
The American Journal of Pathology, Vol. 184, No. 1, January 2014
ajp.amjpathol.org
MOLECULAR PATHOGENESIS OF GENETIC AND INHERITED DISEASES
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Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting
cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought
epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were
incomplete or low magnitude for Fanconi anemia pathway (FANC ) gene mutations relevant to cancer in
FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the
engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristicmatching
of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uni-
form tumor regression on single-dose cross-linker therapy inmice and by shared chemical hypersensitivities
to various inter-strand cross-linking agents and g-radiation in vitro. Some compounds, however, had con-
trastingmagnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivitywas seen amongPALB2-
null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromo-
somal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer
cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implica-
tions for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention
and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude
sensitivities. (Am J Pathol 2014, 184: 260e270; http://dx.doi.org/10.1016/j.ajpath.2013.09.023)
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High-impact clinical trials and targeted therapies have his-
torically resulted from observing high-magnitude numerical
comparisons of drug sensitivities between genetically dis-
tinct, matched cell lines (the pharmacogenetic windows)1 in
in vitro studies. Examples are provided by early studies of the
drugs, imatinib (Gleevec; Novartis, Basel, Switzerland), for
chronic myeloid leukemia, eliciting a 10� to 20� hyper-
sensitivity in BCR-ABL cancer lines,2 and gefitinib (Iressa;
AstraZeneca, London, UK), eliciting a 10� sensitivity in
epidermal growth factor receptoremutant cancers.3 These
represented qualitative, not merely quantitative, differences.

Fanconi anemia (FA), a rare recessive disease character-
ized by life-threatening diverse clinical features including
cancer susceptibility, is caused by biallelic or hemizygous
mutations in any one of 16 FANC genes.4e6 The FANC
pathway genes function together in a conserved manner to
stigative Pathology.

.

repair damaged DNA by homologous recombination.4

Heritable and somatic mutations inducing clinical cancer
risk among FANC mutation carriers (heterozygotes) are
most commonly seen in the FANC gene, BRCA2/FANCD1,
leading to the development of BRCA2-deficient cancers.
Commonly used chemotherapy drugs against these malig-
nancies include the inter-strand cross-linking agents (ICLs),
having pharmacogenetic windows of 10� to 15� for all
FANC-null cancers,7,8 and poly (ADP-ribose) polymerase
(PARP) inhibitors, having >>25� sensitivity in some
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Fanconi Pathway Genes and Cancer
FANC-null genotypes.9,10 These also represent qualitative
differences. Although these drugs are used clinically, the
epidemiological, evolutionary, and clinical implications of
their high-magnitude pharmacogenetic windows are still
unclear.

PARP enzymes are involved in base-excision repair, a key
pathway in single-strand break repair.11 Inhibition of PARP
induces synthetic lethality in homologous recombinatione
defective backgrounds or in cells lacking homologous
recombinationerelated proteins.9,10,12 As a result, patients
with tumor-specific BRCA1 or BRCA2 deficiencies have
responded to PARP inhibition-based therapy.13 Mechanisms
of intrinsic resistance to these therapies explain why some
cancers with BRCA2 mutations do not respond to these
therapies14e16 and why pharmacogenetic discrepancies are
seen when using the same drug in different cell lines or in
different model systems.

Because these drugs or agents are not naturally occur-
ring, this raises questions regarding evolution and disease
epidemiological characteristics, specifically, what pattern of
injury may have driven the evolution of BRCA2 and other
cancer-relevant FANC genes. It remains unclear whether all
FANC-null cancer states are essentially similar in their
pharmacogenetic windows (ie, the quantitative differences
when compared with FANC-competent matched cells).
Caution may be warranted, for individual differences could
pose a significant clinical problem. Such differences might
arise from secondary cellular compensatory mechanisms
that surface when different genes are inactivated.

