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Abstract
Deep brain stimulation (DBS) is effective in reducing motor symptoms in Parkinson’s disease
(PD). However, objective methods for quantifying its efficacy are lacking. We present a principal
component (PC) -based tracking method for quantifying the effects of DBS in PD by using EMG
and acceleration measurements. Ten parameters capturing PD characteristic signal features were
initially extracted from isometric EMG and acceleration recordings. Using a PC approach, the
original parameters were transformed into a smaller number of PCs. Finally, the effects of DBS
were quantified by examining the PCs in a low-dimensional feature space. The EMG and
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acceleration data from 13 PD patients with DBS on and off, and 13 healthy age-matched controls
were used for analysis. Clinical evaluation of patients showed that their motor symptoms were
effectively reduced with DBS. The analysis results showed that the signal characteristics of 12
patients were more similar to those of the healthy controls with DBS on than with DBS off. These
observations indicate that the PC-based tracking method can be used to objectively quantify the
effects of DBS on the neuromuscular function of PD patients. Further studies are suggested to
estimate the clinical sensitivity of the method to different types of PD.

Index Terms
Deep brain stimulation (DBS); nonlinear methods; Parkinson’s disease (PD); principal
components (PCs); surface electromyography (EMG)

I. Introduction
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by four
primary symptoms: resting tremor, rigidity, bradykinesia and postural instability. Because
there is currently no definitive test for PD, the diagnosis is based on the presence of clinical
symptoms and the response to antiparkinsonian medications [1]. The most established scale
for assessing disability and impairment in PD is the Unified Parkinson’s Disease Rating
Scale (UPDRS) [2], which is based on subjective clinical evaluation of symptoms. A need
therefore exists to objectively quantify PD characteristics in order to improve the diagnosis,
define disease subtypes, monitor disease progression and demonstrate treatment efficacy [3],
[4].

Deep brain stimulation (DBS) is one method for PD therapy that uses high frequency pulses
to stimulate the subthalamic nucleus and associated brain regions. Although the mechanisms
of DBS action are unclear, correct electrode placement and stimulation programming may
improve motor symptoms (i.e. reduce tremor, rigidity and bradykinesia) and allow for a
reduction in antiparkinsonian medication doses [5]. To date, however, DBS stimulation
parameters are set by subjective evaluation of symptoms, and no physiological-based
quantitative measures are used to optimize the efficacy of DBS in reducing motor disorders
[6].

Surface electromyography (EMG) and kinematic measurements enable the objective
quantification of neuromuscular function and movement, and may therefore be used for
quantifying the effects of DBS, antiparkinsonian medication or other treatments. Previous
EMG-based studies have shown that the EMG characteristics of patients with PD may
change due to DBS and antiparkinsonian medication in at least three ways. First, the
dominant tremor frequency in the EMG spectrum is increased with DBS and medication [7],
[8]. Secondly, the coherence between EMG and acceleration (indicating tremor) is reduced
with DBS and medication during a resting condition (without mental or physical stressors)
and with backward counting [8], [9]. Thirdly, the duration and amplitude of the first agonist
burst is increased and the number of agonist bursts is reduced with DBS and medication
during rapid point-to-point movements of elbow [10] and ankle [11]. However, even the
combination of DBS and medication cannot normalize EMG burst characteristics [11].

Previous kinematic studies have shown that the motor function of patients with PD may
change due to DBS and antiparkinsonian medication also in at least three ways. First, the
amplitude and regularity of tremor are decreased during quiet and cognitive tasks [7], [8],
[9]. Secondly, the movement speed is increased during rapid point-to-point movements of
the elbow [10] and ankle [11]. And thirdly, the latency of movements is decreased in choice
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reaction time tasks [12]. According to [7], DBS is more effective than medication in
reducing tremor amplitude. However, even the combination of DBS and medication cannot
normalize the speed of movement [10], [11].

Previous studies have indicated that nonlinear and morphological methods of EMG and
acceleration analysis in combination with a principal component (PC) approach are
potentially useful for discriminating patients with PD from healthy persons [13], [14], [15],
[16]. This results from the fact that the EMGs of patients with PD differ from the EMGs of
healthy persons, showing spiky and recurring structures and the acceleration recordings
showing regularity. However, it has not been tested whether similar methods of nonlinear
dynamics and the PC-based approach are capable of quantifying the effects of DBS
objectively.

