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Inflammasomes are large macromolecular signaling complexes that control the proteolytic activation of
two highly proinflammatory IL-1 family cytokines, IL-1b and IL-18. The NLRP3 inflammasome is of
special interest because it can assemble in response to a diverse array of stimuli and because the
inflammation it triggers has been implicated in a wide variety of disease pathologies. To avoid aberrant
activation, the NLRP3 inflammasome is modulated on multiple levels, ranging from transcriptional
control to post-translational protein modifications. Emerging genetic and pharmacological evidence
suggests that NLRP3 inflammasome activation may also be involved in acute lung inflammation after
viral infection and during progression of several chronic pulmonary diseases, including idiopathic
pulmonary fibrosis, chronic obstructive pulmonary disease, and asthma. Here, we review the most
recent contributions to our understanding of the regulatory mechanisms controlling activation of the
NLRP3 inflammasome and discuss the contribution of the NLRP3 inflammasome to the pathology of lung
diseases. (Am J Pathol 2014, 184: 42e54; http://dx.doi.org/10.1016/j.ajpath.2013.09.007)
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The main functions of the immune system are to protect
the host from microbial infections, to detect and combat
cancerous cells, and to respond to and repair tissue damage.
The innate immune system has evolved germline-encoded
signaling receptors with which microbial molecules (path-
ogen-associated molecular patterns) and altered host mole-
cules (danger-associated molecular patterns) can be detected.
Activation of these signaling receptors leads to the pro-
duction of a wide variety of inflammatory mediators that
orchestrate a coordinated immune response toward patho-
gens or tissue damage, with the goal of restoring homeostasis.
In tissues that are colonized by commensal microbes, such as
the gut, skin, or lungs, the immune system faces the particular
challenge of distinguishing commensal microbes from
foreign pathogens. Tissue-specific mechanisms evolved to
stigative Pathology.
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ensure a carefully balanced immune response that is tailored
for the normal local microflora.
The lung is continuously exposed to a variety of inhaled

infectious agents and exogenous particulates, as well as to
host-derived danger signals, and thus, the innate immune
response plays a critical role in protecting the pulmonary
system from disease. The lung comprises a set of specialized
cells of the innate immune system that express several
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NLRP3 Regulation and Lung Pathologies
families of innate immune pattern recognition receptors
(PRRs), including Toll-like receptors (TLRs), RIG-I-like
receptors (RLRs), and NOD-like receptors (NLRs), which
initiate signaling pathways that promote the induction of
inflammatory mediators. In the lung, production of cyto-
kines [eg, tumor necrosis factor (TNF)] and chemokines (eg,
IL-8) by immune cells is critical for coordinating the acute
immune response, including recruitment and activation of
other immune cells (eg, neutrophils), as well as for subse-
quent activation of lymphocytes.1

Highly inflammatory cytokines of the IL-1 family, in-
cluding IL-1b and IL-18, are central to processes mediating
lung inflammation. The proteolytic activation of these cyto-
kines is under the control of several innate immune receptors
that are able to form large multiprotein signaling platforms,
termed inflammasomes.2 The inflammasome formed down-
stream of the receptor NACHT, LRR and PYD domains-
containing protein 3 (NLRP3; alias NALP3) can be activated
not only by pathogens, but also in response to sterile tissue
damage ormetabolic stress, resulting in sustained inflammatory
reactions. This observation led to the discovery that the
NLRP3 inflammasome is central to the pathogenesis of a wide
variety of chronic inflammatory diseases, including several
common metabolic disorders (eg, atherosclerosis and type 2
diabetes).3 Emerging genetic and pharmacological evidence
suggests that, although NLRP3 inflammasome activation is
critical for driving acute lung inflammation aiding in the
clearance of viral or bacterial infections, persistent activation
of NLRP3 by irritants may be involved in the progression of
several chronic pulmonary diseases, including idiopathic
pulmonary fibrosis (IPF), chronic obstructive pulmonary
disease (COPD), and asthma. Chronic respiratory diseases
account for more than 4 million deaths annually worldwide,4

and the underlying immunological mechanisms that govern
these airway pathologies remain the topic of intense investi-
gation. Here, wewill first review themost recent contributions
to our understanding of the activation and regulation of the
NLRP3 inflammasome and then discuss the role of NLRP3 in
the pathology of lung diseases.
Production of IL-1 Family Cytokines via
Inflammasomes

Proinflammatory cytokines of the IL-1 family are particularly
potent inducers of inflammation.5 By virtue of the potentially
destructive proinflammatory effects of uncontrolled IL-1b
release, its production is tightly regulated. First, the expres-
sion of a nonactive IL-1b precursor (pro-IL-1b) must be
induced in immune cells via activation (eg, by TLRs) of
signaling pathways upstream of the transcription factor
NFkB. Second, pro-IL-1b must be processed by caspase-1
into its bioactive form before its release from cells.
Although the signaling pathways and inflammatory outcomes
of IL-1b activation have long been known, themechanisms by
which immune cells produce this cytokine have come to light
The American Journal of Pathology - ajp.amjpathol.org
only in the last decade,with the discovery of inflammasomes.2

Inflammasomes consist of a receptor molecule (sensor), the
adaptor molecule apoptosis-associated speck-like protein
containing a CARD (ASC), and caspase-1. Their formation
leads to the production of bioactive IL-1b and IL-18. To date,
a number of cytosolic receptors are known to trigger forma-
tion of an inflammasome, including the NLR protein family
members NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, and
NLRC4.6 In addition, the PYHIN protein family members
AIM2 and IFI16 can also form inflammasomes.7,8

In general, the NLR proteins comprise three major do-
mains: a C-terminal leucine-rich repeat (LRR) domain,
which is thought to have regulatory functions and to be
involved in ligand sensing,9 a central nucleotide binding
(NACHT) domain required for ATP-dependent self oligo-
merization,10 and an N-terminal pyrin domain (PYD, present
in NLRPs) or caspase activation and recruitment domain
(CARD, present in NLRC4) enabling proteineprotein in-
teractions. The crystal structure of murine NLRC4 was
resolved in 2013, revealing a closed inhibitory conformation
of the protein in which the NACHT domain is guarded by
the LRR.11 This suggests that NLRs exhibit a closed structure
in the cytosol until ligand binding or an activation signal,
whereupon they undergo a conformational change allowing
subsequent NLR oligomerization and interaction with ASC.

