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Although cancer has historically been viewed as a disorder of proliferation, recent evidence has
suggested that it should also be considered a metabolic disease. Growing tumors rewire their
metabolic programs to meet and even exceed the bioenergetic and biosynthetic demands of
continuous cell growth. The metabolic profile observed in cancer cells often includes increased
consumption of glucose and glutamine, increased glycolysis, changes in the use of metabolic
enzyme isoforms, and increased secretion of lactate. Oncogenes and tumor suppressors have
been discovered to have roles in cancer-associated changes in metabolism as well. The metabolic
profile of tumor cells has been suggested to reflect the rapid proliferative rate. Cancer-
associated metabolic changes may also reveal the importance of protection against reactive
oxygen species or a role for secreted lactate in the tumor microenvironment. This article reviews
recent research in the field of cancer metabolism, raising the following questions: Why do
cancer cells shift their metabolism in this way? Are the changes in metabolism in cancer cells a
consequence of the changes in proliferation or a driver of cancer progression? Can cancer
metabolism be targeted to benefit patients? (Am J Pathol 2014, 184: 4e17; http://dx.doi.org/
10.1016/j.ajpath.2013.07.035)
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Discoveries of Otto Warburg

Otto Warburg’s pioneering work in the 1920s established
that tumor cells exhibit altered metabolism. Warburg
discovered an important distinction between the relative use
of different modes of energy production in normal cells and
tumors. In normal tissues, most of the pyruvate formed from
glycolysis enters the tricarboxylic acid (TCA) cycle and is
oxidized via oxidative phosphorylation. In tumors, in
contrast, the pyruvate is largely converted to lactic acid and
energy is produced anaerobically.1 This finding seemed
counterintuitive. Surely, a rapidly proliferating cancer cell
would prefer the 36 ATPs that can be claimed by complete
oxidation of a glucose molecule to the two ATPs available
through glycolysis. Furthermore, this shift in metabolism in
which pyruvate is converted to lactate and secreted, rather
stigative Pathology.
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than being oxidized, occurred in tumors even when there
was sufficient oxygen to support mitochondrial function.
The conversion of most pyruvate to lactate through
fermentation, even when oxygen is present, is called aerobic
glycolysis or the Warburg effect.
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Figure 1 Cancer metabolism. Scheme shows central carbon metabolism.
Metabolic reactions that tend to be faster in tumors are identified in red,
whereas reactions that tend to be slower in tumors are identified in green.
DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate;
KG, a-ketoglutarate; OAA, oxaloacetate; PEP, phosphoenolpyruvate.

Is Cancer a Metabolic Disease?
Evidence that Aerobic Glycolysis Promotes
Tumorigenesis

Since these early discoveries, rapid consumption of glucose
and secretion of lactate have been discovered to be a charac-
teristic of many types of tumors. By using the imaging agent 2-
[18F]fluoro-2-deoxy-D-glucose, coupled with positron emis-
sion tomography (PET), primary and metastatic lesions can be
identified with a specificity and sensitivity near 90%.2

Furthermore, glucose uptake assessed with PET correlates
with poor prognosis in oral squamous cell carcinoma,3 gastric
cancer,4 and neoplasms of other tissues.5 Tumor-produced
lactate concentrations also correlate with shorter survival and
increased metastases in cervical and head and neck cancer.6e8

Overall, the association between a glycolytic phenotype and
poor prognosis, along with the consistency of the phenotype
and its usefulness for diagnosis, supports a model in which
metabolic changes are a reproducible characteristic of cancer
cells and may even promote disease progression.

In this review, we consider the way in which cancer cells
rewire their metabolism with a focus on a few key questions.
What is the metabolic phenotype of cancer cells and how is
it achieved molecularly? How do oncogenes and tumor
suppressors coordinate and enforce the metabolic changes
that occur with cancer? Is the metabolic phenotype of cancer
cells a reflection of their rapid growth? Why do tumor cells
undergo this dramatic shift (ie, what advantage would an
inefficient energy production program confer)? Are meta-
bolic changes drivers of cancer progression or do they just
come along for the ride? And finally, is the cancer metabolic
profile sufficiently distinct from that of normal cells that it
can be targeted therapeutically?

Molecular Basis for the Cancer Cell Metabolic
Phenotype

Cancer Cells Reengineer Glycolysis

Cancer cells evade the mechanisms that normally regulate
glycolytic flux using multiple different strategies. The levels
of many different glycolytic enzymes are induced in tumors9

(Figure 1 and Table 1). In addition, cancer cells subvert the
feedback mechanisms that normally allosterically inhibit
rate-controlling steps in glycolysis. For instance, phospho-
fructokinase (PFK) is inhibited by ATP; when the cell is
energy rich, glycolysis should decrease. However, when
glucose is abundant, the metabolite fructose 2,6-bisphosphate
is formed from fructose 6-phosphate by 6-phosphofructo-
2-kinase/fructose 2,6-bisphosphatases (PFKFBP1-4), and
fructose 2,6-bisphosphate can override ATP-mediated PFK
inhibition. In tumor cells, high levels of glucose transport2,10,11

and hexokinase activity10,24,25 lead to elevated levels of fruc-
tose 2,6-bisphosphate, which allosterically activates PFK. The
specific PFK isozymes overexpressed in cancer cells are less
sensitive to allosteric inhibition by ATP and more strongly
activated by fructose 2,6-bisphosphate.31 Cancer cells also
The American Journal of Pathology - ajp.amjpathol.org
trick themselves and generate cues that there are higher levels
of blood glucose than actually exist by overexpressing
PFKFBPs, increasing the levels of fructose 2,6-bisphosphate
and, thus, driving glycolysis.34 As a result of these different
mechanisms of activation, PFK activity is much higher in
cancer cells than normal tissue.31