A possible clue to the evolutionary aspects of FANC-
relevant cancer genes was suggested by the studies of the
naturallyoccurring aldehydes, formaldehyde and acetaldehyde.
Formaldehyde occurs naturally in human plasma at a concen-
tration ranging from 13 to 97 mmol/L.17 When tested in two
isogeneic FANC-null cancer cell lines developed by us (null for
FANCC and FANCG), formaldehyde elicited a low-magnitude
hypersensitivity.18 Formaldehyde also induced chromosomal
aberrations in a human B-cell line and low-magnitude hyper-
sensitivities in FANC-null avian DT40 cell lines.19

Acetaldehyde is mandatorily formed during ethanol oxi-
dative degradation and is degraded by acetaldehyde dehy-
drogenase (ALDH2). The response to acetaldehyde has not
been studied in human, or specifically in FANC-null, cancer
cells or in cells null for the particular FANC genes most
relevant to human inherited cancer risks (BRCA2/FANCD1
and PALB2/FANCN). As with formaldehyde, a modest
quantitative hypersensitivity (fivefold or lower) of acetal-
dehyde was shown in chicken DT40 cells genetically defi-
cient for some FANC genes.20 Although not measured as a
numerical pharmacogenetic window, confirmation was
provided when marrow failure was observed after acetal-
dehyde production induced by ethanol administration in an
FANC-null, ALDH2-deficient mouse.21 Alcohol and its
catabolic intermediate, acetaldehyde, have epidemiological
links with increased incidence of certain cancer types, such
as upper aerodigestive tract, breast, and pancreas, and also
The American Journal of Pathology - ajp.amjpathol.org
stomach, specifically in Asian men having an ALDH2
mutation.22e24 Ethanol consumption, mutations impairing
alcohol oxidation, ALDH2 gene function associated with the
Asian flushing syndrome on alcohol ingestion, and elevated
acetaldehyde levels vary significantly across populations.

An opportunity, therefore, existed to explore human can-
cer cell lines having defined null states for FANC genes.
Genes relevant to the FANC-deficient cancers, when occur-
ring in FANC mutation carriers, include PALB2, BRCA2,
FANCC, and FANCG. Herein, we generated a four-gene,
cancer-null panel, including engineering PALB2-null
matched cancer cells. We identified numerically robust, high-
magnitude pharmacogenetic windows using multiple engi-
neered clones null for BRCA2 and PALB2 genes. A single
dose of mitomycin C (MMC) initiated rapid tumor regression
in xenografts, a dramatic response reflecting in vivo the large
in vitro pharmacogenetic differences. These models may also
be useful for the rarer FANC genotypes, because it is unlikely
that clinical trials could be performed for each genotype. The
lessons from preclinical models of multiple FANC pathway
genotypes could provide the wanted insights. Our studies
reinforce a pathway-based strategy by comparing chemical
hypersensitivities of matched syngeneic pairs of cell lines
deficient in clinically relevant genes. The findings herein of
qualitative, high-magnitude numerical distinctions suggest
implications for the pathway evolution, disease epidemio-
logical characteristics, and therapeutic strategies for patients.

Materials and Methods

Cell Lines and Cell Culture

DLD1 cells were obtained from ATCC (Manassas, VA) and
cultured in RPMI 1640 medium supplemented with 10%
fetal bovine serum (FBS) and antibiotics at 37�C and 5%
CO2. p53R cells, carrying a p53-binding site driving a
luciferase reporter,25 were grown in Dulbecco’s modified
Eagle’s medium supplemented with 10% FBS, antibiotics,
and 20 mmol/L HEPES. CAPAN1 cells were cultured in
Iscove’s modified Dulbecco’s medium, supplemented with
10% FBS and antibiotics.