In the case of NLRP3, some evidence exists that its
conformation may be regulated by interactions with the
cochaperone molecules Hsp90 and SGT1, which appear to
be critical for its activation.12 The interaction of NLR re-
ceptors with ASC, which is mediated via PYDePYD
binding, results in assembly of large multimeric complexes
consisting predominantly of dimers and oligomers of
ASC.13 The formation of these so-called ASC specks allows
for the recruitment of pro-caspase-1 via homotypic CARDe
CARD interactions with ASC. The accumulation of pro-
caspase-1 within these complexes induces an autocatalytic
event, ultimately resulting in the formation of active
caspase-1 heterotetramers that are able to process inactive
cytosolic pro-IL-1b and pro-IL-18 into their functional
forms.5 In addition to facilitating the cleavage and matura-
tion of these cytokines, activation of caspase-1 also induces
pyroptosis, a specific and highly proinflammatory form of
programmed cell death.14 Thus, in contrast to most other
PRRs that regulate the transcription of inflammatory medi-
ators, the inflammasomes mediate post-translational activa-
tion of IL-1 family cytokines and the induction of a
specialized form of cell death.
Activation of the NLRP3 Inflammasome

The NLRP3 inflammasome is of special interest because it
can assemble in response to a wide variety of stimuli with
diverse physical and chemical properties. These include
various exogenous activators, ranging from microbial com-
ponents [eg, influenza A virus (IAV)] to particulates found in
43
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the environment (eg, silica crystals or asbestos fibers).
Furthermore, many endogenous molecules also induce acti-
vation of the NLRP3 inflammasome after their accumulation
or alteration under conditions of tissue damage or metabolic
dysfunction. For instance, under normal physiological con-
ditions uric acid exists in a harmless soluble form. When
circulating levels become severely elevated, however, it can
undergo a phase transition to form monosodium urate crys-
tals, which activate the NLRP3 inflammasome, ultimately
resulting in the IL-1bedriven chronic inflammatory state
seen in gout.15e17 Likewise, although normal intracellular
ATP levels are innocuous, a rapid increase in extracellular
ATP (eATP), such as is seen after tissue damage or cell death,
acts as an endogenous danger signal activating the NLRP3
inflammasome via binding P2X purinoreceptor 7 (P2X7),
which acts as a ligand-gated ion channel.18

Given that NLRP3 inflammasome formation is induced
by such a broad array of signals, it seems unlikely that direct
binding of these stimuli to the receptor occurs. Instead,
NLRP3 is thought to sense and/or bind a common upstream
activation signal or signals, which to date remain to be fully
described. What has been shown is that various intracellular
Figure 1 Multiple levels of NLRP3 inflammasome regulation. Various types of c
ion fluxes (Kþ efflux and Ca2þ influx), can trigger activation of the NLRP3 inflamm
mediating mitochondrial damage and the release of mitochondrial content into the c
eATP activate NLRP3 after eATP binding the P2X7 receptor. Activation of NLRP3 l
1edependent proteolysis. In addition, capase-1 activation results in cell death via p
avoid aberrant activation. 1) In macrophages, NLRP3 (and pro-IL-1b) protein le
activation of PRRs and cytokine receptors upstream of the transcription factor NFkB
post-transcriptional level. 3) Acutely, NLRP3 can be activated by BRCC3-dependent
role in NLRP3 activation, suggesting phosphorylation of NLRP3 may also be an activ
via activation of inducible nitric oxide synthase (iNOS). NO can inhibit NLRP3 infla
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events, often caused by cellular stress, can facilitate NLRP3
activation; these include alterations in redox potential,
lysosomal stability, and ion concentrations (Figure 1).

Intracellular ROS

Oxidative stress in the form of reactive oxygen species (ROS)
has been widely implicated in NLRP3 activation. Initially,
intracellular ROS produced via the NADPH oxidase system
were thought to activate NLRP3; however, both mouse and
human cells defective in NADPH oxidase exhibit normal
NLRP3 activation.19,20 More recently, mitochondrial ROS
have been associatedwithNLRP3 activation.21e23The precise
role of ROS remains somewhat controversial, because ROS
may be required only during the transcriptional priming step,
rather than for post-translational NLRP3 activation itself.24

Lysosomal Destabilization

Another form of cell stress can be induced by the ingestion
of fibrillar protein aggregates (eg, amyloid b) or crystalline
structures (eg, cholesterol crystals) by immune cells, leading
ellular stress, including intracellular ROS production, lysosomal leakage, and
asome. The events leading to NLRP3 activation appear to involve pathways
ytosol [eg, oxidized DNA (oxDNA) and cardiolipin]. In addition, high levels of
eads to maturation and release of IL-1b and IL-18 cytokines after caspase-
yroptosis. The activation status of NLRP3 is modulated on multiple levels, to
vels are controlled by a delayed transcriptional priming step mediated via
. 2) In resting myeloid cells, NLRP3 is negatively regulated via miR-223 at the
deubiquitination (de-Ub). The kinase activity of Syk, PKR, and TAK1 all play a
ation requirement. 4) Type I IFN or IFNGR signaling leads to production of NO
mmasome formation via SNO modification.
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to NLRP3 activation through the induction of lysosomal
perturbation, and the release of proteases such as cath-
epsins.25e27 The mechanisms by which lysosomal damage
induces NLRP3 activation remain poorly understood. Of
note, although proteolytic cleavage of NLRP3 is yet to be
reported, such a mechanism has been shown to be critical
for activation of the NLRP1 inflammasome.28,29

