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Abstract
Tissue-specific gene expression is thought to be one of the major forces shaping mammalian gene
order. A recent study that used whole-genome chromosome conformation assays has shown that
the mammalian genome is divided into specific topological domains that are shared between
different tissues and organisms. Here, we wanted to assess whether gene expression and regulation
are involved in shaping these domains and can be used to classify them. We analyzed gene
expression and regulation levels in these domains by using RNA-seq and enhancer-associated
ChIP-seq datasets for 17 different mouse tissues. We found 162 domains that are active (high gene
expression and regulation) in all 17 tissues. These domains are significantly shorter, contain less
repeats, and have more housekeeping genes. In contrast, we found 29 domains that are inactive
(low gene expression and regulation) in all analyzed tissues and are significantly longer, have
more repeats, and gene deserts. Tissue-specific active domains showed some correlation with
tissue-type and gene ontology. Domain temporal gene regulation and expression differences also
displayed some gene ontology terms fitting their temporal function. Combined, our results provide
a catalog of shared and tissue-specific topological domains and suggest that gene expression and
regulation could have a role in shaping them.
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Introduction
Gene order was initially assumed to be random. Over time, mounting evidence has shown
that gene order is not random, but rather guided by gene expression (Hurst et al. 2004). This
has been observed not only in vertebrate genomes but also in plants (Field and Osbourn
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2012) and bacteria (Willenbrock and Ussery 2004). Studies show that the genomic location
of a gene in linear DNA sequence and its position in the three-dimensional nucleus is
important for its regulation (Hurst et al. 2004; Willenbrock and Ussery 2004). Genomic
regions that contain the most actively expressed genes may also be those of the highest gene
density (Versteeg et al. 2003) and exist in clusters, such as the case of housekeeping genes
(Lercher et al. 2002). These clusters could contain genes that are expressed in a tissue-
specific (Reymond et al. 2002; Mégy et al. 2003; Hurst et al. 2004) or pathway-specific (Lee
and Sonnhammer 2003) manner, or the opposite, with genes being organized in specific
domains because of the need to silence them in specific tissues (Lunyak et al. 2002).
Genomic location can have important implications on transgene integration (Milot et al.
1996), development (Akashi et al. 2003), or human disease (Ahituv et al. 2005; Kleinjan and
van Heyningen 2005; Lettice et al. 2011; Ahituv 2012). For example, human chromosomal
aberrations can change the location of functional sequences, either genes and (or) regulatory
elements, which can subsequently lead to human disease (Ahituv et al. 2005; Kleinjan and
van Heyningen 2005; Lettice et al. 2011; Ahituv 2012).

With advances in sequencing technologies, chromatin conformation capture (3C) assays can
now be carried out in a genome-wide manner using technologies such as Hi-C (Lieberman-
Aiden et al. 2009) or chromatin interaction analysis followed by paired-end tag sequencing
(ChIA-PET) (Fullwood et al. 2009). Using Hi-C assays, universal mammalian topological
domains were determined by analyzing mouse embryonic stem (ES) cells, mouse cortex,
human ES cells, and human IMR90 fibroblasts (Dixon et al. 2012). This led to the
subsequent identification of shared domain boundaries between these different organisms,
cell lines, and tissues. The boundaries themselves were found to be enriched for transfer
RNAs, short interspersed elements (SINEs), housekeeping genes, and binding of the
insulator-associated CCCTC-binding factor (CTCF). These boundaries are thought to
separate the genome into megabase-sized regions that have local chromatin interactions and
were termed topological domains.

A recent study produced a map of nearly 300 000 murine cis-regulatory sequences for 17
diverse mouse tissues (Shen et al. 2012). These tissues comprise 13 adult tissues (8 weeks
old mice) that include bone marrow, cerebellum, cortex, heart, intestine, kidney, liver, lung,
olfactory bulb, placenta, spleen, testis, thymus; and 4 embryonic tissues (embryonic day
14.5) that include whole brain, heart, limb, and liver. Using RNA-seq and chromatin
immunoprecipitation followed by deep sequencing (ChIP-seq) for RNA polymerase II
(polII), the insulator-binding protein CCCTC-binding factor (CTCF), and three chromatin
modification marks: histone H3 lysine 4 trimethylation (H3K4me3), histone H3 lysine 4
monomethylation (H3K4me1), and H3 lysine 27 acetylation (H3K27ac) (Shen et al. 2012)
the regulatory landscape of these different tissues and time points was determined. These
assays provide a unique resource for a deeper examination of gene expression and regulation
within these topological domains.