We present a PC-based tracking method for quantifying the effects of DBS in PD by using
EMG and kinematic analysis. Ten parameters capturing PD characteristic signal features
were initially extracted from isometric EMG and acceleration recordings. These signal
features were parameters of nonlinear dynamics, the coherence between EMG and
acceleration, and the amplitude of acceleration. Using the PC approach, the original
parameters were transformed into a smaller number of parameters i.e. PCs. Finally, the
effects of DBS were quantified by examining the PCs in a low-dimensional feature space.
The EMG and acceleration data from 13 PD patients with DBS on and off, and 13 healthy
age-matched controls were used for analysis. The effects of DBS on elbow flexion and
extension movements were analyzed separately.

The hypothesis of this study was that the developed method is capable of quantifying
objectively the effects of DBS on patients with PD. In that case, the measurement
characteristics of patients are more similar to the measurement characteristics of the healthy
controls with DBS on than with DBS off.

II. EMG and acceleration measurements
Twenty-six subjects participated in this study after giving their informed consent: 13
patients with PD (4 females and 9 males, age 67 ± 8 years) and 13 healthy age-matched
controls (7 females and 6 males, age 65 ± 8 years). The study was approved by the IRB
Boards of the Beth Israel Deaconess Medical Center, University of Massachusetts and
Kuopio University Hospital. The PD patients were treated with DBS and they were off-
medication (medications are listed in Table I) during the measurements. The exact
stimulation parameters were depending upon the patient and they were not registered
individually during the measurements. In all patients, the stimulation frequency was between
130 – 185 Hz, the pulse width between 60–90 μsec, the amplitude between 2 -4 V and the
electrode polarity monopolar or dipolar depending upon the patient. For the patients, the
EMG and acceleration measurements and the UPDRS examination were performed twice:
with DBS on (stimulator was turned on) and with DBS off (stimulator was turned off). The
total UPDRS motor score of them was 33 ± 9 with DBS on and 52 ± 12 with DBS off. The
controls were measured once. The clinical characteristics of the patients are provided in
Table I.

Two types of muscle contraction were examined: isometric contraction of biceps brachii
(BB) muscles (isometric task) and elbow flexion-extension movements (dynamic task).
During the isometric task, subjects were asked to hold their elbows at a 90° angle with their
palms up. The isometric contraction lasted for 30 seconds. During the dynamic task, subjects
were asked to perform elbow flexion and extension movements in vertical direction with
full-range of motion in two-second cycles with their palms up. The movement was not
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restricted and the actual durations of the movement cycles were checked afterwards by using
the measured acceleration data. It was observed that most of the patients could not reach the
asked movement speed with DBS off. The number of flexion-extension cycles was between
8 – 15. Additional weights were not used in either tasks, as earlier studies have indicated
that PD related EMG signal features are most significant during unloaded conditions [16].

During both tasks, surface EMGs were measured continuously from BB muscles and tri-
axial accelerations of forearms simultaneously from the palmar side of subject’s wrists.
EMG and acceleration measurements were performed by using ME6000 -biosignal monitor
(Mega Electronics Ltd., Kuopio, Finland) with 1000 Hz sampling frequency. EMG
registration was performed by using disposable Ag/AgCl electrodes (Medicotest, model
M-00-S, Ølstykke, Denmark). The electrodes were attached bilaterally over the belly of BB
muscles with 3 cm inter-electrode spacing (center to center) in accordance with previous
studies [13], [14], [15], [17]. The reference electrodes were placed 6 – 7 cm laterally from
the recording electrodes. Raw EMG signals were analogically band-pass filtered with an
anti-aliasing filter (Butterworth, band-pass 1 – 500 Hz) and amplified (differential amplifier,
CMRR > 130 dB, total gain 1000, noise < 1 μV). The acceleration registration was
performed by using triaxial accelerometers (Mega Electronics Ltd., range ±10 g). The
signals were analogue-to-digital converted (14-bit AD converter) and stored in a PC for later
analysis.

