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Abstract The pH on the frustule of individual cells of the
marine centric diatoms Coscinodiscus granii and Coscino-
discus wailesii (Bacillariophyceae) was measured with pH
microsensors in culture media with increasing pH values of
8.04, 8.14, and 8.22, respectively. In 85–96% of the C. gra-
nii cells the pH on the frustule was up to 0.4 units higher
than that of the medium, reaching a maximum pH 8.95.
Only in 2–3% the surface pH exceeded that of the medium
by up to 0.7 pH units. These results strongly suggest that
diatoms in batch cultures diVer, at least temporarily, in their
individual photosynthetic activities. Infection experiments
with the parasitoid nanoXagellate Pirsonia diadema (Stra-
menopile) showed that Xagellates failed to infect when the
culture pH was 8.8 and above. pH measurements on freshly
infected C. granii showed that the prevalence of infection
was higher in tendency on diatoms with low surface pH.
Application of these results to parasitoid-diatom interactions
in natural waters suggests that within phytoplankton popula-
tions a strong photosynthetic activity might prevent diatom
cells temporarily from infection by pH-sensitive parasitoids.

Introduction

Most photosynthetically active diatoms take up CO2 (car-
bon dioxide), whereas others can also take up HCO3

¡

(bicarbonate) (Tortell et al. 1997; Matsuda et al. 2001).
Photosynthetic removal of CO2 causes an increase of pH of
the boundary layer of the medium. Thus, phytoplankton
mass developments, either in culture or in the Weld, may
cause a general increase of pH. In phytoplankton batch
cultures, pH values of 9.5 and above, can be reached in the
stationary phase (Goldman et al. 1982; Taguchi et al. 1987).
Natural seawater has an average pH of approximately 8.0–
8.2 but during phytoplankton blooms in the German Bight,
North Sea, it can increase to pH 8.7 (Pegler and Kempe
1988).

It is generally assumed that all cells in unialgal diatom
cultures are more or less identical in their physiological
properties. This assumption may not necessarily hold true
as was indicated by infection experiments in which the
marine parasitoid nanoXagellate Pirsonia diadema Kühn
(Stramenopile) infected, and eventually consumed, the
large diatoms Coscinodiscus granii and Coscinodiscus
wailesii (Bacillariophyceae). Pirsonia clearly showed inter-
speciWc selectivity between host species and intraspeciWc
selectivity within unialgal host cultures (Kühn 1998). Labo-
ratory experiments indicated that the photosynthetic activ-
ity of individual C. wailesii cells might aVect their
susceptibility to infection (Kühn 1998). While in cultures
kept in light some cells seemed to be most attractive for
further infections, about 1% of the diatoms remained
uninfected for some time. In darkness, all cells were infected
equally. It was suggested that photosynthesis enhances the
formation of individual physiological properties of diatoms
leading to intraspeciWc variability of susceptibility.

Pirsonia infecting Coscinodiscus gradually ingest dia-
tom cell contents. A feeding Xagellate will divide approxi-
mately 6 h after attachment for the Wrst time, without
having severely aVected the internal structure of the diatom
protoplast. Multiple infections, however, will kill a diatom
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within a few hours. If the photosynthetic activity of individ-
ual diatoms inXuences the infection behaviour of Pirsonia
Xagellates, the external pH on the frustule should be an
indicator for their susceptibility to infections. Microsensors
for pH and oxygen have successfully been used to deter-
mine variations of pH and oxygen saturation on the frustule
and the plasma membrane of individual C. wailesii cells
during light and dark shifts (Kühn and Raven 2008).

Generally, Pirsonia Xagellates are attracted by intact
C. wailesii (Kühn 1998) but rapidly avoid manually damaged
crushed cells (unpublished). We assumed that this escape
behaviour was caused by the acidic vacuolar sap. There-
fore, it was also of interest to test if pH microsensors could
be used to measure the acidity of the vacuole.

In the present study we investigated (a) the eVect of
pH values in Coscinodiscus cultures on the ability of
P. diadema to successfully infect host cells, (b) the pH on
the surface (frustule) of individual photosynthesising dia-
toms with the aid of pH microsensors, (c) potential eVects
of surface pH on the ability of the parasitoid to infect suc-
cessfully and (d) the pH of the diatom vacuole.