Cancer cell lines and tumors also reexpress the embryonic
isoform (PKM2) of pyruvate kinase (PK).39 PKM2 is
distinguished from other PK isoforms because it can asso-
ciate with tyrosine-phosphorylated peptides,68 an association
that results in a transition to a dimeric form with low affinity
for its substrate, phosphoenolpyruvate.69 The less active
PKM2 allows for a diversion of glycolytic metabolites to
serine and glycine biosynthetic pathways.70 Phosphorylated
PKM2 can also translocate to the nucleus, phosphorylate
histone H3, and act as a transcriptional co-activator that in-
duces expression of genes involved in glycolysis.71

The shunting of pyruvate to secreted lactate in tumors is
associated with elevated levels of lactate dehydrogenase
(LDH)48 and monocarboxylate transporters (MCTs) that
cotransport lactate and a proton out of the cell.52 Elevated
LDH levels have been discovered in Burkitt’s lymphoma48

and non-small cell lung cancer,72 whereas increased MCT
levels have been detected in ovarian,73 prostate,52 gastric,74

and cervical75 carcinomas. The shift of pyruvate toward
lactate production and away from oxidative phosphorylation
also reflects decreased activity of the pyruvate dehydroge-
nase complex, which can result from induction of the
inhibitory pyruvate dehydrogenase kinases (PDKs).42

There is substantial evidence that elevated glucose con-
sumption and increased lactate secretion in tumors contribute
to their growth. Patients with type 2 diabetes have high levels
of blood glucose and an increased risk of developing cancers
5
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Table 1 Metabolic Changes in Tumors and Activated Lymphocytes

Metabolic step Cancer cells Primary tumors
Functional
importance

Potential
target

Activated
lymphocytes

Potential
oncogene target

Glucose uptake/
glucose
transporters

Increased10 Increased2,11 Yes12,13 Yes14 Increased15e18 Induced by MYC,19,20

AKT,15 and HIF21 and
repressed by p5322,23

Hexokinase Hexokinase II
increased24,25

Hexokinase II
increased25

Yes26 Yes27 Increased17,28 Induced by MYC29 and
AKT30

Phosphofructokinase Liver isozyme
induced31

Liver isozyme
increased31

Yes32 Yes32 Increased17 Induced by MYC20 and
AKT33

6-Phosphofructo-2-
kinase

Induced34 Increased34 Yes35 Yes36 Increased37 Induced by p5338

Pyruvate kinase Shift to PKM239 Shift to PKM239 Yes39e41 Yes39e41 Increased17,28

Pyruvate
dehydrogenase
kinase

Increased42 Yes43,44 Yes44,45 Increased by HIF46 and
repressed by p5347

Lactate
dehydrogenase

Increased48 Yes49,50 Yes51 Increased28 Increased by MYC50

Monocarboxylate
transporters

Increased52 Increased52 Yes53 Yes53 Increased28 Repressed by p5354

Lactate secretion Increased49 Yes49,50 Increased15 Increased by MYC19

and repressed by
p5322

ATP citrate lyase Increased55 Yes56 Yes56 Activated by AKT57

Glutamine
consumption/
glutamine
transporters

Increased58 Increased17,28,59 Increased by MYC60

Glutaminase Increased61 Yes62 Yes19,62 Increased17,59 Increased by MYC61

Glutamate
dehydrogenase

Yes63 Yes63 Increased59

Glutamate
oxaloacetate
transaminase

Yes63 Yes60,63,64 Increased28,59

Oxidative
phosphorylation

May increase65e67 Yes67 Yes67 Increased18 Induced by MYC67 and
p5322

Coller
of the pancreas, liver, colon, gastrointestinal tract, breast, and
endometrium.76 Inhibiting expression of a glucose trans-
porter GLUT1,12 PKM2,40 LDH,49 or PDK43 results in
reduced tumorigenicity in xenograft models. Reducing the
levels of 6-phosphofructo-2-kinase suppresses glycolytic
flux, growth in soft agar, and tumor growth in mice.35

Knocking down the b-catalytic subunit of the mitochon-
drial Hþ-ATP synthase results in a higher glycolytic rate
and a more aggressive tumor-forming phenotype.77 Taken
together, these studies highlight the importance of the gly-
colytic phenotype for tumor progression.

Multiple approaches to reducing glycolytic flux are being
considered as potential cancer therapies (Figure 2 and
Table 1). In one strategy, patients eat low-carbohydrate
diets, thus starving their tumors of glucose, and it was
shown to be promising in a recent pilot study.14 Pharma-
cological approaches are also being attempted. Lonidamine,
a derivative of indazole-3-carboxylic acid that inhibits
hexokinase, reduces cancer cell proliferation, and sensitizes
xenograft tumors to death by radiation and other
compounds.27 An inhibitor of PFKFB3, 3-(3-pyridinyl)-1-
6

(4-pyridinyl)-2-propen-1-one, decreases intracellular con-
centrations of fructose 2,6-bisphosphate, suppresses glucose
uptake, reduces the growth of cells from multiple types of
cancer in vitro, and inhibits the growth of established tumors
in vivo.36 Dichloroacetate, a pyruvate mimetic that inhibits
pyruvate dehydrogenase kinase, increases pyruvate dehy-
drogenase activity and the oxidation of glucose, reduces the
proliferation of breast cancer cell lines, inhibits prolifera-
tion, and slows xenograft tumor growth.44 In a pilot study,
dichloroacetate resulted in radiological regression in three of
five patients with glioblastoma multiforme.45 In sum, there
are substantial data to suggest that impeding glycolysis, or
redirecting pyruvate toward oxidative pathways and away
from its conversion to lactate, inhibits tumor growth.

Glutamine Is the Major Anaplerotic Source for Cancer
Cells

Some cancer cells also run the TCA cycle in a pattern that
distinguishes them frommost non-transformed cells. In some
cancer cells, pyruvate from glycolysis enters a truncated TCA
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Metabolic approaches to treating cancer. Scheme shows some
of the compounds being explored as anticancer agents and the metabolic
reactions that they target. Red lines indicate inhibition; green lines,
activation. BPTES, bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl
sulfide; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phos-
phate; GLS, glutamine synthetase; GOT, glutamate oxaloacetate trans-
aminase; HK, hexokinase; MCT, monocarboxylate transporters; OAA,
oxaloacetate; PD, pyruvate dehydrogenase; PEP, phosphoenolpyruvate;
PK, pyruvate kinase.