Targeted Disruption of PALB2 by Homologous
Recombination

We disrupted the PALB2 gene according to the technique
described.26 The targeting construct excised exon 8 of the
PALB2 gene such that a frameshift and a stop codon were
generated. We used a promoter-trap method in which the
targeting construct contained the selection marker, neo-
mycin.27 The construct consisted of two homology arms
(HAs) flanking a central element, pSEPT, which contained a
splice acceptor, an internal ribosomal entry sequence, cod-
ing sequences of the neomycin transferase gene, and a
polyadenylation signal sequence. The pSEPT element was
flanked by LoxP sites. The HAs were ligated to pAAV
261
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(Stratagene, Santa Clara, CA). The targeting construct was
cotransfected with pRC and pHelper into HEK293 cells
using Lipofectamine (Invitrogen, Grand Island, NY). Virus
was harvested from the HEK293 cells after 48 hours, and a
DLD1 clone (number 6, isolated by limiting dilution) was
infected. Infected cells were distributed to 96-well plates by
limiting dilution. Neomycin-resistant clones were screened
after 3 weeks by PCR using a primer (Table 1) inside the
selection cassette and a primer outside of the HAs to detect
homologous integrations. The selection cassette was removed
from clones by Cre-mediated excision. A heterozygous
PALB2 clone (PALB2þ/�), identified and confirmed by using
primers (Table 1) on either side of the deleted region,was used
when removing the second allele with the same exon
8etargeting construct. Clones having biallelic disruption of
PALB2 were identified by PCR screening, as previously
described. The neomycin cassette was again removed.26

Plasmid Purification, RNA and Genomic DNA Isolation,
PCR, RT-PCR, and Sequencing

Plasmid DNAwas purified (Qiagen, Valencia, CA). Genomic
DNA(crude)was released fromcancer cells either by using the
Lyse-N-Go PCR Reagent (Pierce Biotechnology, Rockford,
IL) or bypurification (Qiagen). Formost PCRs, the touchdown
method was used. RNA was isolated (RNeasy Mini Kit,
Qiagen). cDNA was made from RNA (Superscript III; Invi-
trogen). PCR products were resolved on agarose gels using
lithium boric acid electrophoresis (Faster Better Media LLC,
Hunt Valley, MD).28 Automated sequencing was performed
by Macrogen USA (Rockville, MD).

Protein Isolation and Western Blot Analysis

Cells were washed once in PBS and lysed by radioim-
munoprecipitation assay buffer supplemented with protease
inhibitor mixture (Catalog No. 1183617001; Roche Applied
Science, Indianapolis, IN), followed by sonication. Protein
concentrations were determined (DC protein assay; Bio-Rad,
Philadelphia, PA). Samples were boiled with loading buffer
and resolved by SDS-PAGE. Proteins were transferred onto a
polyvinylidene difluoride membrane (Immobilon; Millipore,
Billerica, MA) and detected with anti-PALB2 antibody and
Table 1 Primer Sequences

Primer name Sequence

LF 50-AACCTCCCCAGGCTCAGTAA-30

LR 50-AAATCCTCCTCGTTTTTGGA-30

RF 50-CAGGTTCAGGGGGAGGTGTG-30

RR 50-ATGTCTGGCTTCCACCTCACTAAC-
CF 50-CTTTACACAGAGGTGCCCAAT-30

CR 50-CTCCCAGGTTCAAGCGACT-30

RT-PCR
Forward 50-AGTGCCATGTTTTGGGAAAG-30

Reverse 50-TCCATCTTCTGCAAACGTCA-30

LHA, left homology arm; RHA, right homology arm.
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horseradish peroxidaseelinked anti-rabbit secondary anti-
body (both from Santa Cruz Biotechnology, Santa Cruz, CA).
Membranes were developed using chemiluminiscence (Cat-
alog No. WBKLS0500; Millipore).