Materials and methods

Cultures

Cultures of the marine diatom C. granii Gough and C. wail-
esii Gran and Angst were established from cells isolated oV
List/Sylt in the North Sea, German Bight. Cultures were
maintained in modiWed F/2 (Guillard and Ryther 1962) at
15°C on a 16:8 L:D cycle. The salinity was adjusted to
30 PSU. Microsensor experiments were carried out at room
temperature (21–22°C). Cell diameters were in the range of
300–400 �m. As in natural populations, diatom division was
not synchronised. Pirsonia diadema was isolated in 1993
from the same site and cultivated according to Kühn et al.
(1996). Infection experiments were carried out under non-
turbulent conditions, i.e. culture vessels remained stationary
and were only shaken cautiously before sampling. Previous
experiments had shown that that infection dynamics diVered
between Coscinodiscus cultures maintained under turbulent
conditions (rolling tanks) and those maintained under non-
turbulent conditions (Kühn and HoVmann 1999). It was nec-
essary to count live samples to distinguish between infected
and uninfected diatoms (preservation with Lugol’s solution
led to the detachment of Pirsonia Xagellates from the dia-
toms). This limited the feasible number of replicates.

pH microelectrodes

pH was measured with pH liquid ion exchange (LIX)
microelectrodes (de Beer et al. 1997) in combination

with a calomel reference electrode (Radiometer 401,
Denmark), connected to a high-impedance mV meter
(Mascom, Germany). The tip diameter of the microelectrodes
was 6–10 �m. Electrodes were calibrated at room temper-
ature in standard pH buVers (pH 7 and 9.26) (Mettler
Toledo), and the signals were recorded on strip chart
recorder (Görz, Germany). pH sensors responded within
milliseconds.

Experimental set up for microsensor measurements

Experiments were carried out in a small Plexiglass chamber
Wlled with F/2 or artiWcial seawater. Since Coscinodiscus
spp. cells tended to sink down, the bottom of the chamber
was covered with a »5-mm thick layer of agar (1% pre-
pared from F/2 with pH according to the experiment). This
was the best approximation to simulate a natural environ-
ment where cells are surrounded by seawater. The agar
served at the same time as a protection against damage
of the microsensor tip. Microsensors were positioned by
a manually operated micromanipulator (Märtzhäuser,
Germany) (Fig. 1). The position at the diatom surface was
determined by observation of the microsensor under a
dissection microscope. Inclination of microsensor was
10°–20° to diatom surface. Light source was a Wber optic
halogen lamp (Schott KL-1500, Germany), and quantum
irradiance (400–700 nm) was measured with a quantum
scalar irradiance meter (Biospherical Instruments, QSL101,
USA). Experiments were carried out with an irradiance of
160–170 �mol photons m¡2 s¡1.

Fig. 1 Experimental set-up of microsensor experiments. Diatoms
were placed in small chambers on agar. Photographs show a “double”
cell of Coscinodiscus granii (left), a “single” C. granii cell infected by
Pirsonia diadema (middle) and C. wailesii (right)
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pH development in culture medium and Coscinodiscus 
wailesii cultures (Experiment 1)

For pH measurements in culture medium, 150 ml of F/2
were Wlled in 250 ml Erlenmeyer Xasks and covered with
aluminium foil. The starting volume of diatom batch
cultures was 700 ml in 1000 ml Erlenmeyer Xasks. In all
Xasks, the initial pH values were adjusted with 0.1–1 N
HCl or NaOH to pH 6.8, 7.2, 7.6, 8.0, 8.7 and 9.5. The pH
was determined daily the same time (§1 h). Ten ml were
removed every day from the culture for cell counts.

