
Biomolecular cryocrystallography: Structural changes
during flash-cooling
Bertil Halle†

Department of Biophysical Chemistry, Lund University, SE-22100 Lund, Sweden

Edited by Gregory A. Petsko, Brandeis University, Waltham, MA, and approved February 18, 2004 (received for review December 15, 2003)

To minimize radiation damage, crystal structures of biological
macromolecules are usually determined after rapid cooling to
cryogenic temperatures, some 150–200 K below the normal phys-
iological range. The biological relevance of such structures relies on
the assumption that flash-cooling is sufficiently fast to kinetically
trap the macromolecule and associated solvent in a room-temper-
ature equilibrium state. To test this assumption, we use a two-state
model to calculate the structural changes expected during rapid
cooling of a typical protein crystal. The analysis indicates that many
degrees of freedom in a flash-cooled protein crystal are quenched
at temperatures near 200 K, where local conformational and
association equilibria may be strongly shifted toward low-en-
thalpy states. Such cryoartifacts should be most important for
strongly solvent-coupled processes, such as hydration of nonpolar
cavities and surface regions, conformational switching of solvent-
exposed side chains, and weak ligand binding. The dynamic
quenching that emerges from the model considered here can also
rationalize the glass transition associated with the atomic fluctu-
ations in the protein.

protein structure � protein hydration � protein glass transition �
x-ray diffraction

W ithin a mere decade, biomolecular structure determina-
tion by x-ray diffraction has moved from ambient to

cryogenic temperature (1–3). Today, �90% of all protein crystal
structures are determined from diffraction data recorded at
temperatures of 90–120 K (3). Cryocrystallography evolved
primarily as a means to combat radiation damage to crystals
from intense synchrotron x-ray beams, based on the idea that
radiation-induced free radicals do not damage the biomolecule
once they are trapped in the vitrified bulk solvent within the
crystal (2). Much effort has been spent on optimizing flash-
cooling protocols to avoid ice formation, usually with the aid of
cryoprotectants, such as glycerol or polyethylene glycol, and to
minimize thermally induced inhomogeneities that limit the
resolution (1–3). In contrast, remarkably little concern has been
expressed about the fact that cryocrystallography examines
biomolecules some 200 K below their normal physiological
temperature range.

The native 3D structures of proteins and nucleic acids result
from a delicate balance of interactions, where the solvent-
mediated hydrophobic effect plays a major role (4). Accordingly,
biomolecules are expected to unfold, not only at high temper-
ature, but also at low temperature (5). In general, it is assumed
that such cold denaturation is too slow to intervene during
flash-cooling, and this assumption is corroborated by the finding
that cryostructures usually differ little from the corresponding
room-temperature structures (6–9). Indeed, in a comparison of
15 protein structures determined both at cryogenic and room
temperature, the rms deviation of nonhydrogen backbone atoms
in the optimally superimposed structures was only 0.2–0.8 Å (9).

Biomolecules are complex systems with many coupled degrees
of freedom. Even if the global backbone fold is virtually unaf-
fected by flash-cooling, the local structure may be altered in
regions that are critical for biological function. In one of the few
studies focusing on thermal artifacts in cryocrystallography,

Juers and Matthews (9) showed that the area involved in
protein–protein crystal contacts typically increases by 50% on
cooling to cryogenic temperature. Furthermore, they proposed
that protein–protein interactions are enhanced at low temper-
ature largely because of the reduced entropic cost of locking
flexible, polar side chains into energetically favorable confor-
mations at protein–protein interfaces. Whatever the cause, these
findings raise concerns about the validity of cryostructures of
biomolecular complexes (9). Significant conformational differ-
ences between cryogenic and room-temperature protein struc-
tures have been reported also for solvent-exposed side chains
(not located at crystal contacts) and associated water molecules
(10–12), sometimes in the catalytic site of enzymes.