To classify the aforementioned universal topological domains (Dixon et al. 2012), we
analyzed the gene expression (RNA-seq) and gene regulation (ChIP-seq on H3K4me1 and
H3K27ac) in each of these domains for these 17 different mouse tissues (Shen et al. 2012).
We found different types of domains, such as those that are extremely active with high gene
expression and regulation or ones that are inactive with low gene expression and regulation.
Several of these domains were shared between tissues, and some were tissue-specific. For
the shared active domains, we observed a significant enrichment for housekeeping genes,
and for the inactive ones we observed enrichment for DNA repeats and gene deserts.
Analysis of similar tissues both in embryonic and developmental time points showed a
difference in active domains that somewhat coincided with their temporal function. Our
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results assign functional annotations for topological domains and suggest that gene
expression and regulation might be involved in shaping them.

Materials and methods
Establishment of common tissue domains

We identified common domains by using previously characterized shared Hi-C boundaries
(Dixon et al. 2012). From this dataset, we took 1159 shared topological boundaries
identified in mESC and mouse cortex Hi-C data. The central point of each boundary was
then used to generate the coordinates for these boundaries. It is worth noting, that in these
Hi-C domains, telomeric regions are not included and only 97.4% of the genome is covered.
In total, 1175 common domains were obtained by the shared boundaries.

RNA-seq analysis
RNA-seq bam files from 17 different mouse tissues was downloaded from http://
chromosome.sdsc.edu/mouse/download.html (Shen et al. 2012). We then used Cufflinks
(Trapnell et al. 2010), using the mm9 genome assembly and default parameters, to calculate
FPKM for each tissue and each replicate. Analyses of the replicates using R for the same
tissue showed a good correlation (average correlation coefficient was 0.9706; Pearson test)
(supplementary data, Fig. S21). The FPKM for each tissue is calculated as the average of the
two replicates.

ChIP-seq analysis
We downloaded H3K27ac and H3K4me1 ChIP-seq data for the 17 mouse tissues from the
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE29184) (Shen et al. 2012). All the reads were aligned to mm9 using Illumina’s
ELAND software with a seed length of 25 bases and up to 2 mismatches. Only sequences
mapping to exactly one location were used for analysis. If multiple sequences aligned to the
same location, all but one of the sequences were discarded (Shen et al. 2012). By counting
the number of reads that fell within each 100 base pair bin, the RPKM value was normalized
as the tag counts in each bin (Shen et al. 2012). For each tissue we looked for the region that
had an RPKM > 0 in both H3K4me1 and H3K27ac and then used the H3K27ac RPKM in
those regions for further analysis.

Topological domain scoring
We defined a gene expression or regulation score of each topological domain to be

(1)

P(l, λ) is a Poisson distribution parameterized by average coverage in a domain, where

(2)

(3)

1Supplementary data are available with the article throught the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/
gen-2013-0111.
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Dw is the width of a current domain, and Gw is the genome effective length for all the
domains.

ri are the FPKM or RPKM for the effective region or gene with the width dwi. Given this
definition, the scores of a domain represent the negative logarithm of the possibility of
enrichment of RPKM and FPKM ChIP-seq and RNA-seq reads to hit a specific location in
the genome with equal probability. The higher the score, the less likely the observed profile
occurs by chance. We thus obtained two different scores for each tissue: gene expression
score and gene regulatory score. We then used a quartile method to categorize each score in
every tissue. We defined the lower quartile to be the lower 25% of the data (L) and the top
quartile to be the higher 25% (H). Density plots of these scores for all 17 tissues are shown
in supplementary Fig. S3.

GO term analysis
All the reference genes in each domain were pooled out and gene ontology (GO) analysis
was done using DAVID’s (Huang et al. 2009a, 2009b) default parameters. These parameters
generate an EASE score that is based on a Fisher’s exact test, only a bit more stringent. FDR
was used to correct for multiple testing. Significant p values for both EASE and FDR were
considered as those that were ≤0.05.