Infection experiments with Pirsonia diadema 
and Coscinodiscus granii (Experiment 2)

Experiments were carried out in 78-ml Volume Disposable
Tissue Culture Flasks with 35 ml C. granii culture (initial
diatom density »28 cells ml¡1), and the initial pH was
adjusted to 8.0. On Wve successive days, diatom culture
media were inoculated with one C. granii cell equally
infected by P. diadema. Ten replicates were used for each
day. In the following days, infected cultures were counted
daily at the same time (§1 h), and the pH was measured.
The numbers of infected and uninfected cells were deter-
mined directly in culture Xasks using a self-constructed grid.

pH on diatom frustules (Experiment 3)

Measurements started 20–30 min after transferring diatoms
into the experimental chamber to allow cells to adjust to their
new environment. The pH of the F/2 medium varied between
7.98 and 8.29. For analysis, measurements in medium with
pH 7.98–8.09, 8.10–8.19 and 8.20–8.29 were pooled together.
Since the pH at the cell surfaces depended on the irradiance
(manuscript in preparation) experiments were carried out at
one light intensity only (160–170 �mol photons m¡2 s¡1).

pH on frustules of infected cells vs. non-infected cells 
(Experiment 4)

Coscinodiscus granii cultures were infected in Erlenmeyer
Xasks with varying inoculate of P. diadema Xagellates. The
pH of the medium was between 7.98 and 8.26. For analysis,
measurements in medium with pH 7 98–8.09, 8.10–8.19
and 8.20–8.29 were pooled together.

Approximately 1 h after the attachment of a Pirsonia
Xagellate to Coscinodiscus the diatom showed Wrst signs of
infection, i.e. chloroplasts began to slowly accumulate
around the infection site. The internal structure of the dia-
tom remained intact for several hours if only one Xagellate
was feeding but was strongly aVected within a short time
(>2 h) when several Xagellates were consuming cell con-
tents. To ensure the Wrm attachment of Xagellates to

diatoms, infected cultures were transferred approximately
1 h after incubation into the experimental chamber. Surface
pH was determined within 2–3 h after inoculating Coscino-
discus cultures with Pirsonia to avoid that photosynthetic
activity was aVected by progressive infection. It was only
distinguished between the infected and uninfected diatoms
and the number of attached Xagellates was not considered.

Vacuolar pH in Coscinodiscus wailesii (Experiment 5)

Coscinodiscus wailesii cells had a diameter of »400 �m.
For measurements, the microsensor was adjusted at the
depression in the valve centre before the cells were rapidly
impaled (when the microsensor was pressed down on the
valve edge the cells often slipped away).

Results

Experiment 1: pH in F/2 culture medium 
and C. wailesii cultures

In culture medium (without diatoms) with an initial pH of
9.5 the pH decreased within 11 days more or less continu-
ously by about one unit to pH 8.5, whereas in that with an
initial pH of 6.8 the pH increased within the Wrst 4 days to
pH 7.4 and then remained constant at this value (Fig. 2).

In C. wailesii cultures that had been adjusted to an initial
pH of 9.5 all cells died within the Wrst 2 days. When the ini-
tial pH was 8.7, the diatoms survived and the pH remained
at »pH 8.7 until the culture was discontinued after 11 days
(Fig. 3). In the other cultures starting from pH 8 and lower,
the maximum value of pH 8.8 was reached after up to

Fig. 2 Development of pH in seawater adjusted to initial pH values
varying from 6.8 to 9.5
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14 days. In contrast, in similar experiments the maximum
pH in cultures of the marine diatoms Thalassiosira puncti-
gera was 9.1 (not shown).

Experiment 2: Infection of C. granii by Pirsonia

The infection dynamics depended on the pH in the experi-
mental cultures at the time when the P. diadema was added.
pH changes caused by infection were principally the same
in all cultures but diVered too much in their temporal devel-
opment to be treated statistically. Therefore, three repli-
cates (out of ten) are depicted to demonstrate the interaction
of infection rates and pH changes. A C. granii culture with
an initial pH 8.0 was inoculated on day three with
P. diadema when the pH had risen to 8.3 (Fig. 4a). On day
six, the pH had increased to 8.6, and 70% of the diatoms
were infected. The following day, all diatoms were infected
and the pH decreased again. The Xagellates also success-
fully infected all remaining diatoms when the pH had risen
to almost 8.8 (Fig. 4b).