The effect of cooling on the structure of proteins and other
biological macromolecules can be conceptualized in terms of the
conformational energy landscape. In the limit of infinitely fast
cooling, the system would be quenched into an amorphous solid
(glass) state, where thermal atomic motions (as reflected in
crystallographic B factors) would be reduced in amplitude,
whereas the mean atomic positions would not change signifi-
cantly and then only as a result of the anharmonic character of
the local potential wells. However, this limit is not attained with
practical f lash-cooling protocols, which, for protein crystals in
the typical size range, yield characteristic cooling times on the
order of 0.1–1 s (13). Flash-cooling of a protein crystal should
therefore be viewed as a continuous temperature-jump relax-
ation experiment, where different degrees of freedom partici-
pate to different extents.

Bulk water can be vitrified by cooling from �273 K to a
temperature below the glass transition temperature of 136 K at
a cooling rate of �106 K s�1 (14, 15). Such high cooling rates can
be achieved for micrometer-sized water droplets, but not for the
millionfold larger volume of a typical protein crystal. Because of
protein–water interactions, a cooling rate of �100 K s�1 is
usually sufficient to vitrify the solvent in a protein crystal;
penetrating cryoprotectants, such as glycerol, reduce the critical
cooling rate even further (2, 13). Water occupying wide (�50 Å)
channels in protein crystals behaves like bulk water, transform-
ing into ice on heating from cryogenic temperature, whereas
water in direct contact with the protein does not crystallize and
exhibits a broad glass transition in the range 160–220 K (16, 17).
Similar results have been reported for hydrated protein powders
(18, 19). During flash-cooling of a protein crystal, solvent,
ligands, and side chains should thus exhibit liquid-like mobility
down to �200 K. Once the protein crystal has reached the
cryogenic temperature of �100 K, it is in a glassy state (with a
1015-fold or so higher viscosity than room-temperature water)
where all motions are effectively arrested, except for localized
vibrational modes. During storage, transport, and data acquisi-
tion, the structure of the protein crystal should thus not change
further as long as the cryogenic temperature is maintained. The
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question is: What happens with the structure during cooling
from room temperature to the temperature of kinetic arrest?

Methods
Heat Conduction. In a spherically symmetric solid material, char-
acterized by an isotropic and spatially uniform thermal diffusiv-
ity tensor, the temperature T(r, t) at radial position r and time t
is governed by the radial heat conduction equation (20):

�T
�t

� ���2T
�r2 �

2
r

�T
�r � . [1]

The thermal diffusivity, � (m2 s�1), is related to the thermal
conductivity, K (W K�1 m�1), the specific heat, cP, and the mass
density, �, through � � K�(cP�). We consider a spherical solid of
radius a, which initially has a uniform temperature, T0. At time
t � 0, the surface temperature is reduced to TS and thereafter
held constant. The space–time evolution of the temperature
within the sphere is obtained by solving Eq. 1 subject to the initial
condition T(r, 0) � T0 and the boundary conditions T(a, t) � TS

and T(0, t) � finite. The result is (20):
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The spatial average of T(r, t) over the innermost one-third (by
volume) of the sphere is
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Similar expressions are obtained for the average temperature in
the middle and outer one-third of the sphere.

Nonequilibrium Populations During a Continuous Temperature
Change. We consider a two-state equilibrium,

A7 B. [4]

Let xA and xB � 1 � xA be the fractional populations in the two
states. When the system is in equilibrium at temperature T, the
A state population is

xA
0 �T� � �1 � exp��

�H
RT

�
�S
R ���1

, [5]

where the �H � HB � HA and �S � SB � SA are the changes
in enthalpy and entropy per mole of state A (or B).