Cell Cycle Analysis

A total of 1� 106 cells were treated with MMC for 48 hours,
washed once in PBS, fixed in 70% ethanol at �20�C for at
least 30 minutes, washed again with PBS, and incubated in
0.2 mL of propidium iodide solution [0.1% Triton X-100, 1�
PBS, 200 mg/mL RNase A (Sigma, St. Louis, MO), and 20
mg/mL propidium iodide (Sigma)] at 37�C for 1 hour. The
cells were diluted with 1 mL PBS (Gibco, Grand Island, NY)
for flow cytometry (FACScalibur; BD Biosciences, San Jose,
CA). CellQuest Pro software version 5.2.1 (BD Biosciences)
was used to interpret cell cycle profiles.

Treatment of Cells and Cell Quantitation

A total of 1000 and 2000 cells were plated per well for wild-
type (WT) and null cultures, respectively. The cells were
allowed to adhere and, after 24 hours, were exposed to various
drugs: melphalan, MMC, cisplatin, etoposide, camptothecin
(Sigma-Aldrich, St. Louis, MO), KU0058948 (synthesized as
needed), and biological metabolites (formaldehyde, acetalde-
hyde, glyoxal solution, acrolein, butyraldehyde, crotonalde-
hyde, benzaldehyde, glutaraldehyde, phenylacetaldehyde,
cinnamaldehyde, acetaldehyde dimethyl acetal, and amino-
acetaldehyde dimethyl acetal; Sigma-Aldrich). After 6 days,
the cells were washed and lysed in 40 mL 0.03% SDS, and
0.5% Picogreen (Molecular Probes, Grand Island, NY) was
added. Fluorescence was measured, and the relative cell
numbers were calculated, defining the untreated samples as 1.
One or two independent replications of the experiments were
performedper drug,with each grapheddata point reflecting the
average readings from six wells in a given representative
experiment.

Synthesis of KU0058948

The PARP inhibitor, KU0058948, was synthesized after a
reported protocol (WO 2004080976) in five steps. Briefly,
Use

LHA forward-screening primer
LHA reverse-screening primer
RHA forward-screening primer

30 RHA reverse-screening primer
Forward primer to genotype PALB2-null cells
Reverse primer to genotype PALB2-null cells

RT-PCR to confirm PALB2 exon 8 deletion
RT-PCR to confirm PALB2 exon 8 deletion
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2-carboxy benzaldehyde was first converted into 3-oxo-1,3-
dihydro-isobenzofuranyl phosphonate dimethyl ester, which
was then treated with 2-fluoro-5-formyl benzonitrile to afford
the 2-fluoro-5-(3-oxo-1,3-dihydro isobenzofuranylidene
methyl) benzonitrile intermediate as amixture of E/Z isomers.
This mixture was then refluxed with NaOH, followed by
the addition of hydrazine hydrate to replace the isobenzo-
furanyl ring with a dihydrophthazine moiety. The generated
intermediate was then used for a tetramethyluronium hexa-
fluorophosphateemediated coupling with t-butyl homopiper-
azine carboxylate, which yielded the desired compound on
acidic workup in an acceptable overall yield.

Chromosome Breakage Assay

BRCA2�/�, PALB2�/�1, and parental cells were treated with
and without 0.1 mg/mL diepoxybutane (DEB), or with and
without 1 mmol/L acetaldehyde [the inhibitory concentration of
50% (IC50) concentration range inBRCA2

�/�,PALB2�/� lines]
for 3days, afterwhichmediumwas changed.Cellswere allowed
to recover for 1 day, then treated with 1 mg/mL colcemid and
harvested according to standard protocols. For each sample,
approximately 30 metaphases (only 10 for acetaldehyde treated
becauseof extensivedamage)were analyzedby the cytogenetics
facility at The Kennedy Krieger Institute (Baltimore, MD). In
untreated parental DLD1 cells and derived clones, a significant
minority (<40%) of cells were hyperdiploid.