Ion Flux

Changes in cytosolic ion levels, such as increases in
Ca2þ 30e32 or decreases in Kþ,13,33,34 also appear to be
important for NLRP3 function. A recent study in which
Muñoz-Planillo et al35 extensively tested many of the candi-
date upstream NLRP3 activators suggests that Kþ efflux may
represent a common signal required for NLRP3 activation.

The exact mechanism by which NLRP3 is activated re-
mains a subject of vigorous research, but it is likely to involve
a culmination or a convergence of the upstream events dis-
cussed above. Interestingly, there is a growing body of evi-
dence to suggest that signals emanating from damaged
mitochondria could be the common feature linking these
intracellular events. First, several studies have demonstrated
that NLRP3 localizes to the mitochondria after activation,21,36

potentially via interaction with mitochondrial antiviral-
signaling protein (MAVS),37 and efflux of Kþ directly from
mitochondria is known to modulate the production of mito-
chondrial ROS.38 Phagolysosomal rupture has been shown to
induce Ca2þ mobilization, which can subsequently induce
mitochondrial damage and activation of NLRP3.30 Damage to
themitochondria byCa2þ can result inROSproduction, aswell
as in release of othermitochondrial-derived products that could
potentially be sensed by NLRP3, such as oxidized mitochon-
drial DNA.30,39 In 2013, Iyer et al40 reported that NLRP3 ac-
tivators can induce the release of the mitochondrial membrane
lipid cardiolipin and showed that binding of cardiolipin to the
LRR region ofNLRP3 in parallel withKþ efflux is required for
NLRP3 activation in macrophages, independent of mitochon-
drial ROS production. Taken together, these findings are sug-
gestive of a central role for mitochondrial dysfunction and
potentially mitochondrial cardiolipin in activation of NLRP3.
Nonetheless, further investigation is required to clearly estab-
lish how activation of the NLRP3 inflammasome occurs.

Multiple Levels of NLRP3 Regulation

Although it remains unclear exactly how NLRP3 becomes
activated, extensive research to identify a common activator has
revealed the complex nature in which NLRP3 itself is directly
regulated on various levels, ranging from transcriptional control
to post-translational protein modifications (Figure 1).

Transcriptional Control

In macrophages, endogenous NLRP3 levels are not suffi-
cient to facilitate inflammasome activation; consequently,
The American Journal of Pathology - ajp.amjpathol.org
these cells require an initial NFkB-dependent transcriptional
priming step to induce NLRP3 protein to a functional level
before its activation. Thus, the sensitivity of immune cells to
NLRP3 stimuli is under the control of other innate immune
signaling receptors (eg, TLRs) or cytokine receptors (eg,
TNFR), which can induce the transcription of NLRP3.41,42

In macrophages, several hours of stimulation are required
to achieve optimal levels of NLRP3 protein sufficient
for inflammasome activation. Moreover, constitutive NLRP3
overexpression, which allows priming-independent caspase-1
cleavage in response to stimuli, demonstrates that the level of
NLRP3 protein is rate-limiting for its activation.41,43

Post-Transcriptional Regulation

More recently, it was also demonstrated that NLRP3 expres-
sion is negatively regulated in cells of the myeloid lineage
(CD11bþ) on the post-transcriptional level by a specific
miRNA, miR-223.44,45 Binding of miR-223 to a conserved
site within the 30-untranslated region of NLRP3 results in
reduced translation of NLRP3 protein and a subsequent
reduction in inflammasome activation. Interestingly, expres-
sion of miR-223 is not under the control of a specific proin-
flammatory signal, but rather exhibits differential expression
among myeloid cells: high in neutrophils, moderate in mac-
rophages, and low in dendritic cells (DCs). Thus, the regula-
tory system mediated by miR-223 has likely evolved to allow
for cell-specific sensitivity to NLRP3 activators and the
requirement for an additional level of transcriptional regula-
tion in some immune cells, thus avoiding aberrant NLRP3
inflammasome activation.

Post-Translational Modifications and NLRP3 Activation

Several recent reports suggest that NLRP3 must undergo
post-translational modifications before inflammasome acti-
vation that are independent of its transcriptional re-
quirements. Indeed, acute lipopolysaccharide treatment of
macrophages (for as little as 10 minutes) was shown to
mediate subsequent NLRP3-dependent caspase-1 cleavage,
even under conditions of protein synthesis inhibition.43 This
may be explained by a rapid mitochondrial ROS-dependent
deubiquitination event on NLRP3, which was shown to be
required before activation.43 The deubiquitinase responsible
for mediating this NLRP3 modification was subsequently
identified as BRCC3.46