III. Signal analysis
It has been shown previously that both the isometric and the dynamic EMG and acceleration
measurements can be used for discriminating between PD patients and healthy persons [14],
[15]. It depends on the studied patient group, which one of them works better in
characterizing PD related features in the measurements. In this study, the main focus in the
analysis was to introduce a method for quantifying the effects of DBS by using isometric
EMG and acceleration recordings. The analysis steps for the isometric task are described in
section III-A. The dynamic EMG and acceleration recordings were analyzed for
demonstration as described in section III-B.

A. Analysis of isometric task
For analysis, fifteen seconds long segments of EMG and acceleration were chosen from the
middle of the isometric task. One isometric contraction was measured and analyzed for each
control and two isometric contractions for each patient (one with DBS on and one with DBS
off). The EMG recordings were visually inspected and did not contain peaked artifacts.
These peaked artifacts could be caused by involuntary movements that are present when the
forearm is not supported on a surface. The resultant of the three acceleration components
was used in the analysis. The low-frequency trends were removed from both signals by
using the smoothness priors method, which is a time-varying high pass filter (see [18] for
details). The high-pass cut-off frequencies were 10 Hz for EMG and 2 Hz for acceleration.
In addition to trend removal, EMG signals of all subjects were low-pass filtered by using a
ninth-order Butter worth low-pass filter with 110 Hz cut-off frequency. This low-pass
filtering removed the DBS artifact (basically in the frequency band 130–185 Hz) and its
harmonics from the signals.

1) EMG and acceleration features—Five signal features were extracted from EMG and
acceleration measurements of both sides of the body (resulting in 10 features). These
features were:

• correlation dimension of EMG (D2,r and D2,1)

• recurrence rate of EMG (%RECr and %REC1)
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• root mean square amplitude of acceleration (RMSr and RMS1)

• sample entropy of acceleration (SampEnr and SampEn1)

• coherence between EMG and acceleration (Cohr and Coh1)

The sides of the body are denoted here with r (right) and l (left).

Two parameters of nonlinear dynamics were extracted from EMG signals: the correlation
dimension and the recurrence rate. %REC was calculated as described in [14] and [19]. As a
result, %REC is a scalar parameter that measures the percentage of recurring structures in a
time series. Correlation dimension was calculated as described in [14] and [20]. D2 is a
scalar parameter that measures the complexity of a time series. Patients with PD have been
previously connected with higher %REC (more recurring structures in EMG) and lower D2
(less complex EMG) than healthy persons [14].

Two of the parameters were extracted from acceleration signals: the root mean square
amplitude and the sample entropy. RMS measures the amplitude of tremor and SampEn its
complexity. SampEn is a method of nonlinear dynamics and it measures the negative natural
logarithm of the conditional probability that two sequences in a time series that are similar
for m points are similar for m+1 points (see [21] for details). Patients with PD have been
previously connected with higher RMS (higher amplitude of tremor) and lower SampEn
(more regular tremor) than healthy persons [14].

Coherence between EMG and acceleration was calculated to measure similarities in their
power spectra. It was estimated with Welch’s averaged periodogram method (window
length 2048 ms and 75 % overlap). The coherence area above 0.99 confidence limit (in the
frequency band 0–50 Hz) was used for further analysis.

2) Principal component approach—The ten signal features (detailed in section III-A1)
and the principal component approach [22] were used for analysis. PC approach was used
for two things: 1) to transform the original possibly correlated variables into uncorrelated
variables and 2) to reduce the number of variables while keeping as much information as
possible about the original variables.

First, the ten calculated signal parameters were sequentially placed and normalized (to zero
mean and unit SD of controls) to form feature vectors for all subjects. One feature vector
was formed for each control and two feature vectors for each patient: one with DBS on and
one with DBS off. The dimension of the feature vectors was then reduced by applying the
PC approach. In that approach, the feature vectors were decomposed into weighted sums of
orthogonal basis vectors where the scalar weights were called the principal components.
These PCs were the new uncorrelated features.