In comparison, at an ambient pH of 8.9, P. diadema could
not infect anymore although 59% of the C. granii cells had
already been infected before (Fig. 4c). In this case, the prev-
alence of infection decreased rapidly, whereas the pH in the
diatom culture increased to a maximum pH of 9.1.

When P. diadema Xagellates were added to C. granii
and or C. wailesii cultures with a pH above 8.8 the Xagel-
lates did not infect the diatoms (n > 10; not shown). Obvi-
ously, a critical value between pH 8.8 and 8.9 existed,
above which the Xagellates were not infective any more.

Experiment 3: pH at diatom frustules

In C. granii cultures, the distribution of pH values on the
frustule showed at average ambient pH values of 8.03, 8.14
and 8.22 a normal distribution.

In 85–96% of the C. granii cells the pH on the frustule
was up to 0.4 units higher than that of the ambient medium
(Fig. 5a–c). In 2–3% of the cells their pH values at the frus-
tule exceeded that of the ambient F/2 by up to 0.7 pH units,
and reached a maximum pH of 8.95. Although all diatoms
appeared to be healthy, in 2–7% the surface pH was not
higher than that of the culture medium. On average, the pH
on the frustule was 0.24–0.3 pH units higher than in the cul-
ture medium (Fig. 6).

Dividing Coscinodiscus appear as “double” cells before the
daughter cells eventually separate. The surface pH values of
these not-yet-divided cells were slightly higher (but not signiW-
cantly) than those of “single” cells by up to 0.05 units (Fig. 7).

Experiment 4: pH on frustules of infected Coscinodiscus 
granii cells versus non-infected cells

The pH of uninfected C. granii was 0.24–0.30 pH units
higher than of the ambient seawater. The pH on the frustule

Fig. 3 Development of pH in Coscinodiscus wailesii cultures adjusted
to initial pH values varying from 6.8 to 8.7
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of uninfected diatoms was always higher than that of
infected cells (statistically not signiWcant): the diVerence
increased from 0.06 (F/2: pH 8.04) to 0.18 pH units (pH F/
2: 8.26) (Fig. 8). The diVerences indicate a trend that with
higher ambient pH Pirsonia preferred host diatoms with
low surface pH. Advanced feeding led to progressive
reduction of surface pH (not shown). As pH was measured
shortly after successful infection, feeding Xagellates had
not yet severely aVected the diatoms cytoplasmic structure
or taken up extensive amounts of cell contents.

Experiment 5: pH measurements of vacuole sap

When the pH microsensor was forced into the vacuole of
C. wailesii, generally the protoplast collapsed very rapidly.
At an ambient F/2 pH between 7.5 and 8.7, the mean vacuolar
pH was 5.9–6.0, and the lowest values between pH 5.44
and 5.69 (Fig. 9). Only at an average ambient pH of 7.1, the
average vacuolar pH of 5.5 was lower (lowest value
pH 5.24).

Discussion

pH tolerance and dynamics

To investigate the response of microalgae upon changes in
their physico-chemical environment most commonly batch
cultures are used. It is assumed that cells growing in the
same culture have more or less the same physiological
properties. In batch cultures of C. wailesii, the pH increased

Fig. 5 Surface pH of Coscinodiscus granii cells at diVerent pH values
of ambient seawater, measured with pH microsensors
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over time and reached a maximum of approximately
pH 8.8, whereas C. granii cultures tolerated a maximum pH
of 9.1. When C. wailesii were transferred into culture
medium with a slightly higher pH value of 9.5, all cells died
within 1–2 days. This indicates that the maximum pH
reached in a Coscinodiscus culture is the maximum pH tol-
erated by this species. In cultures of the antarctic diatom
Chaetoceros gracile the maximum pH was 10.3 (Plettner,
pers. com.) which corresponds to pH values as high as 9.9
in antarctic sea ice brine (Gleitz et al. 1995). This conWrms
the data compiled by Hansen (2002) that the maximum pH
values tolerated by diatoms and other algal groups are spe-
cies speciWc.

For P. diadema apparently a critical »pH 8.8 exists,
above which the Xagellates do not survive. Since the pH of
natural seawater will not exceed this value, even during
phytoplankton mass developments, this pH limitation will
not aVect the viability of P. diadema under natural condi-
tions.