If the temperature is suddenly changed from T1 to T2, the A
state population, xA(t), evolves exponentially toward the new
equilibrium value xA

0 (T2):

xA�t2� � xA
0 �T2� � 	xA�t1� � xA

0 �T2�
 exp	�kex�T2��t2 � t1�
,

[6]

where xA(t1) � xA
0 (T1) if the system was in equilibrium before the

temperature jump. Making use of the detailed balance condi-
tion, we can express the exchange rate constant, kex � kA3B �
kB3A, in terms of the mean lifetime of state A, 	A, and the
equilibrium population:

kex�T� �
1

	A�T�	1 � xA
0 �T�


. [7]

To calculate the time-dependent nonequilibrium population,
xA(t), when the temperature is varied continuously, we must
solve a rate equation with a time-dependent rate constant,
kex[T(t)]. Numerically, this solution can be obtained by dividing
the time axis in sufficiently small intervals and by applying Eq.
6 to each step, with the initial population xA(t1) given by the
nonequilibrium population at the end of the previous interval.

Results
Thermal Evolution During Flash-Cooling. The physics of f lash-
cooling has recently been examined by Kriminski et al. (13).
Here, we are interested specifically in how the temperature of the
crystal changes with time. We consider a spherical crystal of
radius a that is instantaneously transferred from ambient con-
ditions, with a uniform crystal temperature T0 � 293 K, to a
cryogenic bath that maintains the crystal surface at a tempera-
ture TS � 77 K. In this idealized plunge-cooling scenario, we
assume that heat transport occurs exclusively by conduction
through the protein crystal. The temperature, T(r, t), at radial
position r in the crystal then evolves in time according to Eq. 2.
In the alternative gas-cooling method, the rate-limiting convec-
tion in the boundary layer results in considerably lower cooling
rate (13). The case considered here thus corresponds to the
maximum, theoretically possible, cooling rate for given crystal
geometry and cryogen temperature. With current flash-cooling
protocols, nitrogen evaporation at the crystal surface and�or
convective heat transfer through the boundary layer result in
cooling rates that are lower than the theoretical maximum by at
least one order of magnitude (13).

To use Eq. 2, we need to specify the thermal diffusivity, �, of
the crystal. Protein crystals typically contain 30–60 vol% water
(21) and the effective � is a volume-weighted average of the
thermal diffusivities of protein and solvent. Normal-mode cal-
culations on myoglobin (in the absence of water) yield � � 1.38 �
10�7 m2 s�1 at 300 K (22), close to the value 1.46 � 10�7 m2 s�1

for water at this temperature (23). For our purposes, the � value
below the glass transition is of little consequence. On going from
300 to 200 K, � increases by 20% for myoglobin (22) and
decreases by 35% for water [based on a linear extrapolation of
data from �273 K (23)]. To a first approximation, we ignore the
resulting weak (partly compensated) temperature dependence in
the effective � and use a constant value of 1.2 � 10�7 m2 s�1 for
the protein crystal.

A characteristic time, 	cool, for crystal cooling can be defined
as the time required for the temperature at the center of the
crystal (r � 0) to drop halfway from T0 to TS. It follows from Eq.
2 that 	cool � 0.14 a2��. With the adopted � value, this yields 	cool
� 12 ms for a � 0.1 mm. This crystal radius was used in the
calculations reported here. However, to illustrate the effect of
crystal size, we include some results obtained with a larger
crystal radius, a � 0.5 mm, for which 	cool � 290 ms. Whereas
the smaller crystal radius is more representative of the crystals
typically used with synchrotron x-ray beams, the larger radius
yields, in our heat conduction calculation, a cooling rate that is
closer to what is commonly achieved in practice (13). Fig. 1a
shows the time evolution of the mean temperature averaged over
the inner, middle, or outer third of the volume of a 0.1-mm
spherical crystal (see Eq. 3).

The results of our analysis are not sensitive to the shape of the
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crystal. Our choice of a spherical shape is dictated mainly by
mathematical convenience. Real protein crystals are often ani-
sometric, but, for a given smallest dimension, a spherical crystal
yields the highest conductive cooling rate. For example, a
plate-like crystal of thickness 2a has a 2.7-fold slower cooling
rate (	cool � 0.38 a2�� if end effects are ignored) than a sphere
of diameter 2a.