The basis vectors were chosen here by using the feature vectors of healthy controls. With
this choice, we scaled the features of healthy controls inside one SD (the healthy control
group formed the normal group for later comparison). For solving the basis vectors, we
formed a feature matrix that contained the feature vectors of healthy controls in its columns.
Then, we calculated the correlation matrix of the feature matrix and solved the eigenvectors
from it. Five eigenvectors corresponding to the five largest eigenvalues were chosen as the
basis vectors. These five eigenvectors contributed to 95 % of the total variation in the
feature vectors of all controls. Thus, each feature vector could be quite accurately modeled
as a weighted sum of these five eigenvectors. Finally, we solved the PCs in the least squares
sense for all controls and patients with DBS on and off.
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The best PCs to differentiate between DBS on- and off-states and between controls and
patients were chosen for further analysis. These PCs are presented in a two-dimensional
feature space and compared between DBS on- and off-states and between healthy controls
and patients. According to the hypothesis of this study, in the feature space the patients will
be closer to the group of healthy controls with DBS on than with DBS off.

B. Analysis of dynamic task
The EMG and acceleration signals, which were measured during elbow flexion - extension
movements, were filtered in the same way as the recordings from the isometric task. Eight
flexion and extension phases of movement were chosen for analysis, as this was the
minimum number of flexion-extension cycles completed by all subjects. Two parameters
were extracted from the dynamic recordings for demonstration: the recurrence rate of EMG
and the sample entropy of acceleration. These parameters were selected from a larger set of
variables that have been used previously for characterizing PD related features in the
dynamic EMG and acceleration recordings [15]. They were calculated for the flexion and
extension phases of movement as described in [15] and denoted here as %RECf, %RECe,
SampEnf and SampEne (f stands for flexion and e for extension). In addition, the EMG and
acceleration recordings were compared between DBS on- and off-states by visually
examining signal morphology.

IV. Results
A. Clinical UPDRS motor scores

In all patients, the total UPDRS motor score was lower with DBS on than with DBS off (see
Table III for details). However, the reduction rate was highly individual. The rest tremor
scores decreased for most (10/13) of the patients and the rigidity scores for all patients in
either side of the body. The clinical scores describing disabilities in hand movements
decreased for all patients in either side of the body.

B. Measurements and signal features of isometric task
The EMG and ACC measurements during the isometric task for one healthy control and one
PD patient with DBS on and off are presented in Fig. 1. One can observe that the EMGs of
the patient differ from the EMGs of the healthy control by containing recurring EMG bursts.
These bursts are likely due to motor unit synchronization in PD [23] and they are more
apparent with DBS off than with DBS on. The accelerations of the patient appear to contain
more regular oscillation as compared to the control. This oscillation is due to tremor in PD
and the amplitude and regularity of it are higher with DBS off than with DBS on.

Ten features were extracted from the EMG and acceleration measurements of all subjects as
described in section III-A1. The feature values for the one control and the one patient with
DBS on and off are presented in Fig. 2. One can observe that the healthy control has lower
values in %REC, RMS and Coh, and higher values in D2 and SampEn. Taken together,
these observations indicate that the EMG and acceleration signals are more complex, and the
amplitude of acceleration and the coherence between EMG and acceleration are lower for
the control.

For the patient, D2,r and SampEn are higher, and %RECr, RMS and Coh are lower with
DBS on than with DBS off. That is, the DBS off -state is characterized with more regular
signals, higher amplitude of acceleration and higher coherence. In the EMG signal from the
left BB, the differences between the DBS on- and off-state are not as pronounced. However,
the differences in the acceleration features between the DBS on- and off-state are clear in
both the right and the left side arm.
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The mean±SD values of the signal features for the control group and for the patient group
with DBS on and off are presented in Table II. One can observe that the results in Table II
support the observations made from Fig. 2. The standard deviations of the feature values are
high for the patient group especially with DBS off. This results from the fact that the patient
group was very heterogeneous. Therefore, it was reasonable to study the patient
measurements individually instead of focusing on group comparisons.

C. Principal components
The PCs were solved for all subjects as described in section III-A2 by using the solved
eigenvectors. It was observed that the first (PC1) and the third PC (PC3) work best in
discriminating between the DBS on- and off-states, and between the patients and the healthy
controls. The first eigenvector is the best mean square fit for the feature vectors of healthy
subjects. Therefore, PC1 (i.e. the weight of the first eigenvector) describes the amplitude of
EMG and acceleration features in relation to the mean of healthy subjects. By visually
inspecting the morphology of the third eigenvector, we could recognize, that PC3
emphasizes differences between right and left side variables. In fact, the unilateral onset and
persistent asymmetry of symptoms support the diagnosis of PD in relation to other similar
diseases [1].