Results
Genome-wide analysis of gene expression and regulation in topological domains

We took advantage of topological domain boundaries generated from Hi-C data (Dixon et
al. 2012) to partition the genome to universal domains. For this purpose, we used the
topological domain boundaries established from Hi-C on mouse embryonic stem cells
(mESC) and cortex (Dixon et al. 2012). Using the common boundaries established in this
study (see Materials and methods), we defined 1175 common domains with an average
length of 2 megabases (Mb) and ranging in size from 40 kilobase to 22 Mb (supplementary
Fig. S1).

We next analyzed RNA-seq and ChIP-seq datasets on mouse tissues in these domains. For
consistency purposes, we decided to focus on the mouse ENCODE data (Dixon et al. 2012;
Shen et al. 2012), owing to it being generated from the same laboratory and having all
experiments (RNA-seq and ChIP-seq) preformed on matching tissues (bone marrow, whole
brain at embryonic day (E) 14.5, cerebellum, cortex, heart at E14.5, heart, intestine, kidney,
limb at E14.5, liver at E14.5, liver, lung, olfactory bulb, placenta, spleen, testis, and
thymus). For the RNA-seq datasets, we examined the two available replicates for each tissue
(these gave a significant correlation coefficient for all tissues that was on average 0.9706;
Pearson test; supplementary Fig. S2). We then calculated expression scores for each
topological domain in each tissue, based on its fragments per kilobase of exon per million
fragments mapped (FPKM) RNA-seq scores. The total score for each domain was
normalized based on domain size and ranked in order; high expressing and low expressing
domains in each tissue were defined as those in the top and low quartile, respectively (see
Materials and methods; supplementary Fig. S3; supplementary Table S1).

We then calculated the enrichment score of ChIP-seq peaks for the 17 different mouse
tissues from two histone modifications that mark active regions, H3K4me1 and H3K27ac.
Both H3K4me1 and H3K27ac were shown to mark enhancers (Barski et al. 2007;
Heintzman et al. 2009; Ernst et al. 2011). However, owing to previous reports that found
H3K27ac to mark active enhancers (Creyghton et al. 2010; Rada-Iglesias et al. 2011), we
only considered sequences that had an H3K27ac mark in our analysis. To be even more
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conservative in our definition of an active ChIP-seq mark, we only analyzed H3K27ac peaks
that also overlapped an H3K4me1 peak. Combining all the data from 17 tissues, we
observed that 85.23% of the H3K27ac peaks overlap H3K4me1 peaks (Fig. 1A). For each
domain in each of the 17 tissues, a regulatory score was calculated based on reads per
kilobase per million (RPKM) for H3K27ac overlapping H3K4me1 peaks (see Materials and
methods). Similar to gene expression scores, domains were ranked based on their scores; the
top and bottom quartiles were considered as having high and low gene regulation,
respectively (supplementary Fig. S4; supplementary Table S1).

Combined, these gene expression and regulation scores provided us with four types of
topological domains (Figs. 1B, 1C) that were defined in the following manner: (i) High gene
expression and regulation scores were termed HH. (ii) Low gene expression and regulation
scores were called LL. (iii) Domains that have high regulatory scores but a low gene
expression score were named HL. (iv) Domains that have low regulatory scores but high
gene expression scores were termed LH. The quantities and coordinates for these domains
can be found in supplementary Table S2. Because the total number of HL and LH domains
was extremely low, we focused our subsequent analysis only on HH and LL domains.

We next analyzed the various domain types for their overall similarity between the different
tissues (Fig. 1D). We found several tissues to have corresponding domain types. For
example, the bone marrow, spleen, and thymus had the largest number of domains that were
identical in their domain type (HH, LL, HL, or LH), probably because of their
immunological role. The tissues that were the least similar were the embryonic brain (E14.5
brain) and the adult liver, having only 641 similar domain types. The brain tissues, E14.5
brain, cerebellum, and cortex, were the tissues that were the most different from all other
tissues, having an average of 709 domains with a similar type to other tissues
(supplementary Fig. S5). The placenta was the tissue that was most similar to all other
tissues with an average of 790 domains matching another tissue (supplementary Fig. S5).

Domains with high gene expression and regulation (HH)
We next analyzed domains that had high gene expression and regulation scores, which we
termed HH. We observed that these domains could be divided into two different classes: (i)
domains that are shared across all tissues (shared HH) and (ii) domains that are tissue-
specific. For the first class of shared HH domains, we found 162 domains that were shared
across the different tissues (supplementary Table S2). These domains were significantly
shorter than the other domains (p value = 0.043; Wilcoxon test) (Fig. 2A). In addition, they
had less repeats (p value < 2.2 × 10−16; Kolmogorov–Smirnov test) and less gene deserts (p
value < 2.2 × 10−16; Kolmogorov–Smirnov test), as defined by Ovhcarenko et al.
(Ovcharenko et al. 2005) (Fig. 2A), when compared with 162 randomly picked domains of
similar length tested over 1000 times.