Aside from deubiquitination, other protein modifications
are likely to govern the activation status of NLRP3. Although
no reports to date have demonstrated direct phosphorylation
of NLRP3, several studies suggest that kinase activity may
also regulate its activation status. Indeed, the tyrosine kinase
Syk has been implicated in NLRP3 activation during the
antifungal response to Candida albicans. Recognition of
C. albicans by immunoreceptor tyrosine-based activation
motif (ITAM)-coupled receptors induces Syk activation and
signaling resulting in formation of the NLRP3 inflammasome,
45
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as well as synthesis of its substrate pro-IL-1b.47 In addition,
Lu et al48 recently reported that protein kinase R (PKR)
directly interacts with NLRP1, NLRP3, NLRC4, and AIM2
and that genetic ablation of the kinase domain of this protein
severely impairs inflammasome-induced caspase-1 cleav-
age and IL-1b secretion. Given that PKR appears to be
required for activation of several inflammasomes, placement
of this protein kinase upstream of these receptors is unlikely,
because this would remove the ligand specificity of their
activation. More recent findings in macrophages reported no
dependence on PKR during NLRP3 inflammasome activa-
tion.49 The reason for these discrepancies remains unclear,
and further studies need to be conducted to confirm a role for
this protein kinase in NLRP3 activation. The kinase activity
of TGF-b-activated kinase 1 (TAK1) also appears to play a
role in NLRP3 activation, because treatment of macro-
phages with a specific TAK1 inhibitor (5Z-7-oxozeaenol)
blocks NLRP3 inflammasome activation independent of its
ability to inhibit TLR-induced NFkB responses.50 Interest-
ingly, TAK1 activation after intracellular Ca2þmobilization
has also been shown to be required for NLRP3 activation
under conditions of cellular perturbation induced by cell
swelling.51

Taken together, the findings on Syk, PKR, and TAK1
raise the possibility that activation of an upstream protein
kinase may potentially regulate the phosphorylation status
of NLRP3 and its ability to form a functional inflamma-
some. Indeed, a phosphorylation event has been shown to be
critical for the function of the NLRC4 inflammasome.11,52 A
single phosphorylation site at Ser533 by protein kinase Cd
(PKCd) was identified by affinity purification and subse-
quent mass spectrometry of a tagged version of NLRC4
from Salmonella typhimuriumeinfected macrophages.52 In
a similar fashion as for NLRC4, such proteomic approaches
could yield valuable insights into the post-translational
regulation of NLRP3 and its activation mechanism.

Post-Translational Modifications and NLRP3 Inhibition

The inflammatory response driven by activation of theNLRP3
inflammasome can be crucial for clearance of invading mi-
crobial pathogens; however, its activation must be shut down
in a timely manner, to avoid the possibly damaging effects of
prolonged inflammation. One such mechanism was recently
described whereby NLRP3 inflammasome activation can be
subdued after post-translational modification induced by
exposure to nitric oxide (NO).53,54 Production of intracellular
NO downstream of type I or type II interferon (IFN) receptor
signaling (via IFNAR or IFNGR, respectively) was found to
lead to thiol S-nitrosylation (SNO) of NLRP3, thereby inhib-
iting its ability to interact with ASC and to form an inflam-
masome in macrophages. This mechanism is particularly
important in the control of lung immunopathology during
Mycobacterium tuberculosis infection. Macrophages infected
by M. tuberculosis activate the NLRP3 inflammasome,
resulting in secretion of IL-18, which can subsequently
46
stimulate the production of IFN-g from T cells or natural
killer cells. In turn, IFN-g can activate IFNGR on macro-
phages to stimulate NO production and the nitrosylation of
NLRP3, thus preventing further NLRP3 activation.53

NLRP3 Expression in the Lung

Most studies on the regulation and function of inflammasomes
have been performed on murine bone marrowederived mac-
rophages or DCs. As noted above, the inflammasomes likely
play important roles in mediating an antimicrobial response in
tissues. In addition, chronic activation of inflammasomes in
tissue-resident immune cells or even stromal cells could
contribute to pathology such as chronic inflammation or fibrotic
responses. An examination across murine tissues found Nlrp3
mRNA to be most highly expressed in the spleen, and next
highest in the lung.55 The high expression ofNLRP3 in the lung
was attributed to the large amount of immune cells that populate
this organ. Indeed, alveolar macrophages comprise more than
90% of cells obtained from the bronchoalveolar lavage (BAL)
fluid of naïvemice.56Alveolarmacrophages express high levels
ofNlrp3mRNA, as do othermyeloid cells such asDCs derived
from murine lungs (Immunological Genome Project Con-
sortium57), and are the primary source of IL-1b and IL-18
produced locally. In addition to pulmonary macrophages and
DCs, lung epithelial cells also express NLRP3 and produce IL-
1b in response to several stimuli.58,59

Activation of the NLRP3 inflammasome is thought to
contribute to a number of inflammatory conditions. In the
following sections, we provide a short overview of the
emerging role of NLRP3 in various lung pathologies.

NLRP3 Inflammasome in Host Defense
against IAV

IAV infects millions of people worldwide during seasonal flu
epidemics, placing a significant financial burden on national
health care systems. In the United States alone, IAV accounts
for nearly 40,000 deaths per year.60 Several studies have
revealed a protective phenotype for NLRP3 in mouse models
of IAV infection, as demonstrated by reduced morbidity in
NLRP3-deficient and caspase-1edeficient animals.61e63 The
increased mortality of Nlrp3-deficient mice correlated with
significantly lower IL-1b and IL-18 cytokine levels and less
cellular infiltration in the BAL fluid after intranasal challenge
with IAV. Given its protective role in IAV infection, and the
high yearly infection rate for IAV, it is conceivable that there
is a strong evolutionary pressure on theNLRP3 gene. To date,
the signal responsible for NLRP3 activation after IAV re-
mains unclear, but it may be via direct recognition of the
single-stranded RNA virus itself,62 or possibly via the func-
tion of viral encoded proteins.63,64

More broadly, IAV infection evokes an integrated innate
immune response dependent on members of multiple PRR
families in addition to NLRP3. Several of these signaling
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