Structural Changes During Flash-Cooling. To illustrate the structural
changes that take place during flash-cooling of a biomolecular
crystal, we consider the equilibrium between an enthalpically
stabilized low-temperature state A and an entropically stabilized
high-temperature state B. When the system is in thermal equi-
librium at a temperature T, the fractional population, xA

0 , in state
A is given by Eq. 5. In the calculations, we set �H � 25 kJ mol�1

and �S � 100 J K�1 mol�1, independent of temperature. [Note
that the purely ‘‘thermal’’ contributions to �H and �S cancel out
identically in the Gibbs energy and, hence, do not contribute to
the temperature dependence of xA

0 (24, 25).] For this choice of
parameter values, xA

0 (T) goes from 1.000 at 77 K to 0.146 at 293
K (see Fig. 1b).

During flash-cooling, the temperature in the crystal decreases

continuously. To obtain the time-dependent nonequilibrium
population, xA(t), we must solve a rate equation with a time-
dependent exchange rate constant, kex[T(t)]. Alternatively, we
can discretize the time variable and treat the cooling process as
a series of finite temperature jumps. After each jump, the
population relaxes toward the new equilibrium population ac-
cording to Eq. 6. As the time steps are made smaller, the solution
to this multistep-relaxation problem converges toward the solu-
tion of the continuous-cooling problem.

To complete the model, we must specify the temperature
dependence of the mean lifetime, 	A, in state A, which deter-
mines the exchange rate constant, kex, through Eq. 7. The
processes of interest here can be reasonably modeled in terms of
diffusion over a potential barrier of height �H#, in which case
(26),

	A�T� � 	0

T D�T0�

T0 D�T�
exp��H#

R �1
T

�
1

T0
��, [8]

where 	0 � 	A(T0) is the A state lifetime at a reference
temperature, T0, which we choose as the initial temperature (293
K). The processes that we have in mind either involve water

Fig. 1. (a) Evolution of crystal temperature during flash-cooling from 293 to 77 K for a spherical crystal with radius a � 0.1 mm and thermal diffusivity � � 1.2 �
10�7 m2 s�1. The three curves refer to the spatially averaged temperature in the inner, middle, and outer thirds of the crystal volume. (b) Temperature dependence
of the equilibrium population, xA

0 , of the low-enthalpy state A in a two-state equilibrium with �H � 25 kJ mol�1 and �S � 100 J K�1 mol�1. (c) Temperature
dependence of the exchange time, 1�kex, as predicted by Eqs. 7 and 8 with 	0 � 10 ns, �H# � 40 kJ mol�1, D(T) from the Vogel–Tamman–Fulcher fit for water,
and xA

0 as in b. (d) Evolution of A state population xA(t) during flash-cooling, computed numerically with the aid of Eq. 6, and based on the temperature profiles
in a, the equilibrium population in b, and the exchange time in c. The dashed curves correspond to the equilibrium Boltzmann population, xA

0 , at the
time-dependent temperature.
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displacement directly or are strongly coupled to solvent dynam-
ics. We therefore identify D with the translational diffusion
coefficient of water. The temperature dependence is taken from
the Vogel–Tamman–Fulcher representation (27) of experimen-
tal diffusion data (28) in the range 238–298 K: D(T) � D0
exp[�B�(T � TC)], with B � 371 K and TC � 169.7 K (the
constant D0 cancels out in Eq. 8). This empirical extrapolation
formula obviously fails near (and below) the ‘‘critical’’ temper-
ature, TC, where a solid-like defect-controlled diffusion mech-
anism is believed to take over (29). However, the Vogel–
Tamman–Fulcher formula should be adequate down to the glass
transition temperature of �200 K. Below this temperature, the
dynamics are too slow to have an appreciable effect on the
evolution of the population xA during flash-cooling. In fact, the
results reported here are virtually identical with those obtained
by enforcing complete quenching (kex � 0) of A7 B transitions
at 
200 K. Fig. 1c shows the inverse of the exchange rate
constant in the relevant temperature range, computed from Eq.
8 with 	0 � 10 ns and �H# � 40 kJ mol�1.