The third PCs with respect to the first PCs of 13 healthy controls and 13 patients with DBS
on and off are presented in Fig. 3. The PC values of 12 patients are closer to the center of
healthy controls (point 0,0) in the feature space with DBS on than with DBS off. That is, the
EMG and acceleration feature values of them get closer to the controls and the side
differences get smaller when the stimulator is on. The distances between the DBS on- and
off-states in the feature space are highly individual. The distances to the center of healthy
controls are detailed in Table III.

For the two patients (patients 4 and 5 in Table III) in Fig. 3(a), the distances between the
DBS off- and on-states are large. Correspondingly, the reductions in their total UPDRS
motor scores due to DBS are strong (59 % and 41 %). DBS seems to relieve their motor
disorders effectively. Especially tremor is relieved for patient 5 and especially bradykinesia
for patient 4. In Fig. 3(b), the EMG and acceleration features of other 11 patients get closer
to controls when the stimulator is on. There are four patients (patients 7, 8, 12 and 13) that
get near the controls with DBS on. For them, the resting tremor disappears with DBS on. In
the same figure, there is one patient (patient 6) that is further from controls with DBS on
than with DBS off. The patient is characterized with tremor (acceleration signal) that has
higher amplitude and regularity with DBS on than with DBS off. In addition, the EMG
recordings of the patient are more complex (lower %REC and higher D2) with DBS off than
with DBS on. In clinical examination, both the total UPDRS motor score and the tremor
score of the patient were defined higher with DBS off than with DBS on. For this patient,
the EMG and acceleration results contradict the clinical assessment.

D. Dynamic task
We analyzed elbow flexion and extension movements as described in section III-B. It was
observed that there were DBS induced changes in the EMG and acceleration recordings for
a subgroup of patients (patients that have bigger problems in performing movement tasks)
but not for all patients. The EMG and acceleration measurements during two elbow flexion -
extension movements for two of these patients (patients 5 and 10) with DBS on and off are
presented in Fig. 4. Note that the acceleration recordings were high-pass filtered with 2 Hz
cut-off frequency. In addition, the calculated recurrence rates of EMG and the sample
entropies of acceleration in flexion and in extension are presented for these two patients in
the same figure.
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It is observed in Fig. 4 that the EMG recordings of both patients differ between the DBS on-
and off-states by containing more recurring EMG bursts and the acceleration recordings by
containing more regular oscillation with DBS off. It is also observed in Fig. 4 that the
recurrence rates of EMG are lower and the sample entropies higher with DBS on for these
two patients. The oscillation in acceleration is likely due to action tremor and rigidity in PD.
The mean±SD values of the variables for the healthy control group were: %RECe = 18±7,
%RECf = 12±7, SampEne = 0.28±0.05 and SampEnf = 0.40 ± 0.07. For the two patients in
Fig. 4, the parameter values are closer to the control mean values with DBS on than off.

In the dynamic task, there were five patients (patients 4, 6, 7, 9 and 12) that did not show
decrease in %REC or increase in SampEn with DBS on. These patients were characterized
with lower hand movement scores in the clinical UPDRS. That is, they could better perform
hand movement tasks (such as finger tapping and open-close movements of hands) in the
clinical examination.

V. Discussion
We presented a PC-based tracking method for quantifying the effects of DBS in PD by using
surface EMG and acceleration measurements. The method was tested with EMG and
acceleration data from 13 PD patients with DBS on and off, and 13 healthy age-matched
controls.

The results of the isometric task showed that the signal characteristics of 12 patients were
more similar to the signal characteristics of the healthy controls with DBS on than with DBS
off. Observed differences in the EMG and acceleration signals between patients and
controls, and between DBS on- and off-states suggested three things. First, the EMG
measurements of patients changed into more complex and contained less recurring structures
due to DBS. These recurring structures are likely due to motor unit synchronization in
muscles, which is characteristic for PD [23]. Effects of DBS have not been studied earlier by
analyzing nonlinear EMG features. Secondly, the amplitude and regularity of acceleration
measurements and the coherence between EMG and acceleration reduced due to DBS.
These findings refer to reduction in tremor and are consistent with earlier studies [7], [8],
[9]. And thirdly, the side differences between left and right side variables reduced with DBS.
The asymmetry of symptoms is characteristic for PD [1].