Is Cancer a Metabolic Disease?
cycle that ends as citrate is shuttled from the mitochondrial
matrix to the cytosol.78 Citrate is cleaved by ATP citrate lyase
(ACL) to provide acetyl-CoA that can be used for fatty acid
synthesis. Disruption of ACL impairs tumor growth.56 This
truncated TCA cycle results in a flow of metabolites out of the
TCA cycle (cataplerosis) that needs to be balanced by an influx
of metabolites (anaplerosis). In many cancer cells, glutamine
fulfills this role: it is converted to glutamate and then to the
TCA intermediate, a-ketoglutarate.79 Although glucose is the
precursor for 90% of secreted lactate in cancer cells, oxidative
conversion of glutamine accounts for as much as 40% of TCA
cycle intermediates79 and�30% of the ATP generated.61,79 To
meet the glutamine requirements, some cancer cells dramati-
cally increase glutamine consumption through induction of
glutamine transporters.58 Cancer cells also induce enzymes
that metabolize glutamine, such as glutaminases, that convert
glutamine to glutamate (glutaminase1 and glutaminase C)61

and glutamate oxaloacetate transaminases that convert gluta-
mate to a-ketoglutarate.80

Glutamine withdrawal results in the death of some cancer
cells,60 which is surprising because glutamine is a nones-
sential amino acid that can be synthesized from glucose.
The strict requirement of some tumors for glutamine
makes glutaminolysis enzymes attractive anticancer targets.
The American Journal of Pathology - ajp.amjpathol.org
Glutaminase inhibitors, such as bis-2-(5-phenylacetamido-
1,2,4-thiadiazol-2-yl)ethyl sulfide, reduce cancer cell
growth, transformation, and tumorigenesis.19,62 Trans-
aminase inhibitors have also been suggested as anticancer
agents because glutamine-derived carbons are more likely to
enter the TCA cycle through transamination in cancer cells,
whereas normal cells tend to rely more heavily on glutamate
dehydrogenase.80 Transaminase inhibitor, aminooxyacetic
acid, has a cytotoxic effect specifically on cancer cells,60,63,64

with little effect on healthy cells.64 Treatment with amino-
oxyacetic acid reduced the growth of breast cancer cells in a
mouse xenograft model without any obvious dose-limiting
toxicities.64

Reevaluation of the Warburg Effect

Warburg hypothesized that the shift from respiration to
aerobic glycolysis in cancer cells reflects defective mito-
chondrial respiration.1 In support of this model, tumors tend
to down-regulate the expression of genes involved in
oxidative phosphorylation in general,81 and specifically, the
b-F1 subunit of the ATP(synth)ase.82 In addition, mutations
in mitochondrial DNA have been observed in multiple
tumor types.83 Furthermore, experiments in which the levels
of mitochondrial components are modulated have largely
reinforced the importance of the glycolytic phenotype for
tumor growth in vivo.77 Taken together, the findings of the
functional importance of high glycolytic rates and mito-
chondrial abnormalities in tumors have contributed to the
prevailing paradigm that tumors generate most of their ATP
through glycolysis.

However, this model is being reevaluated for several
reasons. First, recent studies have indicated that some
tumor cell lines do perform oxidative metabolism.65,66,84 In
some studies, respiration actually increases in tumor
mitochondria.65,67 In one study, glycolysis contributed
50% to 70% of ATP for some cancer cell lines, consistent
with Warburg’s findings, but as little as 10% of cellular
ATP in other cell lines.67 Furthermore, there are studies that
indicate that mitochondrial activity and oxidative phos-
phorylation support tumor growth.85,86 In particular,
overexpression of the mitochondrial citrate transporter
has been shown to increase tumor growth in xenograft
models, whereas inhibition of the mitochondrial citrate
transporter, which enhances glycolysis, actually reduces
tumor growth.87 Further supporting such a model, some
human and rodent tumors are susceptible to death induced
by highly specific respiratory inhibitors.67

The Warburg effect is also being reconsidered by in-
vestigators who have argued that some of the cells within a
tumor actually consume, rather than secrete, lactate. Lactic acid
recycling occurs in normal physiological conditions as con-
tracting skeletal muscle supplies lactate to the liver. The liver
uses gluconeogenesis to convert lactate back to glucose that is
released into the bloodstream and absorbed by muscle, thus
completing the Cori cycle. In the tumor microenvironment,
7

http://ajp.amjpathol.org


Extracellular glucose 

Intracellular glucose 

Hexose-P 

FBP 

PEP 

Pyruvate 

Acetyl-CoA 

Ala

Citrate 

KG Malate 

OAA 

Glycosylation or 
polymerization 

Unlabeled 
cellular pool 

Asp 

Protein and 
excretion 

Intracellular 
lactate 

Fatty acids 

Protein and 
excretion 

Glutamate Intracellular 
glutamine 

Extracellular 
glutamine 

GLUT 

HK 

PFK 

PK 

PD 

ACL 

LDH 
Extracellular 

lactate 

MCT 

SLC1A5 GLS 

la

os

BP

P

I t ll l
LDH L

s

P

and 
on

ellular 

xtracellular 
lactate 

s 

Protein 
excret

Intra

EE
MCT

a
io

ce

ExE

aaar glul

P

se-

P

DHDH MCTMMCTMCT

ucoose l

PP

GDH, GOT  

DHAP Glycerol 
for lipids GAP 

Serine 3-Phosphoglycerate 

AKT 

Figure 3 Metabolic effects of oncogenes and tumor suppressors.
Scheme shows the metabolic reactions in central carbon metabolism
affected by AKT (orange), MYC (blue), HIF (green) and p53 (red). Arrows
indicate activation; lines, repression. DHAP, dihydroxyacetone phosphate;
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oxidative tumor cells (eg, those near blood vessels) have been
proposed to consume lactate secreted by tumor cells that are
engaging in aerobic glycolysis.53 Absorbed lactate can be
converted to pyruvate and used to fuel oxidative phosphory-
lation in these well-oxygenated cells. The reliance of aerobic
cells within a tumor on lactate as a fuel may preserve the
available glucose for the hypoxic cells that strictly require it.53

