesis.
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APPENDIX

8.1 Step-down max T and min P methods
For completeness and readers convenience, we present here, in our particular context, the
Westfall and Young’s min P and max T procedures for p-values adjustments in multiple
testing problems (see Westfall and Young 1993, Chapter 2).

Let p1, …, pN be the raw p-values of the genes based on test statistics Ti which depend only
on gene i respectively. Let t1, t2, …, tN be the realized values of the test statistics from the
data. Let the ordered p-values be pr1 ≤ pr2 ≤ ⋯ ≤ prN and the ordered values of the statistics
be ts1 ≥ ts2 ≥ … ≥ tsN. Note that the p-values may or may not be based on resampling. Note
also that there may be ties in the p-values (which can happen with a positive probability,
e.g., when the p-values are discrete or when some genes are perfectly correlated with each
other). In such cases we could choose any reasonable tie breaking method known in the
literature.

Let J be the total number of (n1 + n2)! permutations of the subjects. For each permutation j =

1, …, J compute the corresponding p-values  and the test statistic values

. Then let

;
Similarly, let

.

Now, denote .

Finally, for the min P procedure, let the adjusted p-values be p͌r1 = l1/J, p͌r2 = max (l2/J, p͌r1),
…, p͌rN = max (lN/J, p͌rN−1); and for the max T procedure, let the adjusted p-values be p̅s1 =
h1/J, p̅s2 = max (h2/J, p̅s1) …, p̅sN = max (hN/J, p̅sN−1). In order to control the test FWER at
level α, each adjusted p-value needs to be now compared with α.

8.2 Proof of Theorem 1
We first note that under the joint interpretation of HM0, the joint distribution of {Xi, i ∈ M0}
is the same as that of {Yi, i ∈ M0}. In order to construct our family of distributions which
satisfies SPP, let M′ ⊂ M be any subset of M and consider a joint distribution, say FM′, of
the sub-vector of (X ̲, Y̲) consisting only of the components {Xi, i ∈ M′} and {Yi, i ∈ M′}. We
first modify these sub-vectors into {X̃i, i ∈ M′} and {Ỹi, i ∈ M′} by replacing for i ∈ M′\M0
the corresponding components with the mutually independent, standard Gaussian variables
independent of each other and of both original sub-vectors. We then augment the sub-vector
{X̃i, i ∈ M′} by an independent vector of mutually independent standard Gaussian

components . Similarly, we augment the sub-vector {Ỹi, i ∈ M′} by an

independent sub-vector  of mutually independent, unit-variance Gaussian

components with mean one which are additionally independent of  as well
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as {X̃i, i ∈ M′} and {Ỹi, i ∈ M′}. Let F̃M′ be the joint distribution of a 2N-vector obtained
from the sub-vectors {Xi, i ∈ M′} and {Yi, i ∈ M′} by the described above replacement and
augmentation procedure. With all subsets M′ ⊂ M, we consider a family of distributions
given by {F̃M′ : M′ ⊂ M}. Finally, when M0 ≠ M, we also add to this family an additional
distribution, namely that of the sub-vectors {Xi, i ∈ M0} and {Yi, i ∈ M0} augmented to 2N
vector by adding to each one of them a vector of mutually independent standard Gaussian
components. As above, these added Gaussian vectors are taken to be independent of each
other as well as of the original sub-vectors {Xi, i ∈ M0} and {Yi, i ∈ M0}. Note that this
latest distribution corresponds to a complete null hypothesis.

With our construction, we now have a family of distributions of (X̲, Y̲). Note that for each M′
⊂ M there is a member of the family which has M′ as exactly the set of genes which are not
differentially expressed. Furthermore, it is not difficult to see that SPP holds for this new
family. This completes the proof.

8.3 Proof of Theorem 2
We focus on the min P procedure. The max T can be handled similarly.

Suppose that S = {k1, k2, …, km} is a joint null set, m ≥ 1 (obviously, when m = 0, there
cannot be any type I error). We want to show that the probability of at least one of the null
genes in S being declared to be significant is no greater than α, i.e., that

Let pk* be the smallest p-value in pk1, …, pkm. When there are ties, we follow the same order
as in pr1 ≤ pr2 ≤ ⋯ ≤ prN to break the ties. Then the above requirement is Pr(p͌k* ≤ α) ≤ α.
Now by the definition of p͌i,

where the second inequality holds because by construction the values  for k ∈ S are

included in the minimization used for obtaining . Notice that for the last probability
above, only the genes in S are involved, and since each test statistic Ti involves only single
gene i, the last expression depends on the set S only. Now, because the distribution of Xi, i ∈
S is the same as that of Yi, i ∈ S, conditional on the values of expression of the genes in S for
all the subjects, due to symmetry, each permutation of the subjects to be associated with the
given values of the expression has exactly the same probability. Then it follows directly that

the conditional probability of the event “  for no more than a fraction of α
× 100% times” is no greater than α. Since the upper bound α does not depend on the
expression values, obviously, the unconditional probability of the type I error is also upper
bounded by α. This completes the proof of the theorem.

8.4 R code
The following code was used to conduct the numerical simulation for Example 1. The output
below was obtained from R software version 2.13.1 (with ‘multtest’ library version 2.8.0)
running on the Mac Pro with dual quad-core Intel Xeon processor. The Monte-Carlo error of
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the simulation (“err bounds” in the output below) was estimated by computing the
corresponding lower and upper bound in the law of the iterated logarithm for B = 100000
replicates. In this particular setting, the difference between the empirical and the nominal
FWER was considered to be within the simulation margin of error if the lower value in “err
bounds” fell below the nominal FWER = α = 0.1.

> require(’multtest’)
> B=100000;
> n=10;
> cl<-c(0,0,1,1,1);
>
> test=function(k=1,classlab=cl) {
+ sink(’teka’); #re-direct irrelevant output
+ cnt=0;
+ for (i in 1:B){
+ data=cbind(rnorm(k),rnorm(k),rnorm(n),rnorm(n),
rnorm(n));
+ mt.maxT(data,classlab,test=’t.equalvar’,
side=’lower’)->res;
+ cnt=cnt+ifelse(sum(res[,4]<.11)>0,1,0);
+ } #compare to nominal level of 1/10
+ sink(); #return output to console
+ cat(’emp.FWER=’,cnt/B,’\n’);
+ a=sqrt(2*(1−cnt/B)*cnt/B)*log(log(B))/sqrt(B);
+ cat(’err bounds=’,c(cnt/B−a,cnt/B+a),’\n’);
+ }
>#Dataset One: Marginal t-Stat Equidistribution
> test(k=1);
emp.FWER= 0.12025
err bounds= 0.1166958 0.1238042
>
>#Dataset Two: Joint t-Stat Equidistribution
> test(k=n);
emp.FWER= 0.09926
err bounds= 0.09599255 0.1025274
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