NLRP3 Regulation and Lung Pathologies
pathways lead to strong production of type I IFNs, including
recognition of viral RNA by TLR365 and activation of
RIG-I by 50-triphosphate on genomic viral single-stranded
RNA.66 Although production of type I IFN can negatively
regulate NLRP3 activation via nitrosylation (as discussed
above), it can also be important in regulating its activation in
the context of specific infections. Rathinam et al67 recently
reported that, after TLR4-mediated recognition of Gram-
negative bacteria, TIR domain-containing adaptor protein
inducing IFN-b (TRIF) mediates the expression and acti-
vation of caspase-11 via type I IFN signaling, which in turn
synergizes with caspase-1 during NLRP3 inflammasome
activation. Although this concept remains to be tested
experimentally in the case of IAV infection, we are tempted
to speculate that the strong IFN response evoked by PRRs
during IAV may also play a role in NLRP3 inflammasome
activation via the TRIFecaspase-11 axis.

The NLRP3 Inflammasome in Pulmonary
Fibrosis

Occupational Pulmonary Fibrosis

Asbestos and silica are naturally occurring minerals with
distinct chemical and physical properties. For many years
asbestos was a common material used in industry and con-
struction, until it was revealed that extended exposure to
asbestos fibers could lead to fibrosis of lung tissue and the
form of pneumoconiosis now termed asbestosis.68 Prolonged
inhalation of dust containing crystalline silicon dioxide (silica
crystals), such as is encountered in the various mining, con-
struction, and manufacturing industries, triggers similar lung
pathologies in the form of pneumoconiosis termed silicosis.
Inhalation of asbestos fibers or silica crystals leads to their
deposition within the small airways of the lung, where they
are encountered by resident cells of the innate immune sys-
tem, such as alveolar macrophages and DCs. Phagocytosis of
these particulates by macrophages elicits the sustained in-
flammatory state that is a hallmark of both diseases.68 This
chronic inflammation ultimately leads to pulmonary fibrosis,
often progressing to pneumoconiosis and lung cancer.

The damaging inflammation responsible for driving these
processes is dependent on aberrant activation of the NLRP3
inflammasome.25,69,70 In response to silica and asbestos,
macrophages secrete IL-1b in amanner dependent onNLRP3
activation after lysosomal disruption and intracellular ROS
production. Furthermore, after intranasal administration of
asbestos, Nlrp3-deficient mice showed diminished recruit-
ment of inflammatory cells into the lungs, which correlated
with a significant decrease in IL-1b cytokine present in the
BAL fluid.70 Similarly, in response to silica inhalation, Asc-
deficient and Nlrp3-deficient mice exhibited significantly less
infiltration of inflammatory cells into alveoli (ie, reduced
granuloma formation), as well as reduced collagen deposition
and pulmonary fibrosis, compared with wild-type animals.69

Taken together, these findings demonstrate that inflammation
The American Journal of Pathology - ajp.amjpathol.org
mediated through recognition of exogenous particulates
(danger signals) by the NLRP3 inflammasome can lead to
progression of chronic occupational lung pathologies.

IPF

In contrast to asbestosis and silicosis, most cases of pul-
monary fibrosis are idiopathic, with unknown causative
agents. IPF is a progressive and fatal interstitial pneumonitis
characterized by recurrent episodes of acute lung injury with
subsequent scarring and lung disease. There is currently no
effective medical therapy.

The most widely used model of experimental IPF is that
induced by instillation of bleomycin, an antitumor agent that
induces DNA damage via oxidative injury and cell death of
alveolar macrophages and epithelial cells.71 Inflammation,
repair, and fibrosis in this model are dependent on IL-1b pro-
duction and IL-1R1/MyD88 signaling.72 Of note, bleomycin-
induced IL-1b production is dependent on the adapter
molecule ASC. These studies were extended to investigate the
upstream mechanisms leading to IL-1b release and identified
a critical role for the NLRP3 inflammasome in the pathology
of bleomycin-induced lung injury.73 Nlrp3-deficient mice
exhibited a significant reduction in neutrophil recruitment and
active matrix metalloproteinase 2 (MMP-2) in the BAL fluid,
compared with wild-type mice. Interestingly, accumulation of
uric acid was also observed in the BAL fluid after bleomycin
induction. Inhibition of uric acid synthesis with allopurinol or
administration of uricase, which converts uric acid to more
soluble allantoin, significantly diminished bleomycin-induced
increase in uric acid, neutrophil influx, and IL-1b production.
Notably, uric acid crystals administered intranasally were
engulfed by alveolar macrophages and induced a dose-
dependent macrophage and neutrophil recruitment into
the BAL fluid. This was dependent on the NLRP3 inflamma-
some, as demonstrated by a significant decrease in IL-1b
production and neutrophil recruitment intoBALfluid ofNlrp3-
deficient mice.73 Taken together, these findings suggest that
bleomycin-induced lung injury results in local accumulation of
uric acid in the lung that undergoes phase transition to formuric
acid crystals, which may in turn activate the NLRP3 inflam-
masomeand result in IL-1bproduction and pulmonaryfibrosis.

The NLRP3 inflammasome has also been implicated in a
model of lung injury induced by mechanical ventilation.
Interestingly, in this model of ventilator-induced lung injury,
uric acid accumulated in the BAL fluid.74 A subsequent study
implicated eATP, another known activator of the NLRP3
inflammasome, as amediator of bleomycin-inducedfibrosis.75

Elevated levels of eATP were found in the BAL fluid of pa-
tients with IPF and in mice after bleomycin instillation.
Strikingly, patients with exacerbated IPF exhibited a fourfold
to fivefold increase in eATP levels in the BAL fluid. The
mechanism proposed is that the P2X7 receptor is activated by
eATP, leading to activation of the NLRP3 inflammasome and
mature IL-1b production.75 Interestingly, in addition to bleo-
mycin, the chemotherapeutic agents gemcitabine and 5-
47
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fluorouracil have recently been shown to activate NLRP3 in
myeloid-derived suppressor cells.76 Taken together, these
findings support a significant role for NLRP3 in IPF.