The distances between the DBS on- and off -states in the feature space were highly
individual. Likewise, the improvements in clinical scores were highly individual. However,
strong changes in the total UPDRS motor score did not always result in strong changes in
the analyzed PCs and vice versa. This may be due to the fact that the total UPDRS motor
score [2] is a complicated score that consists of a large number of subscores. These
subscores are defined for different areas of the body in different movement conditions. In
this study, we analyzed only BB muscle and arm movements. According to the results,
hardly any of the patients reached the controls in the feature space with DBS on. In fact,
previous studies have shown that the analyzed EMG and acceleration features are potentially
useful for discriminating between PD patients and healthy persons regardless of treatment
with medication [14], [15]. The one patient, to whom we measured higher amplitude and
more regular tremor with DBS on than with DBS off, was clearly further from the healthy
controls with DBS on. In the clinical examination, his tremor score was defined higher with
DBS off than with DBS on. This shows that the acceleration measurement can provide
different information about the tremor than the clinical eye of a doctor.

It was observed that the PC-based tracking method was more sensitive to PD with associated
tremor. The correlation between the rest tremor scores and the distance to healthy controls in
the feature space was significant (Spearman correlation, p < 0.05). Because tremor occurs in
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80–90 % of PD cases [24] and is effectively reduced with DBS [5], our analysis method may
be suitable for many patients. However, if the patient’s main symptom is bradykinesia, the
effects of DBS may not be observed by analyzing EMG and acceleration recordings from
isometric tasks. In that case, the analysis of dynamic tasks may prove more sensitive to the
effects of DBS on the patient’s motor function.

The results of the dynamic task indicated that there were differences in the signal
complexity between the DBS on- and off-states for a subgroup of patients. Therefore, we
should not ignore the relevance of the dynamic analysis when quantifying the effects of
DBS in the future. In this study, the dynamic EMG and acceleration recordings could not
differentiate between the DBS on- and off-states as clearly as the isometric recordings. In
the dynamic task, there were five patients that did not show PD characteristic increase in the
signal complexity with DBS on. These patients had milder problems in the hand movements
also in the clinical examination. One reason for not so clear differences between the DBS
on- and off-states may be the fact, that the movement of the forearm was not restricted in
this study. That is, the subjects were asked to perform movements in two-second cycles (one
second for flexion and one second for extension), but most of the patients could not reach
the asked movement speed with DBS off. Therefore, the variability between different
flexion-extension cycles was high and the comparison between the DBS on-and off-states
was difficult. Another explaining factor is that aging itself causes higher EMG burst
activities [25] and loss of acceleration complexity [26] during movement. Therefore, the
signal features associated with aging may have mixed with the signal features associated
with PD.

One essential thing to remember in the analysis biosignal measurements from patients with
DBS is the removal of DBS artifact because its filtering may affect the calculated signal
parameters. In the case of EMG, the DBS artifact has often been removed by low-pass
filtering the rectified signal with a low (20–60 Hz) cut-off frequency [6], [8], [9], [10], [11].
In this study, we wanted to keep the effects of filtering on the EMG signals as minimal as
possible. We tried several filtering techniques of notch filtering and low-pass filtering. By
comparing the original EMG signals with the filtered EMG signals and the original EMG
spectra with the spectra of the filtered EMG, we observed that the used filtering technique
worked best in removing the DBS artifact from this data without disturbing the EMG signal
morphology. The filtering was performed in the same way for all subjects (controls and
patients with DBS on and off) in order to get comparable results. The low-pass cut-off
frequency 110 Hz was the highest value that removed the stimulation artifact from the
measurements of all subjects.