By combining the results shown in Fig. 1 a–c, we can now
compute the time evolution of the nonequilibrium population,
xA(t), during the flash-cooling process. As seen from Fig. 1d, this
evolution exhibits two distinct phases. In the first phase, A7 B
interconversion is sufficiently fast to maintain the equilibrium
Boltzmann population as the temperature drops (dashed
curves). Consequently, xA(t) � xA

0 [T(t)] throughout this phase. In
the second phase, A7 B interconversion is too slow to maintain
equilibrium as the temperature drops further. The system is
dynamically quenched and the population remains constant, xA
� xA

* , as cooling proceeds to the final cryogenic temperature, TS.
The transition between these two evolution phases occurs when
the cooling rate matches the A 7 B interconversion rate.
Because of the very strong temperature dependence of the
interconversion rate constant kex near 200 K (see Fig. 1c), the
transition is abrupt (see Fig. 1d).

The intersection of the equilibrium curve, xA(t) � xA
0 [T(t)],

and the quenching level, xA � xA
* , in Fig. 1d defines a quenching

time, t*, which depends on the radial position in the crystal. In
Table 1 we give t* and xA

* for the three regions of spherical
crystals of radius 0.1 mm (as in Fig. 1) or 0.5 mm. The table also
lists the quenching temperature, T* � T(t*), obtained from the
cooling curves in Fig. 1a (after scaling the time axis by a factor
25 for the larger crystal). At the quenching temperature, the
exchange time, 1�kex, matches the characteristic cooling time,
	cool, defined (see above) as the time for the mean temperature
in the region to reach a value halfway between T0 and TS (185
K in our example). In other words, T* is determined by the
condition kex(T*) 	cool � 1.

For the example considered in Fig. 1, f lash-cooling quenches
the examined degree of freedom at a temperature of �210 K
throughout most of the 0.1-mm crystal. A subsequent x-ray
diffraction experiment, carried out at cryogenic temperature,
will thus yield a structure that reflects the A7 B equilibrium at

the quenching temperature, T* � 210 K. At this temperature, the
A state predominates (xA

* � 0.83–0.92 for the three regions),
whereas the B state is most populated at the ambient initial
temperature, xA

0 (293 K) � 0.15. The cryogenic temperature has
thus not only reduced the amplitude of local thermal motions (B
factors), but has essentially converted the structure from one
state to another. The extent of such cryoartifacts depends on the
interconversion rate kex. However, for a temperature-dependent
equilibrium of the type shown in Fig. 1b, substantial cryoinduced
shifts of substate populations can be expected even for ambient-
temperature substate lifetimes in the microsecond range and
longer and for activation enthalpies exceeding 100 kJ mol�1 (see
Fig. 2). For the 0–150 kJ mol�1 range examined in Fig. 2b, the
quenching temperature T* varies from 190 to 257 K (middle
region). The ranges of 	0 and �H# examined in Fig. 2 should
encompass most conformational and association processes oc-
curring at or near the biomolecule–solvent interface.

A 5-fold increase in radius increases the crystal volume by two
orders of magnitude but has little effect on the quenching
behavior. The cooling curves are identical with those shown in
Fig. 1a, apart from a 25-fold lengthening of the timescale.
However, the quenching temperature, T*, and population, xA

* ,
are much the same as for the smaller crystal (see Table 1).

Table 1. Quenching times, temperatures, and populations for a
two-state process during flash-cooling of a protein crystal

a � 0.1 mm a � 0.5 mm

Inner Middle Outer Inner Middle Outer

t*, ms 5.7 1.6 0.1 155 47 3.5
T*, K 209 212 221 200 202 208
x*A 0.92 0.90 0.83 0.95 0.94 0.92

The results are for conductive cooling from 293 to 77 K of a spherical crystal
of radius, a. For each radius, the three columns refer to the inner, middle, and
outer thirds of the crystal volume. The parameter values describing the A7 B
interconversion process are as in Fig. 1.