Metabolism of the Tumor Stroma

It has also been proposed that cells within the host tissue,
the stroma, and not the tumor cells, perform aerobic
glycolysis. Stromal cells, for example, the fibroblasts, in the
tumor microenvironment can actively support malignant
transformation88 and metastasis.89 A hypothesis has been
proposed that the tumor stroma is glycolytic and that stro-
mal cells express MCTs that exude lactate, whereas tumor
cells perform oxidative metabolism and express transporters
that consume lactate.90,91 The proposed model is that tumor
growth is fueled by lactate, ketones, and glutamine provided
by stromal cells that are then absorbed by cancer cells and
used for oxidative phosphorylation. It has been further
suggested that the PET avidity observed by tumors reflects
2-deoxy-glucose uptake by nearby stromal and inflamma-
tory cells rather than the cancer cells themselves.84 This
model has been called the reverse Warburg effect because
the increased glycolysis occurs in the surrounding stromal
cells, rather than the tumor cells.91 From this perspective,
cancer is viewed as a parasitic disease that steals energy-rich
metabolites from the host organism.91e93

Summary of Molecular Mechanisms of Cancer
Metabolism

In summary, although studies have recently questioned the
glucose flux paradigm,87,91 the prevailing model is that
there is higher flux of glucose through most metabolic
pathways in tumor cells compared with normal cells. More
glucose is transmitted to metabolic intermediates, lactate,
citrate, and fatty acid synthase, and possibly even more to
oxidative phosphorylation.78 Meeting all of these condi-
tions would seem to require a large increase in glucose
uptake in tumors. PET imaging has confirmed the
increased glucose consumption in many, but not all, tu-
mors, and glucose consumption rates exceed the amounts
that can be easily explained by needs for energy or me-
tabolites.2 Glutamine consumption follows a similar
pattern of excess consumption.79 We consider now the
mechanisms that enforce this metabolic shift and possible
explanations for its occurrence.

Oncogenes and Tumor Suppressors Enforce the
Metabolic Shift

The key to understanding the mechanism(s) affecting
changes in metabolism in tumors lies in the discovery that
8

oncogenes and tumor suppressors consistently activated or
deleted in tumors are important regulators of meta-
bolism.78,94 The oncogenic molecules AKT, MYC, and
hypoxia-inducible factor-1 (HIF-1) can all contribute to the
metabolic shift that occurs during carcinogenesis (Figure 3
and Table 1), whereas the tumor suppressor p53 acts to
minimize the glycolytic phenotype and its loss contributes
to aerobic glycolysis and the tumor metabolic phenotype. In
tumors, multiple oncogenic mutations likely cooperate with
each other to result in a phenotype in which cells absorb
nutrients to meet or even exceed the bioenergetic demands
of cell growth and proliferation.

PI3K/AKT

In non-transformed cells, the phosphatidyl inositol-3-kinase
(PI3K) pathway is activated in response to growth signals.15

In a sizable fraction of all cancers, the PI3K pathway is
constitutively activated through mutation or amplification,95

resulting in constitutive activation of AKT kinase and a
growth-promoting metabolic program. AKT activation in-
creases the glycolytic rate, in part by increasing GLUT1
expression15 and translocation of GLUT1 to the plasma
membrane.16 AKT causes the glycolytic enzyme, hexoki-
nase, to associate with the mitochondrial outer membrane.30

AKT also performs an activating phosphorylation of PFK
that releases its inhibition by ATP.33 Finally, AKT promotes
the conversion of citrate to fatty acids by phosphorylating and
activating ACL.57 By simultaneously reducing the expres-
sion of carnitine palmitoyltransferase 1A,96 an enzyme that
ajp.amjpathol.org - The American Journal of Pathology
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initiates the esterification and breakdown of long-chain fatty
acids, AKT may eliminate a potential nutrient source and
contribute to the glucose addiction of some cancer cells.
Thus, activation of the PI3K/AKT pathway can be a powerful
mechanism for altered tumor cell metabolism.
MYC

Deregulated expression of c-MYC, an early serum
response transcription factor, is one of the most common
oncogenic events in cancer.97 Although MYC has well-
established roles in the regulation of cell proliferation,
differentiation, and apoptosis, MYC also drives the accu-
mulation of cellular biomass by regulating nucleotide
biosynthesis, ribosome and mitochondrial biogenesis, and
metabolism.98 In an MYC-inducible human Burkitt’s
lymphoma model, glucose consumption, lactate produc-
tion, glutamine uptake, and glutamine incorporation into
the TCA cycle were all induced by MYC.19,20,50 The in-
duction of LDH by MYC has been specifically demon-
strated to be functionally important for tumor growth,
because MYC-dependent tumors exhibit reduced prolifer-
ative capacity and ability to grow in soft agar when LDH
expression is reduced.50 MYC also promotes glutamine
metabolism by inducing the expression of glutamine
transporters60 and by up-regulating levels of glutaminase
indirectly via repression of the miRNA miR-23.61 As a
result, some MYC-transformed cells have an absolute
requirement for glutamine to maintain continuous replen-
ishment of TCA cycle intermediates.19,60,99
HIF

The oxygen-sensitive HIF-1 transcription factor is a heter-
odimer composed of constitutively expressed b subunits and
oxygen-sensitive a subunits.100 In well-oxygenated cells,
HIF-1a is hydroxylated, which facilitates its ubiquitination
and degradation by the proteasome. In hypoxic conditions,
HIF-1 is stabilized and activated. During tumorigenesis,
localized hypoxic regions in which HIF-1 is stabilized may
develop. This results in the expression of HIF-1 target
genes, such as angiogenesis factors that increase oxygen
delivery to hypoxic tissues.67 HIF-1 also facilitates the
activation of an oxygen-independent mode of energy
extraction (ie, glycolysis in oxygen-deprived cancer cells by
inducing many enzymes in the glycolytic pathway).21 HIF-
1a also promotes aerobic glycolysis by transcriptionally
inducing PDK,46 thus reducing the oxidative stress expected
to occur if the electron transport chain were active. Hypoxic
tumors, which induce HIF-1 and glycolysis most strongly,
tend to be more invasive and metastatic than those with
normal oxygen levels.13 Furthermore, high HIF-1 is asso-
ciated with higher mortality.101 Thus, hypoxia experienced
by tumors promotes HIF-1 expression, which, in turn, co-
ordinates a transition to an aerobic glycolytic phenotype.
The American Journal of Pathology - ajp.amjpathol.org
p53