When discriminating between subjects or between different states of the subjects (such as
between DBS on and off) on the basis of biosignal measurements there are often many
signal parameters that can capture essential features in the signals. Each of the parameters
describes one feature (e.g. the amplitude, complexity, etc.) in the measurements. It could be
possible to examine the statistics of single parameters. However, often a combination of
several parameters works better in discrimination and a dimension reduction technique, such
as the PC approach, can be used to capture the essential and ignore the irrelevant
information in the combination of variables. It must be noted that prior to the clinical use of
the presented method we should train the PC-based method with a larger number of subjects
and derive PD related indexes from the PCs. For example, one possible index could measure
the asymmetry of neuromuscular function in PD patients. In clinical use, we could then use
the known PD related indexes for quantifying objectively the effects of DBS treatment in
PD.
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As a conclusion, isometric EMG and acceleration measurements are potentially useful for
quantifying the effects of DBS on the neuromuscular function of PD patients. These
measurements in combination with the PC-based tracking method can be used to quantify
the effects of DBS objectively, cost-effectively and non-invasively. In further studies, the
presented approach could be tested in helping the adjustment of DBS settings. In addition,
the sensitivity of the presented method to different types of PD should be estimated more
carefully in further clinical studies.
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Fig. 1.
EMG and acceleration recordings of one PD patient with DBS off (left) and on (middle) and
one healthy control (right) during the isometric contraction of BB muscles.
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Fig. 2.
EMG and acceleration feature values for one healthy control (asterisk) and one PD patient
with DBS on (plus) and off (circle).
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Fig. 3.
The third PCs with respect to the first PCs of 13 healthy controls (asterisk) and 13 PD
patients with DBS on (plus) and off (circle). The patients were divided into two figures, but
the controls are the same in both figures. (a) Patients 4, 5 and controls. (b) The remaining
patients and controls. The DBS on and off-states of each patient are connected with a line.
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Fig. 4.
The EMG and acceleration measurements during two elbow flexion-extension movements
for two PD patients with DBS on and off. The recurrence rates of EMG and the sample
entropies of acceleration for the flexion and extension phases of movement with DBS on
(plus) and off (circle) in bottom figures.
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TABLE II

Feature values (mean±SD) for healthy controls and for pd patients with dbs on and off.

Signal feature Controls PD patients with DBS on PD patients with DBS off

D2 r 6.9±0.8 6.1±1.0 5.4±1.6

D2,1 6.7±0.9 5.7±1.4 5.4±2.1

%RECr 5.7±3.4 9.2±5.1 14.9±13.6

%REC1 6.8±3.9 12.7±7.6 15.3±14.9

RMSr · 103 0.4±0.1 0.8±0.4 2.5±4.6

RMS1 · 103 0.4±0.1 1.0±0.9 6.0±12.4

SampEnr 1.3±0.1 0.9±0.3 0.7±0.3

SampEn1 1.4±0.2 1.0±0.4 0.8±0.4

Cohr 0.6±0.3 1.3±0.7 1.5±1.4

Coh1 0.7±0.5 1.4±0.8 2.2±1.5

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 December 26.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Rissanen et al. Page 21

TA
B

LE
 II

I

T
ot

al
 u

pd
rs

 m
ot

or
 s

co
re

s,
 r

es
tin

g 
tr

em
or

 s
co

re
s 

an
d 

di
st

an
ce

s 
fr

om
 th

e 
ce

nt
er

 o
f 

he
al

th
y 

co
nt

ro
ls

 (
D

is
t)

 w
ith

 d
bs

 o
n 

an
d 

of
f.

P
at

ie
nt

 n
o.

U
P

D
R

S 
of

f
U

P
D

R
S 

on
R

ig
ht

 t
re

m
or

 o
ff

R
ig

ht
 t

re
m

or
 o

n
L

ef
t 

tr
em

or
 o

ff
L

ef
t 

tr
em

or
 o

n
D

is
t 

of
f

D
is

t 
on

1
56

43
2

2
2

1
26

25

2
64

48
2

1
3

2
32

12

3
59

40
2

1
2

2
7

5

4
34

14
1

0
3

2
18

0
30

5
71

42
4

1
3

0
28

9
4

6
38

31
2

1
1

0
5

12

7
47

28
1

0
1

0
6

2

8
57

33
2

0
1

0
6

4

9
43

34
1

1
1

1
13

11

10
43

24
1

0
0

0
11

10

11
44

30
0

0
0

0
6

5

12
62

38
1

0
2

0
5

4

13
43

30
0

0
0

0
5

3

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 December 26.