A Controversial Role for the NLRP3
Inflammasome in Allergic Asthma

An estimated 300 million people currently live with asthma
worldwide, and an alarming 250,000 people die from the
disease each year.4 Allergic asthma is an inflammatory airway
disease exhibiting a distinct inflammatory profile through
activation of the adaptive T helper 2 (Th2) pathway, which is
initiated by allergen uptake and processing by antigen-
presenting cells. The ensuing Th2-type response leads to
airway eosinophilia, mucus hypersecretion, structural changes
to the airway wall, and various types of airway obstruction.77

TLR4 activation is critical for allergic lung inflammation, and
low levels of lipopolysaccharide have been shown to enhance
the Th2-type response to allergens.78 A role for the NLRP3
inflammasome remains controversial, however, although
some indirect evidence for NLRP3 activation in allergic
airway disease exists. This evidence includes elevated eATP in
the BAL fluid after allergen challenge,79 which can trigger the
NLRP3 inflammasome via the P2X7 ion channel, as well as
increased IL-1b cytokine levels in the serum,80 induced
sputum,81 and BAL fluid82 of asthma patients.

Mouse models of allergic asthma classically involve
sensitization and challenge with various protein antigens,
such as ovalbumin (OVA), or encompass inhalation of aer-
oantigens, such as house dust mite (HDM). Notably, HDM
and the widely used Th2-promoting adjuvant aluminum hy-
droxide (alum) are known activators of the NLRP3 inflam-
masome.25,70,83 However, controversy exists as to whether
NLRP3 plays a role in alum-induced adjuvanticity and in-
duction of Th2-type immunity. A crucial role for the NLRP3
inflammasome in development of allergic airway inflamma-
tion was described in both an adjuvant-dependent (alum-
OVA) and an adjuvant-free (OVA) model of allergic
asthma.84,85 Th2 cell priming was impaired in mice deficient
in Nlrp3, Asc, or caspase-1, as demonstrated by decreased
OVA-specific Ig antibody induction, airway eosinophilia,
and Th2 cytokine production.84,85 Reduced Th2-type re-
sponses were also observed for mice deficient in IL-1R1,
IL-1b, and IL-1a, confirming the critical role of IL-1R1
signaling in allergic inflammation.84

In contrast to these reports, Kool et al86 suggested that
NLRP3 does not significantly contribute to either OVA-
Table 1 Contribution of NLRP3 in Animal Models of Allergic Airway D

Animal model

Adjuvant-free OVA model: sensitization and intranasal challenge with O
Adjuvant-dependent OVA model: sensitization with OVA and adjuvant;
intranasal challenge with OVA

House dust mite (HDM)edriven model: intranasal exposure to HDM anti

48
mediated or HDM-mediated allergic airway inflammation
in mice. Their study identified uric acid as a potent Th2-cell
adjuvant acting independent of the NLRP3 inflammasomee
IL-1 axis. In the proposed mechanism, uric acid is both
necessary and sufficient to induce Th2-mediated immune
responses in mice by triggering DC activation in a Syk-
dependent and PI3-kinase dedependent manner.86 More
recently, Allen et al87 compared four different allergic
models and found no difference between allergic response in
Nlrp3-deficient mice, compared with controls. In fact, only
the adjuvant-free OVA model showed a modest and selected
role for NLRP3. Several explanations have been proposed to
account for the discrepancies among studies, including var-
iations in the preparation, type, route of administration, and
concentration of the antigen used, the timing of the model, or
differences in composition of the host microbiome.87,88

Although such differences may, in part, help explain the
discrepancies between studies, the role of NLRP3 in allergic
asthma remains unclear and requires further investigation.
The contribution of NLRP3 to the allergic asthma models
described above is summarized in Table 1.
In addition to the conventional Th2-type response to al-

lergens, the NLRP3 inflammasome has been implicated in
mixed Th2- and Th17-mediated allergic airway disease
models.89 Of note, in these allergic sensitizations, serum
amyloid A expression is induced in the airways, which can
provoke a robust IL-1bedependent inflammatory response.
Serum amyloid A is found in human asthma patients,90,91

and it can activate several PRRs, including the NLRP3
inflammasome.89 Thus, it appears possible that, especially
in severe asthma, NLRP3 inflammasome activation con-
tributes to lung pathology. A role for the inflammasome-
dependent cytokine IL-18 has also been described. Of
particular interest, IL-18 is a known trigger of several Th2-
like cytokines, including IL-4, IL-5, IL-9, and IL-13. In a
murine model of IL-18 overexpression in the lung, anti-CD4
antibody therapy or deletion of IL-13 led to improvement of
OVA-induced airway hyperresponsiveness and airway
inflammation. These studies suggest that IL-18 contributes
to lung pathology driven by activated T cells and T celle
derived cytokines.92

A Possible Role for the NLRP3 Inflammasome
in COPD

COPD was responsible for 5% of deaths globally in 2005
[Chronic obstructive pulmonary disease (COPD), World
isease