The p53 tumor suppressor is also being reconsidered from a
metabolic perspective. The role of p53 in orchestrating cell
cycle arrest, apoptosis, or senescence in response to DNA
damage or cellular stress has been thought to explain its role
as a tumor suppressor.102 More recently, p53, like MYC,
has been discovered to be an important regulator of cellular
metabolism. p53�/� Cells have higher rates of glycolysis,
produce more lactate, and exhibit decreased mitochondrial
respiration compared with wild-type cells,22 indicating that
wild-type p53 suppresses an aerobic glycolysis phenotype.
p53 Functions that might enforce these metabolic changes
include down-regulation of glucose transporters,23 up-
regulation of a fructose-bisphosphate-phosphatase that
lowers levels of fructose 2,6-bisphosphate,38 repression of
lactate transporters,54 repression of PDKs,47 induction of the
mitochondrial oxidation regulator, synthesis of cytochrome
c oxidase 2,22 and competition with HIF-1 for limiting
amounts of a shared transcriptional co-activator.103

A recent article has critically tested the importance of the
role of p53 in metabolism in the prevention of tumorigen-
esis. Cells with three p53 lysine mutations (p533KR) lack the
normal functions of p53 in cell-cycle arrest, senescence, or
apoptosis, but retain the ability to suppress glycolytic rates
and maintain low reactive oxygen species (ROS) levels.104

Although p53-null mice rapidly develop thymic lym-
phomas leading to death, surprisingly, p533KR/3KR mice do
not exhibit early-onset tumor formation.104 These findings
suggest that less conventional functions of p53, such as
inhibiting the metabolic shift to aerobic glycolysis and
reducing ROS levels, are critical for the ability of p53 to
suppress early-onset spontaneous tumorigenesis.

The studies previously described demonstrate that p53
can modulate metabolism. Recent studies have shown that
the availability of carbohydrates can, in turn, affect p53
levels. Glucose restriction has been reported to specifically
induce deacetylation and degradation of mutant, but not
wild-type, p53 both in vitro and in vivo.105,106 Because
wild-type p53 inhibits tumor growth and mutant forms of
p53 can promote tumorigenesis,107 the findings suggest that
there may be reciprocal regulation between diet and meta-
bolism on the one hand, and p53 status on the other, that
affects tumor growth.

Cancer Metabolic Phenotype

Activated Lymphocytes Share Metabolic Properties
with Cancer Cells

The metabolic program of cancer cells, although different
from that of most normal, differentiated cells, shares sig-
nificant similarities with some proliferating cells, including
activated lymphocytes. Mature, resting lymphocytes rely on
oxidative metabolism of glucose and glutamine for the en-
ergetic needs.28 Recognition of their corresponding antigen
9
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results in activation of the lymphocytes and is accompanied
by a dramatic shift in metabolism.108 Activated lymphocytes
increase in size, divide rapidly, consume glucose and
glutamine in excess of what can be easily explained by their
need for biosynthesis or ATP, and secrete the extraneous
material as lactate.15,17,18 Many of the molecular changes that
occur when lymphocytes are activated are similar to those that
occur in tumors, including increased activity of glucose
transporters,15,16 glycolytic enzymes,17,28 PFKFBP3,37

lactate dehydrogenase,28 and MCTs.28 To compensate for
the loss of citrate from the TCAcycle, glutamine consumption
increases when lymphocytes are activated,17,59 and this is
associated with higher levels of glutamine transporters17,28,59

and enzymes involved in glutaminolysis (Table 1).17,28,59

The increased glucose flux in activated lymphocytes also
results in higher levels of oxidative phosphorylation.18 The
similarity between the metabolic profile of tumor cells and
activated lymphocytes suggests that this metabolic pattern
and may be associated more generally with rapid cell
division.

Not All Proliferating Cells Use Aerobic Glycolysis

In addition to lymphocytes, many fast-growing unicellular
organisms, including the baker’s yeast Saccharomyces cer-
evisiae, rely on glucose fermentation during proliferation,
even when oxygen is available.109 However, despite the
similarities between tumors, activated lymphocytes, and
fermenting yeast, respiration can sustain fast cell growth.
Some tumor cells rely on oxidation to generate ATP,65,66 and
some aerobic yeasts, such as Yarrowia lipolytica, rely on
respiration for growth.110 Conversely, nondividing cells can
preferentially rely on glycolysis. Hematopoietic stem cells,
which are largely quiescent, have higher glycolytic activity,
lower mitochondrial activity,111 and higher PDK activity,112

compared with their more proliferative descendants. In a
primary human fibroblast model system, a shift between
proliferation and quiescence was not found to be associated
with a dramatic difference in glycolytic rate.113 Finally,
recent studies report that the shift to glycolysis in lympho-
cytes is not necessary for proliferation or survival, but rather
supports cytokine secretion.114 Thus, in somemodel systems,
the metabolic changes observed in tumors occur with a shift
to a high proliferative rate, but this transition is not always
observed when proliferative rate changes; even if it does
occur, it may not facilitate faster proliferation.