We then analyzed the shared HH domains for enrichment of housekeeping genes. This was
done using a dataset of previously defined ubiquitously expressed human genes (Tu et al.
2006). This allowed us also to check the validity of our domain types, expecting domains
with high gene expression scores to be enriched for these ubiquitously expressed
housekeeping genes. We found that the shared HH domains showed a significant enrichment
for housekeeping genes compared 1000 times with 162 randomly picked domains of similar
length (p value < 2.2 × 10−16; Kolmogorov–Smirnov test) (Fig. 2A). Analysis of the gene
ontology (GO) terms using DAVID (Huang et al. 2009a, 2009b), after correcting for
multiple testing using a false discovery rate (FDR), found that these domains are enriched
for GO terms associated with protein transport function, metabolic and catabolic processes,
chromatin modification, phosphorylation, and others (Fig. 2B; supplementary Table S3).
Combined, these results suggest that shared HH domains have high gene expression and
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regulation scores owing to them encompassing housekeeping genes, which falls in line with
previous reports showing that housekeeping genes are located in clusters within the genome
(Lercher et al. 2002).

We next analyzed the tissue-specific HH domains. On average, each tissue had 4.8 HH
domains that were specific to that tissue (supplementary Table S2). Examination of the GO
terms for the genes in these tissue-specific domains, after correcting for multiple testing
using FDR, only found the spleen to have significant GO terms. These were regulation of
transcription, regulation of RNA metabolic process, and regulation of transcription, DNA-
dependent, which are general terms that could fit any tissue (Fig. 3A). However, it is worth
noting that if we look at GO terms that have a significant DAVID EASE score (Huang et al.
2009a, 2009b), which is based on a Fisher’s exact test, but without correcting for multiple
testing, we found an overall correlation with the tissue and gene function for most of the
tissues (supplementary Table S3). For example, for the spleen we observed, in addition to
the previous terms, lymphocyte activation, lymphocyte differentiation, B cell activation, B
cell differentiation, hemopoiesis, and others (Fig. 3A). For the thymus, we observed terms
such as alpha-beta T cell activation and T cell differentiation (Fig. 3B). For the E14.5 limb
we observed enrichment for GO terms such as embryonic morphogenesis or chordate
embryonic development (Fig. 3C). However, tissue function was not correlated in all tissues
for GO terms fitting that specific tissue using these EASE scores. The most distant, based on
our data, was the cerebellum, where for example muscle associated terms such as muscle
cell development or muscle cell differentiation were observed (Fig. 3D). Combined, our
results hint to the potential existence of tissue-specific HH domains that have correlated
tissue functions, but do not pass significance upon multiple testing.

Domains with low gene expression and regulation (LL)
We found 29 domains that were shared across the different tissues that had low gene
expression and regulation scores, termed LL (supplementary Table S2). Examination of
these 29 shared LL domains found them to be significantly longer than all other domains (p
value = 1.45 × 10−12; Wilcoxon test) (Fig. 4A). In addition, these domains were found to
have a significantly higher occupancy of DNA repeats (p value = 5.10 × 10−14;
Kolmogorov–Smirnov test) and gene deserts (p value = 5.78 × 10−11; Kolmogorov–Smirnov
test) and less housekeeping genes (p value = 1.42 × 10−8; Kolmogorov–Smirnov test) when
compared with 29 randomly picked domains of similar length over 1000 times (Fig. 4A).
We next carried out a GO term analysis of these shared LL domains and found that they are
enriched, after correcting for multiple testing using FDR, for various terms that are
associated with cell adhesion (Fig. 4B, supplementary Table S3). Analysis of tissue-specific
LL domains found only an average of 0.6 per tissue (supplementary Table S2). Because the
low number of domains per tissue, only the cortex had GO terms that passed significance
(supplementary Table S3), and these were associated with transcriptional regulation or RNA
metabolic processes (Fig. 4C).