References

Role for NLRP3 No Role for NLRP3
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Health Organization Fact sheet no. 315; http://www.who.int/
mediacentre/factsheets/fs315/en, last accessed October 22,
2013], and it is projected to be the fourth leading cause of
death by 2030.4 COPD is a multicomponent disease man-
ifested as chronic bronchitis, chronic airway obstruction,
and emphysema. This results in shortness of breath, in-
creasing cough and sputum production, and progressive
airflow obstruction that is not fully reversible.93 Develop-
ment of the chronic inflammatory airway pathology in
COPD is thought to be caused by inhalation of noxious
particles or gas, most commonly cigarette smoke (CS).
Acute symptomatic exacerbations in COPD patients, which
are commonly brought about by secondary viral or bacterial
infections of the lung, contribute to structural changes in the
airway. Many cell types in the lung (including epithelial
cells, alveolar macrophages, and DCs), as well as immune
cells recruited from the periphery, respond to the noxious
inhaled substances that cause COPD. Activated cells produce
proinflammatory cytokines, ROS, and tissue-degrading en-
zymes, which mediate tissue injury and remodeling, emphy-
sema induction, and chronic inflammation.94 CS causes
alveolar epithelial cell injury,95 leading to infiltration of in-
flammatory cells into the mucosa, submucosa, and glandular
tissue to orchestrate the innate inflammatory response.93

In addition, airway epithelial cells release transforming
growth factorb (TGF-b),which contributes to the inductionof
fibrotic tissue remodeling.96

Although several indirect lines of evidence link
inflammasome-dependent cytokines to disease pathology of
COPD,97,98 a direct role for the NLRP3 inflammasome has
yet to be clearly shown. Cigarette smoking leads to IL-1b
release in the human lung.99 In addition, elevated levels of
IL-1a and IL-1b are found in the lungs of COPD patients,
and their secretion is amplified in lungs during disease ex-
acerbations.100,101 Furthermore, mice overexpressing IL-1b
in the lung present a phenotype similar to COPD, including
lung inflammation, emphysema, and pulmonary fibrosis,102

and mice lacking IL-1R are profoundly protected from CS
lung pathology.103e105

Another IL-1 family cytokine, IL-18, is also processed
via the NLRP3 inflammasome, and it appears to be causally
related to COPD. In patients with COPD, IL-18 levels are
elevated in blood and lungs.106,107 IL-18 levels in sputum108

and even serum109 inversely correlate with lung function in
COPD patients, suggesting a significant role in pathogen-
esis. Additionally, compelling data have emerged from the
generation of lung-specific transgenic mice overexpressing
IL-18, which undergo chronic inflammatory changes in the
lungs with severe emphysematous and associated pulmo-
nary hypertension similar to that seen in COPD.110

Furthermore, mice deficient in IL-18R are partially pro-
tected from CS-induced lung injury and inflammation.106

Inhibition of caspase-1 in a murine CS-induced emphy-
sema model significantly decreased airway inflammation.111

Notably, increased caspase-1 activation was observed in lung
samples from smokers and emphysema patients, compared
The American Journal of Pathology - ajp.amjpathol.org
with nonsmokers.112 Taken together, these findings suggest
that inflammasome activation occurs in the lungs of COPD
patients.

CS contains a wide variety of toxic molecules that can
trigger innate immune receptors, including TLRs and
inflammasomes. Additionally, the induction of cell death by
CS leads to the release of endogenous danger signals. For
example, the chromatin-binding high mobility group box 1
protein (HMGB1) is found in BAL fluid113 and sputum114 of
COPD patients. HMGB1 is a known TLR activator,115,116

and could contribute to the inflammatory response in the
lung by eliciting proinflammatory cytokines and the priming
of cells for inflammasome activation. Also, various mole-
cules that are known activators of the NLRP3 inflammasome
are found at elevated levels after CS exposure or in the lungs
of COPD patients. For example, eATP accumulates in the
airways of both COPD patients and animal models of COPD,
and a growing body of evidence highlights eATP and the
P2X7 receptor in the pathogenesis of lung diseases.94 In a
study by Eltom et al,112 CS exposure was found to induce
neutrophilia, leading to increased caspase-1 activity and to
release of IL-1b and IL-18 in the lungs of mice. Pharmaco-
logical blockade or genetic deficiency of the P2X7 receptor
attenuated CS-induced caspase-1 activation, IL-1b release,
and airway neutrophilia in this model.112

Interestingly, increases in uric acid levels have also been
observed in the BAL fluid fromCOPDpatients.98 As has been
observed in bleomycin-induced models of IPF, the presence
of elevated uric acid may result in the formation of uric acid
crystals within the lungs, which could subsequently activate
the NLRP3 inflammasome. Taken together, these findings
suggest a possible role for NLRP3 inflammasomeemediated
production of IL-1 family cytokines in COPD. We speculate
that exacerbations of COPD could also involve the NLRP3
inflammasome. In 60% to 80% of cases, these episodes are
triggered after viral and bacterial infections of the respiratory
tract.93 Many of these pathogens are likely recognized via
PRRs, including TLRs. Activation of such pathways induce
the transcriptional priming of NLRP3 and in turn could
enhance its subsequent activation by eATP or uric acid
crystals present in COPD lungs at high concentrations.