The Advantages of the Tumor Cell Metabolic
Profile to the Tumor

Rapid ATP

Why is a less efficient catabolic pathway so strongly
induced in tumor cells? One suggestion is that aerobic
glycolysis is advantageous because it provides ATP more
rapidly than oxidative phosphorylation.66 However, some
10
cancer cells actually recover a significant fraction of their
ATP from oxidative phosphorylation.66 Furthermore, it is
not clear that ATP levels, or the speed which ATP can be
extracted, is actually limiting for cellular growth.94 Even
rapidly dividing mammalian cells have been found to
maintain high ratios of ATP/ADP.39 And, signaling path-
ways exist that allow cells to increase low ATP levels by
activating catabolic pathways that generate ATP.94 For these
reasons, the rationale that cells shift to aerobic glycolysis to
recover rapid ATP is being reconsidered, and other in-
terpretations for the Warburg effect have been offered.

Carbon Skeletons for Growth

Although there may not be selective pressure for generating
ATP, per se, one can imagine selective pressure for the rate
of cellular proliferative expansion.94 Organisms in which
immune cells can respond to the presence of invaders by
rapidly mounting an immune response ought to be less
likely to succumb to infection and, therefore, be more fit.
Increased glycolysis in tumor cells provides a constant
supply of metabolic intermediates that can be diverted to
support cell growth.94 Furthermore, because glucose is one
of the two main nutrients that the cell consumes, it is needed
to provide all of the molecules necessary for cell growth.
To make a fatty acyl chain, a single glucose molecule can

provide five times the ATP required, whereas seven glucose
molecules are needed to generate the necessary NADPH
through the pentose phosphate pathway.94 If all of the
available glucose were converted efficiently and completely
to ATP in mitochondria, there would not be any glucose to
provide acetyl-CoA to make fatty acids. There would also
be no glucose available to divert from glycolysis for the
synthesis of NADPH, nonessential amino acids, or ribose
needed for generating nucleotides. Furthermore, complete
oxidation of each glucose molecule would result in high
ATP levels that would feedback and shut down glycolysis.94

The fact that rapidly proliferating lymphocytes and yeast
also rely heavily on glycolysis over oxidative phosphory-
lation could support the argument that the cancer meta-
bolism phenotype is the metabolic profile that channels
glucose among the available pathways in a way that facili-
tates rapid proliferation and growth.109

But, one might reasonably wonder, if the goal of cancer
cells is to increase their biomass, then why do they secrete
and waste 90% of the glucose carbons they consume?18,79,109

There are several possible explanations. One possibility is
that the cell needs a high rate of flux through glycolysis to
ensure that metabolic intermediates can be siphoned off to
anabolic pathways without dramatically affecting the sizes of
the metabolite pools.109,115 Another important consideration
is that achieving a high level of glycolytic flux actually re-
quires NADþ to be regenerated, which is achieved by con-
verting pyruvate into lactate.109 Furthermore, the secreted
lactate is not, in fact, lost. As previously described, aerobic
tumor cells might absorb the extracellular lactate released by
ajp.amjpathol.org - The American Journal of Pathology
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glycolytic cells, convert it to pyruvate, and use it as a fuel for
mitochondrial oxidative phosphorylation.53

Optimization of Fitness

A somewhat different perspective is to view the Warburg
effect as an extension of a pattern of metabolic pathway use
that exists in simpler model organisms. As growth rate, cell
size, and ribosomal content increase, there is often an
associated shift toward metabolic pathways with less effi-
cient energy recovery.116 This has been interpreted as a
tradeoff between two different catabolic pathways, one of
which is more expensive to generate, but generates more
ATP, and the other uses less enzyme, but produces less
energy. At low extracellular substrate concentrations,
intracellular substrate is expensive, so an efficient catabolic
method is necessary. At higher substrate concentrations,
however, the catabolic pathway that requires less energy to
produce its components becomes more valuable. Thus, a
pathway that seems wasteful in that all possible ATP is not
recovered from each nutrient, may be cheap in terms of the
resources needed to construct the pathway, and may actually
be the more desirable pathway when cells are in a nutrient-
rich environment. A logical extension of the argument to
cancer cells might be to recognize that performing oxidative
phosphorylation requires the generation and maintenance
of entire organelles, the mitochondria, complete with their
own genomes and ribosomes, and an expensive-to-maintain
membrane potential. Respiration, from this perspective, is
a costly catabolic path that requires a substantial invest-
ment, but is useful for efficiently extracting ATP when
nutrients are scarce. When nutrients are abundant, the less
resource-intensive process of glycolysis might be more
desirable. Thus, if resources are not limiting, cells may
benefit from engaging a cheap, but seemingly wasteful,
metabolic program.

Despite these cogent arguments, there are still unan-
swered questions about the metabolic phenotype of cancer
cells. For instance, if the cancer cell phenotype is designed
to facilitate cell growth, then why do cancer cell lines have
higher glucose, lactate, and glutamine fluxes per unit area of
cell membrane, higher hexokinase activity, and higher
pentose phosphate pathway activity than nonmalignant cells
growing at the same rate?117 Are other benefits conferred on
the tumor by this metabolic strategy in addition to simply a
faster growth rate?

Minimizing ROS

The use of aerobic glycolysis allows cells to expend less
energy in the generation and maintenance of mitochondria
and protects tumor cells from ROS that would be generated
by performing oxidative phosphorylation in conditions of
limited oxygen. In addition, both the glucose and the
glutamine consumed by cancer cells can be metabolized
to generate NADPH,79 a necessary cofactor for the
The American Journal of Pathology - ajp.amjpathol.org
replenishment of the cell’s most important antioxidant,
reduced glutathione. The importance of the pentose
phosphate pathway and ROS detoxification in tumor cell
growth was highlighted in a recent study in which hyp-
oxia was found to induce glycosylation and inhibition of
PFK, leading to redirection of glycolytic intermediates
into the pentose phosphate pathway.32 Blocking PFK
glycosylation reduced cancer cell proliferation in vitro
and impaired tumor formation in vivo. Thus, reducing
ROS levels and protecting against ROS-mediated cell
death may represent an advantage conferred by a Warburg
effect metabolic phenotype.