Active and inactive domain temporal changes in the same tissue type
We next wanted to assess whether there are temporal differences in the activation or
inactivation of domains in the same tissue. To do this, we took advantage of the liver and
heart datasets, as both had embryonic (E14.5) and adult time points. We compared each
domain in these tissues for their domain type in both time points and identified domains that
have both a gene expression and regulation score that is greater than two-fold in the
embryonic liver and heart, respectively, and vice versa (supplementary Table S2). We then
carried out a GO term analysis of these domains. For the 77 domains that had two-fold
higher gene expression and regulation scores in the embryonic heart versus the adult heart,
we did not observe significant GO terms after correcting for multiple testing (supplementary
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Table S4). For the 59 domains that were two-fold higher in the adult heart versus E14.5
heart, we only found regulation of transcription to be significant (supplementary Table S4).
However, if we just look at significant DAVID EASE score (Huang et al. 2009a, 2009b),
without correction for multiple testing, we did observe terms that correlated with temporal
function. For example, in domains that showed two-fold higher expression and regulation
scores in E14.5 heart versus adult, we observed striated muscle cell differentiation, muscle
cell differentiation, or heart development (Fig. 5A; supplementary Table S4). For domains
that were two-fold higher in the adult heart compared with the embryonic one, we had
regulation of membrane potential as the second highest term (Fig. 5B; supplementary Table
S4).

We carried out a similar analysis on the liver. We found only significant terms that fit with
general functions (supplementary Table S4). For example, for the 179 domains that were
two-fold higher in the embryonic liver versus adult, we observed the following significant
GO terms: macromolecular complex subunit organization, macromolecular complex
assembly, and M phase (Fig. 5C). For the 106 domains that were two-fold higher in the adult
liver, we found significant association with terms such as oxidation reduction, modification-
dependent protein catabolic process, and modification-dependent macromolecule catabolic
process (Fig. 5D). If we just look at significant DAVID EASE score, as we did for the heart
above, we do observe GO terms that fit their temporal function in domains that are two-fold
higher in the adult liver. For example, lipid biosynthetic process, innate immune response,
and various metabolic and catabolic processes (Fig. 5D; supplementary Table S4).

Discussion
By analyzing gene expression and regulation within topological domains, we were able to
catalog them into different domain types. We found 162 domains that had high gene
expression and regulation (HH) in all 17 tissues and are enriched for housekeeping genes
(Fig. 2A), fitting with an earlier report that showed that these genes tend to reside in clusters
(Lercher et al. 2002). Further analysis of these domains found them to be significantly
shorter, have less repeats, and gene deserts (Fig. 2A), fitting with their potential
housekeeping functions. In contrast, we identified 29 domains that were shared across
tissues and had low gene expression and regulation scores (LL) with significantly less
housekeeping genes (Fig. 4A). Also contrary to the HH shared domains, these shared LL
domains were significantly longer and had more repeats and gene deserts (Fig. 4A). We did
not find any shared domains with high gene regulation and low gene expression scores (HL)
and vice versa (LH), but did find a few tissue-specific ones. This observation could likely be
due to our selection process, choosing only domains from the top and low quartile of
expression and regulation scores.

GO term analysis of tissue-specific HH domains only had significant results for spleen,
whose function was not specific for that tissue. However, if we do not correct for multiple
testing and just look at significant DAVID EASE scores, we observed some agreement with
gene enrichment and tissue-specific function (supplementary Table S3), suggesting that
domains with tissue-specific function could exist in the genome. However, it is worth noting
that we were only able to interrogate 17 tissues and within those observed an average of 4.8
HH tissue-specific domains from the 1175 total domains. Taking these numbers into
account, we assume that when similar data becomes available for additional tissues, the
number of HH tissue-specific domains will reduce even further. In addition, as more tissue-
specific Hi-C datasets become available, topological domains may be further refined. It is
also worth noting that the tissues themselves are, on the majority, a mixture of cell types and
not pure cell populations, which could also skew our results.
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In our GO term comparison between domains that had a two-fold difference in gene
expression and regulation scores between embryonic and adult heart and liver, we observed
partial enrichment for terms that had biological function matching their respective time point
only when using DAVID EASE scores without correcting for multiple testing. We saw
several developmental-associated GO terms in domains that had higher scores in E14.5 heart
versus the adult heart (supplementary Table S4) and terms that fit an adult heart in domains
that were higher in that tissue compared with the embryonic time point. Our temporal
analysis of the liver, even when using just DAVID EASE scores, was less successful.
Although we found GO terms that fit with the role of adult liver in domains that had higher
scores in adult compared with E14.5 liver, the opposite did not show a good temporal match.