Fig. 2. Dependence of the quenched A state population, xA
* , on the A7 B

interconversion rate for (a) �H# � 50 kJ mol�1 and variable A state lifetime, 	0,
at 293 K, and (b) 	0 � 1 
s and variable activation enthalpy �H#. The population
xA

* was computed for the cooling curves in Fig. 1a and the two-state equilib-
rium in Fig. 1b.
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Discussion
Implications for Structural Biology. Structural models derived from
diffraction data recorded at cryogenic temperatures do not
portray biological macromolecules at thermodynamic equilib-
rium. This fact is probably widely appreciated within the crys-
tallography community, although rarely stated explicitly. With a
few notable exceptions (6–12), it is usually taken for granted that
the cryostructure is quenched at ambient temperature (T* � T0
in our notation) and, therefore, that the only structural effect of
the low temperature is to sharpen the atomic displacement
distributions without significantly displacing the mean atomic
positions [apart from a more-or-less uniform contraction of the
protein (6–9)]. In contrast to this conventional wisdom, the
present analysis indicates that many degrees of freedom are
quenched at temperatures near 200 K, where local conforma-
tional and association equilibria may be strongly shifted toward
low-enthalpy states. In general, a cryostructure does not repre-
sent the equilibrium state of the macromolecule at T0 or TS or
any other single temperature. For example, a protein structure
determined at 100 K may have the same global backbone fold as
at room temperature, whereas exposed side chains and solvent
components sample a 200 K equilibrium distribution of sub-
states. Flash-cooling thus induces an artificial thermal hetero-
geneity, where different degrees of freedom correspond to
different temperatures. On the other hand, our calculations do
not indicate that flash-cooling produces any substantial spatial
heterogeneity. Although different parts of the crystal are cooled
at widely different rates (see Fig. 1a), the quenching tempera-
ture, T*, and the quenched population, xA

* , differ little between
the three regions (see Table 1). This point is important , because
a thermally induced macroscopic gradient in protein structure
could not easily be distinguished from intrinsic conformational
heterogeneity, for example, a side chain with an intrinsically
bimodal conformational distribution.

The view advocated here, with different degrees of freedom
being quenched at different temperatures, calls for caution in the
interpretation of cryostructures. The functionally most interest-
ing parts of biomolecules, such as sites for recognition, binding,
or catalysis, usually involve the interfacial region, where delayed
quenching and consequent cryoartifacts are expected to be most
pronounced. Detailed comparisons with ambient-temperature
diffraction data are therefore required to validate cryocrystal-
lographic studies of, for example, hydration phenomena, weak
ligand binding, salt bridges, and conformations of exposed side
chains.

In ultrahigh-resolution protein crystal structures obtained at
cryogenic temperature, extensive hydrogen-bond networks of
fused five-, six-, and seven-membered rings of water molecules
are commonly observed (30–32). If such cooperative hydration
structures were present at ambient temperature, water motions
in the hydration layer would be strongly retarded as compared
with bulk water. However, 2H and 17O magnetic relaxation
dispersion studies indicate a mere 2-fold dynamic retardation
for the vast majority of water molecules in the hydration layer
of proteins (33). For the small protein crambin, where ultra-
high-resolution structures have been reported at several tem-
peratures from 100 to 293 K, the six- and seven-membered
rings disappear at �200 K (30), indicating that they are, in fact,
cryoartifacts.

The possibility that monovalent cations can replace ordered
water molecules at the floor of the narrowed minor groove in AT
tracts of B form duplex DNA has generated considerable interest
and controversy (34, 35). The crystallographic evidence in favor
of this proposition is based entirely on cryogenic diffraction data
(36–38). 23Na and 87Rb magnetic relaxation dispersion studies
(39, 40) of DNA in solution at ambient temperatures indicate
that ion binding is weak (partial occupancy) and relatively

short-lived (submicrosecond at 277 K), so the thermodynamic
and kinetic parameters should fall in the range of values exam-
ined here. The crystal structures are therefore likely to reflect
the ion-binding equilibrium at a quenching temperature near 200
K. With a negative binding enthalpy, as indicated by the magnetic
relaxation dispersion results (40), ion binding will be artificially
enhanced in cryostructures, as compared with ambient temper-
ature.