When in the experimental cultures all Coscinodiscus had
been killed by Pirsonia and no photosynthetic activity
remained, the pH of the medium decreased as expected.
However, in seawater adjusted to an initial pH of 8.7, the
pH decreased over 11 days slowly by 0.4 pH units, whereas
in infected cultures the pH decreased more rapidly, i.e.
0.4 pH units within 4 days.

Vacuolar pH

Previous experiments had shown that P. diadema are
chemoperceptive, i.e. Xagellates attracted to host cells,
were able to distinguish between host species, and preferred
already infected diatoms over uninfected cells (Kühn 1997,
1998). A new observation was that Xagellates rapidly swam
away when C. wailesii were crushed manually. This strong
negative chemosensory response indicated that P. diadema
could also sense hydrogen ion concentrations. When a mic-
rosensor was pushed into the vacuole of C. wailesii this led
to a mechanical destruction of the protoplast within a more
or less undamaged frustule (e.g. Kühn and Brownlee 2005).
Nonetheless, cytoplasm (including vacuole content) was
rapidly mixed with culture medium. Since the pH of the
culture medium was higher than the pH of the vacuole, the
pH measured inside the frustule will tend to overestimate
the vacuolar pH. At an ambient pH of 7.1, the lowest vacu-
olar pH measured was pH 5.2. In contrast, at an ambient
pH 8.7, the lowest value for the vacuolar pH was 5.6. These
results correspond with the results of Kesseler (1967), who
used indicator paper and estimated the pH of C. wailesii
cell sap to be around 5. This vacuolar pH of »5 is relatively
high compared to e.g. pH <1 in the vacuole of the marine
macroalga Desmarestia viridae (McClintock et al. 1982).
pH microsensors cannot be used to determine the vacuole
in algae with high turgor: when the microsensor was
pressed into the vacuole of Chara sp. (Characeae), the pH
sensitive LIX-matrix at the microsensor tip was very rap-
idly pushed back into the shaft by the cell turgor (not
shown). However, this has never occurred in Coscinodis-
cus, which conWrms observations by Kühn and Brownlee
(2005) that the turgor of Coscinodiscus is low.

EVect of pH on infection

Since P. diadema did not survive pH above 8.8, it appears
reasonable that Xagellates should respond with a negative
chemokinetic response to high pH. The pH microsensor

Fig. 8 pH on frustule of infected and non-infected Coscinodiscus
granii cells at diVerent pH of F/2. The number of measurements (n) is
given at the base of the bar
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experiments showed that at natural pH conditions of
pH 8.0–8.3, the pH at the frustule of most Coscinodiscus
cells was approximately up to 0.4 units higher than the
ambient seawater. Only in 2–3% of the C. granii cells the
pH on the frustule exceeded that of the seawater by up to
0.7 pH units, and reached maximum values of pH 8.95. If
P. diadema actively avoids high pH, obviously these indi-
vidual diatoms should not get infected. Previous experi-
ments had shown that about 1% of C. granii cells remained
uninfected by P. diadema for some time (Kühn 1998),
which corresponds with the results of the present study.
Apparently, very high pH values on the frustule deter
Pirsonia from infecting. Our experiments also showed that
Xagellates preferred diatoms with low surface pH. Interest-
ingly, the pH diVerence between infected and uninfected
cells increased with the pH increase of seawater. This sup-
ports the hypothesis that P. diadema selects host diatoms
according to their photosynthetic activities. During phyto-
plankton blooms the pH of natural seawater can increase to
pH 8.7. In this case, the pH on the frustule of Coscinodiscus
easily may reach pH 8.9 (we measured maximum values of
pH 9.5; publication in preparation). These cells will, at least
temporarily, be avoided by Pirsonia.

Richardson and Stolzenbach (1995) showed by means of
a chemical reaction (extracellular reaction of oxidised man-
ganese with the dye leukoberbelin blue) that individual
phytoplankton cells changed the pH of their microenviron-
ment by photosynthesis. They also found out that the size
of the phycosphere depended on the cell size. A pH
increase up to 8.6 has been found in the microenvironment
of foraminifera due to the photosynthetic activity of their
symbiotic diatoms (Köhler-Rink and Kühl 2000).