Protection against Apoptosis

In addition to controlling ROS levels, the aerobic glycolysis
phenotype of cancer cells may also protect them from
apoptosis by inhibiting the release of pro-apoptotic factors
from the mitochondria through the mitochondrial perme-
ability transition pore. The ease with which this pore opens
depends on the mitochondrial membrane potential generated
as hydrogen ions are transferred out of the inner mito-
chondrial membrane during oxidative phosphorylation. The
low flux through the electron transport chain in cancer cells
results in mitochondria with higher membrane potential45

and a higher threshold for transition pore opening, thus
suppressing apoptosis. If the hyperpolarization in cancer
mitochondria is reversed by forcing pyruvate into the
mitochondria, glucose oxidation increases, mitochondrial
membrane potential decreases, and cancer cells undergo
more cell death.45 Thus, active electron transport flux may
facilitate mitochondria-mediated cell death, and cancer cells
may maintain viability, in part, by minimizing respiration.

High levels of glycolysis also protect against apoptosis
via hexokinase. Hexokinases can be found physically
associated with the outer surface of mitochondria.24 Some
tumor cells have higher levels of hexokinase24,25 and a
tighter association between hexokinase and the mitochon-
drial membrane.118 The localization of hexokinase to the
mitochondria, which is facilitated by active AKT,29 inhibits
the release of apoptosis-inducing factors, and suppresses
apoptosis.119 Thus, aerobic glycolysis may provide a sur-
vival advantage for tumor cells that helps to explain its
prevalence in human cancers.

Adaptation to the Tumor Microenvironment

Another possibility is that aerobic glycolysis is selected for in
tumors because they are found in a hypoxic environment.
According to this model, as a tumor grows, cells will be
found further and further from the blood supply and pO2
levels decline even more rapidly with distance from blood
vessels than glucose levels. Lack of oxygen will reduce
mitochondrial respiration and lead to a decline in mito-
chondrial ATP. Lower ATP levels are expected to relieve
allosteric inhibition of PFK and PK and promote glycolysis.
11
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Hypoxia also induces HIF-1a stabilization and activity,
which will promote glycolysis and the growth of new blood
vessels. Even if new blood vessels are formed, the solid
tumor microenvironment will still be characterized by
disorganized microvasculature and cycles of normoxia-hyp-
oxia.120 Aerobic glycolysis would continue to benefit cells in
this environment. Thus, the tumor microenvironment, in this
model, induces an aerobic glycolysis metabolic profile and
then provides a selective advantage for tumor cells with high
glycolytic metabolism. Aerobic glycolysis would provide a
strong selective advantage during metastasis as well and,
indeed, cells pretreated with hypoxia are more likely to sur-
vive during metastasis than their normoxic counterparts.121

There are a few questions surrounding this model. Some
studies have questioned whether oxygen levels in the tumor
microenvironment are, in fact, lower than the Km for the rate-
limiting enzymes in oxidative phosphorylation.67 Others
have questioned the implied timing of the model, and argued
that cancer cells activate a glycolytic metabolism even before
they are exposed to hypoxic conditions.94 In addition, the
aerobic glycolysis metabolic profile is not limited to hypoxic
tumors.94 Leukemic cells and lung tumors found in airways
are highly glycolytic, even though they are exposed to oxy-
gen.94 Furthermore, although the tumor microenvironment
might select for cells with an aerobic glycolysis phenotype,
tumor cells maintain the metabolic phenotypes in culture
under normoxic conditions. This may reflect the stabilization
of HIF-1a and the persistent effects on gene expression of the
combination of HIF-1a, oncogenes, and tumor suppressors.
Thus, a more inclusive model might be that, in response to a
combination of microenvironmental conditions, including
hypoxia, and the activity of oncogenes and tumor suppres-
sors, cancer cells acquire a metabolic phenotype that is stable
and heritable, persists even when oxygen is available, and
provides a selective advantage in the tumor environment and
during metastasis.

Functional Role of Secreted Lactate

A final proposed explanation for the Warburg effect is that
lactate secreted from tumor cells has an important functional
role in promoting tumorigenesis. In support of this expla-
nation, much of the glucose consumed by cancer cells is
converted to lactate,18,79,109 and high levels of lactate are
associated with a poor tumor prognosis.7 MCTs cotransport
lactate and a hydrogen ion out of the cell, resulting in an
acidification of the local environment. The ensuing decrease
in pH might promote cancer cell invasion and metastasis by
killing normal host cells, thus generating space for the tumor
and possibly releasing nutrients that the tumor can consume.
A low pH might also stimulate invasion122 and metastasis123

by activating pH-sensitive metalloproteinases and/or ca-
thepsins that degrade proteins in the extracellular matrix and
basement membranes.124 Furthermore, as previously
described, secreted lactate has been proposed to provide
nutrients to surrounding cells.53 Lactate secreted by cancer
12
cells has also been proposed to feed nontumor, stromal
cells.125 Thus, from the perspective of lactate recycling, the
cancer can be considered a microecosystem in which the
different tumor components engage in complementary
metabolic pathways that allow for the recycling of the waste
product metabolites of aerobic glycolysis to support tumor
growth.53,84,125

Finally, the secretion of lactic acid has also been proposed
to play a role in suppressing the host anticancer immune
response.126 The metabolism of cytotoxic T lymphocytes,
like that of the tumor cells, requires lactate secretion to drive
high rates of glycolysis. In an advanced tumor, the high
levels of lactate in the microenvironment may impede the
ability of immune cells to export the intracellular lactate
because secretion depends on a concentration gradient be-
tween intracellular and extracellular lactate. The resulting
lactate overload reduces the ability of the T cells to secrete
cytokines,126 thus reducing the defense normally provided
by the host immune response.