The hydration of nonpolar cavities and channels in proteins
may also be susceptible to cryoartifacts. This process is probably
entropy-driven (41), with the low-temperature A state corre-
sponding to an empty cavity. For example, water molecules in the
central channel of bacteriorhodopsin are thought to play an
active role in the proton translocation mechanism (42). The
high-resolution cryostructure of bacteriorhodopsin shows a net-
work of water molecules on the highly polar, extracellular side of
the retinal molecule, but a corresponding network that could
transport the proton through the mainly nonpolar, cytoplasmic
half of the channel is not evident (43). 2H and 17O magnetic
relaxation dispersion measurements (44) are consistent with
more water molecules in the channel than seen in the crystal
structure and show that the internal water molecules exchange
with bulk water on a microsecond timescale (at 277 K). With a
probable quenching temperature near 200 K, some of the
channel waters may thus have been expelled during flash-
cooling.

Crystallographic studies of cryotrapped photocycle interme-
diates of bacteriorhodopsin have revealed displacements of key
water molecules within the proton translocation channel (45–
47). Mechanistic interpretations of such findings must rely on the
assumption that the hydration structure is quenched at ambient
temperature, rather than at 200 K (as seems more likely).
Caution would also seem to be warranted in crystallographic
studies of enzyme mechanisms based on cryotrapped catalytic
intermediates (48). Side-chain conformations, hydration struc-
tures, ligand association, and proton dissociation equilibria may
all be affected by flash-cooling.

Relation to the Protein Glass Transition. X-ray diffraction (6, 49),
dynamic neutron scattering (50), and other investigations (18,
51) of protein crystals and hydrated protein powders indicate
that the thermal fluctuations of protein atoms undergo a qual-
itative change at a temperature that, depending on conditions,
usually falls in the range 180–220 K. This dynamical transition is
thought to involve a low-temperature glassy state, where only
harmonic vibrations are possible, and a high-temperature fluid
state, where also diffusive motions take place on the experimen-
tal timescale.

The simple two-state model used here to illustrate the struc-
tural implications of flash-cooling can also be used to rationalize
the protein glass transition. Given that many protein conforma-
tional degrees of freedom are strongly coupled to thermal
fluctuations in the solvent (52–57), the A 7 B interconversion
rate constant kex given by Eqs. 7 and 8 can also describe the
diffusive dynamics of such conformational degrees of freedom.
In this simple model, the protein glass transition is a conse-
quence of the very strong temperature dependence of kex near
200 K (see Fig. 1c). This, in turn, is a result of a cooperative
restructuring of the hydrogen-bond network in liquid water
toward perfect tetrahedral coordination (58) and at the expense
of the more highly coordinated configurations (with bifurcated
hydrogen bonds) that are responsible for the high fluidity of
water (29).

In cryocrystallography, the cooling rate plays a dual role. First,
it must be higher than the rate of ice nucleation in wide solvent
channels within the crystal (17, 59) and in any external solvent
in contact with the crystal (2). In protein crystals without wide
channels (17) and in protein powders at low hydration levels (18,
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19), ice is not the thermodynamically stable phase of low-
temperature water. The glassy state is then formed even when
the sample is cooled slowly. The second role of the cooling rate,
and the one we are concerned with here, is to determine the
interval available for structural rearrangements. This interval is
the time required to cool the sample to the quenching temper-
ature, T*, which is �200 K for the two-state process considered

in Fig. 1c. Because kex(T*) 	cool � 1, it follows from Eqs. 7 and
8 that T* depends only logarithmically on the cooling rate. The
quenching temperature defined here should therefore not differ
much from the glass transition temperature determined under
slow-cooling conditions.
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