It is general knowledge that phytoplankton cells release
amino acids and carbohydrates and thus produce extracellu-
lar microenvironments or phycospheres (Hellebust 1974;
Fogg 1983). Coscinodiscus has been reported to contain
high internal concentrations of amino acids, which are
released as well as carbohydrates (Admiraal 1984; Martin-
Jézéquel et al. 1988; Malej and Harris 1993). If the exuda-
tion of individual Coscinodiscus cells depends on their
photosynthetic activity, a high surface pH on cells could
correlate with an increased excretion of organic substances
noxious to P. diadema.

Concept of individuality of diatom cells

It is generally assumed that diatom populations are a
homogenous assemblage of identical cells. Laboratory
experiments on the intraspeciWc selectivity of the parasitoid
P. diadema, however, indicated that host diatoms temporar-
ily diVered in their individual physiological properties and
hence the susceptibility to infections (Kühn 1997, 1998).
Coates and Park (2002) reported that, for reasons unknown,

some specimens of the mixotrophic dinoXagellate host
Karlodinium micrum were apparently resistant to infection
by the parasitic dinoXagellate Amoebophrya. In the Weld,
encounters between parasitoids and potential host are
always encounters between individual organisms, and the
current state of one partner may decide about the survival
of the other. For example, fully fed or starved parasitoids
may not infect diatoms. The “Wtness” of individual diatom
cells, however, is more diYcult to assess.

In natural populations (and most laboratory cultures)
diatom growth is not synchronous so that most cells are at
diVerent stages of the cell cycle. So far, there is no indica-
tion on how the life cycle may aVect the physiological
properties of individual cells. Chisholm et al. (1980)
reported a large non-genetic variability in generation times
in clonal diatom populations and concluded “that popula-
tion growth rates do not reXect the experience of the
individual cells in the population”. The perception of
“individualism” among unialgal cultures was supported by
the observation of Du Preetz and Bate (1992) that some
individual cells of the diatom Anaulus discus were capable
of surviving prolonged darkness, whereas other cells died.
Based on diVerences in the integrity of the plasma mem-
brane Veldhuis et al. (2001) demonstrated a considerable
intraspeciWc variation in cell viability in diatom popula-
tions. DiVerential sinking of cells in diatom cultures was
reported by Brzezinski and Nelson (1988).

Here we have demonstrated that the pH on the frustule of
individual C. granii cells diVered by up to 0.7 units (mean
ambient pH 8.0–8.2), which strongly indicates variable
photosynthetic activities. Maximum surface pH values
were found in 1–3% of the diatom cells which is concor-
dant with the percentage of cells reported to be temporarily
resistant to infections (Kühn 1998). Photosynthetic oscilla-
tions were observed in less than 1% of the C. wailesii cells
examined (Kühn and Raven 2008). It was suggested that in
diatom populations the photosynthetic, physiological and
metabolic properties of individual cells diVered, at least
temporarily.

Even subtle diVerences between individual phytoplank-
ton cells could determine whether they become prey to het-
erotrophic organisms or not. Discriminant chemoperceptive
feeding behaviour in several protozoans was reviewed
by Verity (1991). Jacobson and Anderson (1996) stated
that, generally, feeding behaviour studies of heterotrophic
organisms, such as dinoXagellates, tend to neglect the phys-
iological condition of the food organism.

Conclusions

This study showed for the Wrst time that unicellular diatoms
in a batch culture diVer in their individual photosynthetic
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activities, as indicated by individual pH values on their
surfaces in the light. Monitoring the pH on the frustule of
individual diatoms for several days could reveal if
photosynthetic activities depend on diVerent stages in their
cell division cycles. Apparently, increased pH values on
Coscinodiscus frustules prevent the cells to be infected by
Pirsonia. In regard to their attractiveness for parasitoids or
predators small diVerences in the competitive Wtness could
determine whether individual microalgae survive or not.
It remains to be investigated if cells of chain-forming
diatoms, which divide synchronously, are homogenous in
their physiological properties.
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