Although there is now compelling evidence that
inflammasome-dependent cytokines are found in COPD,
and that triggers of the NLRP3 inflammasome are elevated
during disease pathogenesis, direct evidence that the NLRP3
inflammasome is indeed driving COPD remains to be
clearly established. To our knowledge, only one study has
directly examined the role of NLRP3 in a model of pul-
monary inflammation after CS exposure by using Nlrp3-
deficient mice. In that study, Pauwels et al105 found that,
although IL-1b and IL-1R were central for mediating pul-
monary inflammation after CS exposure, NLRP3 and
caspase-1 appeared to play no role. These findings could
indicate that NLRP3 inflammasome activation may be
required only at certain phases of disease pathology in this
model.
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Figure 2 The NLRP3 inflammasome in lung
inflammation and injury. Evidence from patients
with lung diseases and experimental animal
models suggests that a number of inhaled triggers
can cause NLRP3 inflammasome activation in the
lung, including cigarette smoke, asbestos, silica,
bleomycin, and IAV. Inhaled silica crystals or
asbestos fibers can induce NLRP3 activation
directly via lysosomal damage and ROS production
after phagocytosis by alveolar macrophages. The
NLRP3 inflammasome can also be activated indi-
rectly in the lung after the release of danger sig-
nals from dying or injured cells (eg, eATP and uric
acid crystals). Activation of the NLRP3 inflamma-
some drives the production of IL-1b and IL-18
cytokines, causing the infiltration of additional
immune cells and lymphocytes that sustain the
inflammatory response potentially leading to
chronic lung injury and pulmonary fibrosis.

De Nardo et al
Alternatively or additionally, in this model IL-1b could
also be processed in an NLRP3-independent manner during
the CS-induced lung inflammation. Indeed, independent of
inflammasomes, IL-1b processing by inflammatory caspases
other than caspase-1 has been identified,117,118 and there are
other proteases that can mediate NLRP3 inflammasome-
independent IL-1b processing.119 Furthermore, the impor-
tance of IL-1R signaling in COPD models may also be
explained by findings showing that IL-1a is a key proin-
flammatory cytokine linked to CS-induced inflammation and
lung injury. Neutralization of IL-1a (but not of IL-1b)
reduced CS-mediated lung neutrophilia,103 as well as DC
accumulation and activation in the lungs.120 In contrast to IL-
1b, both the precursor and cleaved forms of IL-1a are bio-
logically active. IL-1a can be released from dying cells,121,122

and thus could lead to IL-1emediated inflammatory re-
sponses. Additionally, in response to eATP, for example, IL-
1a release is also regulated by NLRP3,123 and thus NLRP3
activation may contribute to IL-1aemediated responses.
Therefore, as in the case of studies of asthma, further inves-
tigation is required before ruling out a possible contribution of
NLRP3 activation during the pathogenesis of COPD.

Conclusions and Perspectives

PRRs constitute an integral component of the immune
system of the lung and are necessary for inflammatory
processes involved in defense against invading pathogens
and for restoration of tissue homeostasis. However,
50
erroneous activation of the innate defense mechanisms in
the lung can have drastic consequences for the host.
Although many different PRRs are undoubtedly triggered
during inflammatory conditions in the lung and likely
contribute to disease manifestation, several lines of evidence
suggest a central role for the NLRP3 inflammasome.
Here, we have described recent findings relevant to the

understanding of NLRP3 regulation and activation. In addi-
tion, we have summarized how innate immune mechanisms,
especially activation of the NLRP3 inflammasome, can
contribute to lung pathology in several disease conditions
(Figure 2). Acutely, activation of NLRP3 is important for the
clearance of viral and bacterial lung infections. However,
sustained activation of NLRP3 after inhalation of irritants can
lead to more chronic and deleterious inflammatory effects in
the lung. The accumulation of well-defined NLRP3 activa-
tors, eATP and uric acid crystals, as well as the presence
of inflammasome-dependent cytokines in patients with
chronic inflammatory lung pathologies strongly suggests an
involvement of the NLRP3 inflammasome. A possible sce-
nario leading to chronic inflammation in pulmonary tissues
could involve activation of alveolar epithelial cells by IL-1b
and IL-1a cytokines produced from alveolar macrophages
or DCs through continual activation of the NLRP3 inflam-
masome by inhaled irritants or locally produced danger
signals. Activation of epithelial cells could then trigger
the production of chemokines and effector molecules
that mediate a robust inflammatory response. In addition,
NLRP3-dependent secretion of IL-1b and IL-18 from lung
ajp.amjpathol.org - The American Journal of Pathology
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macrophages or DCs could result in activation and polari-
zation of lymphocytes (Figure 2). Persistent production of
such inflammatory mediators could lead to the tissue injury
and fibrosis seen in such chronic lung pathologies.

Advances in our understanding of the detrimental effects
of inhaled irritants such as asbestos and silica have assisted
in minimizing exposure to these NLRP3 activators. How-
ever, another potential threat to the lung comes from the
increasing use of nanoparticles (eg, titanium dioxide) in
diverse products and manufacturing processes, including
cosmetics, biomedicine, and electronics. Recent studies have
revealed that nanoparticles can trigger the NLRP3 inflam-
masome.124,125 Alarmingly, inhalation of nanoparticles
evokes a tissue response similar to that seen for asbestos and
silica,126 raising the concern that long-term exposure to these
materials could cause chronic pathologies similar to those
observed after inhalation of asbestos and silica.

As we have outlined above, in some murine models of
chronic lung diseases, including asthma and COPD, the role
of NLRP3 remains unclear. Therefore, although much
progress has been made toward the understanding of in-
flammatory lung pathologies, many challenges remain for
full characterization of the role of NLRP3 in these contexts.
For instance, future efforts should aim at better defining in
which tissue-resident cells the NLRP3 inflammasome is
activated in various lung disease models and which cells are
activated downstream by inflammasome effector molecules.
A further challenge will be to dissect the contribution of IL-
1b and IL-1a to these disease pathologies. This is of
particular importance, because pharmacological approaches
to directly target IL-1b cytokines and their signaling re-
ceptors are currently being pursued.127 The partially re-
dundant and complementary roles of inflammasome effector
molecules in lung pathologies also warrant the search for
novel therapeutics that directly target the NLRP3 inflam-
masome or mechanisms that control its activation.
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