Conclusions

The Role of Metabolic Changes in Cancer

For many years, cancer was considered fundamentally a
disease of uncontrolled cell proliferation. Although meta-
bolic changes were acknowledged to occur in cancer cells, it
was considered a secondary phenomenon. More recently,
the metabolic changes that occur during cancer are being
reconsidered as more central to the disease itself. So, is
cancer a disease of metabolism? Are the proliferation
changes primary and the metabolic changes come along for
the ride, or vice versa? One possible model is that onco-
genes and tumor suppressors make cancer cells hyper-
proliferative, and the coordinated shift in metabolism is a
consequence. For instance, MYC would be expected to
promote proliferation, whereas the loss of p53 may protect
cells from senescence. Because these molecules also affect
metabolism, metabolic changes would ensue.
A variation on this model would stress that the effects of

oncogenes and tumor suppressors on proliferation are
closely associated with metabolic changes that are also
necessary to promote cell growth. The similarity in the
changes between cancer cells and rapidly proliferating im-
mune cells,15,17,18 and even yeast,109 supports a model in
which altered metabolism provides the building blocks
needed to form new cells. From this perspective, inappro-
priate cell proliferation would still be considered the pri-
mary driver of the tumorigenesis phenotype, and the
metabolic changes are considered a coordinated and com-
plementary program that supports the higher proliferative
rate. Treating cell proliferation will, as a consequence,
reverse the metabolic phenotype. A dramatic demonstration
in support of this view is the ability of the tyrosine kinase
inhibitor, imatinib, to normalize glucose metabolism in
leukemic cells.127
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Is Cancer a Metabolic Disease?
An alternative model would propose that changes in
metabolism are necessary to support biomass accumulation
and drive the cancer phenotype. This argument is based on
the premise that the aerobic glycolysis phenotype per se,
and not just increased growth rate, contributes to tumori-
genesis, a statement supported by the findings that glyco-
lytic tumors are more invasive and more likely to cause the
patient’s death.6 This argument might stress that the
excessive lactate secreted by tumor cells indicates that
glucose carbons are not required just for biomass accumu-
lation, but rather that secreted lactate likely actively pro-
motes tumorigenesis, possibly by suppressing the host
immune response or promoting invasion or metastasis. This
argument would also stress that the changes in metabolism
in tumor cells are more extreme than,117 and somewhat
distinct from,24 those observed in most proliferating cells,
some of which do not demonstrate the aerobic glycolytic
phenotype of activated lymphocytes.113 For example, the
association of hexokinase with mitochondria is observed in
hepatoma cells, but not in normal liver, even when it is
regenerating.24 Glucose transporters are induced in pancre-
atic cancer, but not mass-forming pancreatitis.11 Finally, one
might argue, well-established oncogenes and tumor sup-
pressors repeatedly observed as amplified, mutated, or
deleted in tumors, such as those previously reported,
RAS128 and JAK2V617F,129 are being discovered to have
direct effects on metabolism.

An extreme version of this model would argue that all of
the more classically accepted attributes of tumors actually
derive from the metabolic phenotype of tumor cells.130

Then, is an aerobic glycolytic phenotype sufficient to
transform a cell in the absence of other nonmetabolic cancer
attributes? It seems unlikelydmany immune cells tempo-
rarily adopt an aerobic glycolysis phenotype in response to
antigen exposure. When they no longer receive inflamma-
tory signals, they revert to the resting state and rarely form
tumors.108 On the other hand, a p53 mutant that can counter
aerobic glycolysis and ROS production, but cannot induce
apoptosis, senescence, or cell cycle arrest, retains the ability
to suppress tumorigenesis.104 These recent findings with
p53 support a model in which metabolic changes are critical
drivers of tumorigenesis, and highlight the need for more
studies to clarify this issue.

The Prospects for Targeting Cancer through
Metabolism

The first anticancer agents targeted metabolic pathways
required for proliferation (eg, by depleting pools of nucle-
otide precursors).131 Successful anticancer agents designed
more recently have largely focused on a specific activated
oncogene. These targeted therapies have been extremely
successful in achieving a rapid remission of some tumors,
but unfortunately, for many patients, the disease recurs.
Metabolism-based therapeutics might have advantages over
gene-based therapies. Although most genes are important
The American Journal of Pathology - ajp.amjpathol.org
drivers of only a subset of tumor types, some of the shifts in
metabolism observed in tumors are common to tumors
derived from many different tissues. In addition, it may be
more challenging, although certainly not impossible, for a
tumor to acquire mutations that confer resistance to an anti-
metabolism therapy than a gene-based therapy.108 If the
metabolic characteristics of tumors are essential for the tu-
mor’s growth and survival, targeting the tumor’s meta-
bolism could have a dramatic effect on tumor viability.

However, there are drawbacks to a metabolism-based
approach to therapy as well. Metabolism-based therapies
face a major hurdle of non-specific toxicity: the same
metabolic pathways are required for the survival of all cells.
Activated immune cells might be expected to be especially
vulnerable to anticancer therapies, which is especially con-
cerning because these are the cells that would normally
target the tumor.108 Neurons consume large amounts of
glucose, and peripheral neuropathy has been detected as the
dose-limiting toxicity for some anti-glycolytic therapies.45

Nevertheless, there is some reason to be hopeful about the
prospects of metabolic targeting. A combination of energy
metabolism inhibitors with other antitumor drugs could
represent a powerful new approach to treatment.78 Energetic
collapse due to blocked glycolysis could make other phys-
ical and chemical anticancer agents more effective (eg, by
reducing the effectiveness of efflux transporters and allow-
ing drugs to accumulate to higher effective doses). Alter-
natively, forcing cancer cells to reactivate the mitochondria
might strengthen the therapeutic activity of antineoplastic
treatments that depend on the induction of free radicals.

There is also hope that tumor-specific metabolic programs
can be exploited for therapy. Some tumors organize the TCA
cycles so that they are addicted to glucose for anaplerosis and
survival,99 whereas other tumors are glutamine dependent.60,99

Tumors characterized by a strict reliance on either glucose or
glutamine may be targetable through this metabolic vulnera-
bility. There may be opportunities to target cancer-specific
isozymes24,119 or pathways that are relied on more heavily
by cancer cells than normal cells (eg, the conversion of
glutamine to glutamate through transamination).64 PKM2 is
another attractive target; both allosteric activators and in-
hibitors of PKM2 reduce tumor growth.40,41 Further studies
that elucidate the molecular basis for distinguishing cancer cell
metabolism from a proliferative phenotype, and the range of
metabolic profiles in different types of cancer cells, will allow
for prioritization among the targets that have been identified
and will likely suggest even more targets for exploration.
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