Combined, our results suggest that gene expression and regulation might be one of the
forces shaping these topological domains. We observed that housekeeping genes tend to
reside in clusters within domains that are shared between all our analyzed tissues that have
high gene expression and regulation scores. Tissues with low gene expression and regulation
scores tend to be longer and have more repeats and gene deserts. Our tissue-specific domain
analysis was limited because of the low number of these domains. As more tissue-specific
expression and regulation datasets become available along with Hi-C data for those tissues,
the classification of these tissue-specific domains could be expanded. These domains could
provide us with a better understanding of how genomic location can influence chromatin
organization, transgene or viral integration, development, and human disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Genome-wide analysis of gene expression and regulation in topological domains. (A) Venn
diagram showing the overlap between H3K4me1 and H3K27ac ChIP-seq peaks for all 17
tissues. (B) Graph showing how the olfactory topological domains were separated to four
different types based on their gene expression and regulation scores. The regulation score
for this tissue is shown above the x axis and the expression score in the y axis. (C) Heat map
showing topological domain clusters for each tissue. High regulation scores are shown in red
and low in yellow. High expression scores are depicted in purple and low in light blue (D)
Overall similarity between domain type and the different tissues. The number of topological
domains having a similar domain type between the different tissues is written for each
tissue. The darker the color the more similar the tissues are.
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Fig. 2.
Tissue-shared topological domains with high gene expression and regulation (HH). (A)
Boxplots comparing HH tissue shared domains with all other domains for length, and
prevalence of repeats, gene deserts, and housekeeping genes compared 1000 times with 162
random domains with a similar length. p values above the boxplots are based on a Wilcoxon
test for the domain length and a Kolmogorov–Smirnov test for the other comparisons. (B)
Enriched GO terms in shared HH domains. −log(EASE) p values generated by DAVID
(Huang et al. 2009a, 2009b) are shown in the x axis and to the right of each bar are its FDR
p values.
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Fig. 3.
Tissue-specific topological domains with high gene expression and regulation (HH). (A)
Enriched GO terms in spleen tissue-specific HH domains. (B) Enriched GO terms in thymus
tissue-specific HH domains. (C) Enriched GO terms in E14.5 limb tissue-specific HH
domains. (D) Enriched GO terms in cerebellum tissue-specific HH domains. Dark blue bars
represent GO terms that have an FDR ≤ 0.05. −log(EASE) p values generated by DAVID
(Huang et al. 2009a, 2009b) are shown in the x axis and to the right of each dark blue
colored bar are its FDR p values.

Zhao et al. Page 13

Genome. Author manuscript; available in PMC 2013 December 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Topological domains with low gene expression and regulation (LL). (A) Boxplots
comparing LL tissue-shared domains with all other domains for length, and prevalence of
repeats, gene deserts, and housekeeping genes compared 1000 times with 29 random
domains with a similar length. p values above the boxplots are based on a Wilcoxon test for
the domain length and a Kolmogorov–Smirnov test for the other comparisons. (B) Enriched
GO terms in shared LL domains. (C) Enriched GO terms in cortex tissue-specific LL
domains. Dark blue bars represent GO terms that have an FDR ≤ 0.05. −log(EASE) p values
generated by DAVID (Huang et al. 2009a, 2009b) are shown in the x axis and to the right of
each dark blue colored bar are its FDR p values.
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Fig. 5.
Analysis of temporal differences in heart and liver topological domains. (A) Enriched GO
terms in domains that have two-fold higher gene expression and regulation scores in the
embryonic heart versus the adult heart. (B) Enriched GO terms in domains that have two-
fold higher gene expression and regulation scores in the adult heart versus the embryonic
heart. (C) Enriched GO terms in domains that have two-fold higher gene expression and
regulation scores in the embryonic liver versus the adult liver. (D) Enriched GO terms in
domains that have two-fold higher gene expression and regulation scores in the adult liver
versus the embryonic liver. Dark blue bars represent GO terms that have an FDR ≤ 0.05.
−log(EASE) p values generated by DAVID (Huang et al. 2009a, 2009b) are shown in the x
axis and to the right of each dark blue colored bar are its FDR p values.
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