Irradiation of Cells and Colony Formation Assay

Cells were plated, allowed to adhere, and exposed to 1.3 Gy/
min 137Cs g rays (Gammacell 40 Exactor; MDS Nordion,
Inc., Ottawa, ON, Canada). Cells were subsequently incu-
bated for 7 days or until colonies appeared, fixed, and
stained (10% neutral-buffered formalin, 1:500 crystal vio-
let). All macroscopically visible colonies were counted.
Experiments were independently replicated. Each sample
was tested at two different cell concentrations, each per-
formed in duplicate. The number of cells plated was 10,000
and 100,000 for 0-, 2-, 4-, 6-, 8-, and 10-Gy exposures.

Estimation of Doubling Time of Cells

Cells were plated at a concentration of 2.5 � 104 cells in 30
25-cm2

flasks. Cells were washed with 1� PBS, followed
by trypsinization. Cells were disaggregated in 1 mL PBS
and counted by hemocytometer. At each time point, two
independent samples were counted. Counting was done
every 6 hours, from 0 to 90 hours (total of 15 time points).
The proliferation curves were plotted, and the doubling
times of the parental and PALB2-null cells were estimated.

p53-Luciferase Reporter Assays

p53 Responses were assessed by the p53R luciferase reporter
assay25 using Steady-Glo (Promega, Madison, WI), according
to themanufacturer’s protocol. Briefly, FANC-competent cells
The American Journal of Pathology - ajp.amjpathol.org
were plated in triplicate, incubated with acetaldehyde (Catalog
No.W200344; Sigma-Aldrich) for 18 hours, and then lysed for
a luciferase assay. We used the PerkinElmer (Waltham, MA)
Microbeta Trilux plate reader to measure luminescence.

Xenograft Models

Six cell lines (1 � 106 cells per injection for DLD1 parental,
PALB2þ/�, PALB2�/�1, PALB2�/�2, and BRCA2�/� and
1.5 � 106 cells per injection for CAPAN1) were injected s.c.
into the two flanks of female athymic nude mice, aged 4 to 5
weeks (Charles River Laboratories, Frederick, MD) with
RPMI 1640 medium and Matrigel (BD Biosciences) [1 to
1.5 � 106 cells in 100 mL of RPMI 1640 medium (Gibco)
and Matrigel; 1:1]. Twelve mice were inoculated for each
cell line. Tumors were treated when each reached a size of
150 to 200 mm3, defined as day 0; four received no treatment.
One untreated tumor of each group was harvested on day 1;
eight were treated with MMC, of which one each was har-
vested on days 1, 4, and 7. The drug was administered once
i.p. at 5 mg/kg on day 0. The length and width of tumors were
measured with a caliper. Tumor volume was calculated as
follows: Tumor Volume Z 1/2 � (Length � Width2).

Care of animals was in accord with institutional guidelines.

Histopathological Examination

Harvested tumor tissue was fixed in buffered formalin until
it was processed for histopathological characteristics.

Statistical Analysis

The mean (x), SD, and SEM were computed for replicated
experiments. The 90% CIs of the fold difference (pharma-
cogenetic window) between parental and null cells for three
experimental replicates of the drug sensitivity assays were
calculated using the following formula:

x � 2:92
�
SD=

ffiffiffi
3

p �
ð1Þ
Results

Targeted Disruption of PALB2

We disrupted the PALB2 gene in DLD1 cells by serially
deleting exon 8 in both alleles (Figure 1A). We limited our
attempts of generating PALB2-null cells to DLD1 parental
cells (clone 6) only, based on prior experience29,30 doc-
umenting a failure to isolate BRCA2-null clones in four other
tested parental lines. We screened 80 neomycin-resistant
clones after targeting the first allele and obtained six
PALB2þ/� clones. After targeting the second allele and
screening 270 neomycin-resistant recombinants, we obtained
two independent PALB2�/� clones, termed PALB2�/�1 and
PALB2�/�2. PCR (Figure 1B), RT-PCR (Figure 1C), and
Western blot analyses (Figure 1D) confirmed the hemizygous
and homozygous gene disruptions. Of the 270 screened
263
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Figure 1 Structural and functional evidence
of PALB2 gene disruption. A: Targeting scheme.
Primer pairs CF þ CR were used to confirm deletion
of exon 8 in both alleles. IRES, internal ribosomal
entry sequence; LFþ LR and RFþ RR, left and right
homology arm screening primers; LHA and RHA, left
and right homology arms; neo, coding sequence of
neomycin transferase; pA, polyadenylation signal
sequence; solitary numbers label exons; SA, splice
acceptor. All primer sequences are provided in
Table 1. B: PCR detected the WT and deleted alleles
using genomic DNA as a template. C: RT-PCR
detected the WT and truncated mRNA transcripts.
D: Immunoblots detected the presence or absence
of PALB2 protein. E: Proliferation curves. The
population growth of parental, hemizygous, and
PALB2-null cells was compared. F: Colony-formation
assays after ionizing radiation. Each point repre-
sented the average of duplicate measurements for
each cell line in a representative experiment (of two
experiments).

Ghosh et al
clones, we identified 22 that had integration in the PALB2
locus, of which 20 had re-integrated the construct into the
already inactivated allele. The ratio of clones (10:1) inte-
grated into the disrupted allele to the ones integrated into the
WT allele suggested that PALB2, such as BRCA2, was also a
lethal gene, or had loss of fitness, when null (Supplemental
Table S1).30

Functional Validation of PALB2�/� Cells

The two PALB2-null clones proliferated slowly compared
with the PALB2-hemizygous and parental cells. The
doubling time was estimated at 27 to 28 hours for null
clones and 19 to 20 hours for parental and hemizygous
clones. The slow proliferation (Figure 1E) of the null cells
was a stable feature over successive passages. We assessed
the effect of PALB2 deficiency on cell survival after 137Cs
g-irradiation using colony-formation assays. We observed
a twofold to threefold decrease in the survival of irradi-
ated PALB2-null cells compared with the parental line
(Figure 1F). On treatment with the cross-linker MMC for 48
hours, the PALB2-deficient cells became arrested at the G2/
M phase of the cell division cycle. By using flow cytometry,
we determined the fractions of cells at the different stages
264
of the cell cycle 48 hours after treatment with MMC
(Supplemental Figure S1). A pronounced G2/M arrest
(>40% cells) was observed in PALB2�/� cells at the lower
concentration of 20 nmol/L, similar to the effect on parental
cells at 200 nmol/L (ie, a pharmacogenetic window of 10�
in this assay).

Cell Proliferation on Drug Treatment

The role of PALB2 in DNA damage-response and in repli-
cation fork maintenance is indicated by the hypersensitivity
of the PALB2-deficient cells to DNA cross-linking agents.
We estimated cell survival after a 6-day exposure of the
parental, heterozygous, and null cells to various relevant
drugs. PALB2�/� cells had increased sensitivity to the ICL
agents melphalan (20�), MMC (17�), and cisplatin (15�)
(Supplemental Figure S2), and were hypersensitive to the
tested topoisomerase inhibitors etoposide (8�) and campto-
thecin (6�) (Supplemental Figure S2). Three replicate ex-
periments were done for MMC treatment, and the 90% CIs of
the pharmacogenetic window between the parental and null
cells were found to be 13� to 22� for PALB2�/�1 cells and
19� to 27� for BRCA2�/� cells. Naturally derived BRCA2-
null CAPAN1 cells31 had intermediate hypersensitivities
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Tumor regression in FA-deficient xenografts after MMC
treatment. In vivo treatment of xenografts with a single dose of MMC.
PALB2- and BRCA2-deficient xenografts (as indicated), parental xenografts,
and PALB2-hemizygous xenografts were established and grown to an initial
volume of 150 to 200 mm3 before initiation of treatment. Final xenograft
volume was expressed as relative to initial volume. Mice were treated with a
single 5 mg/kg i.p. dose of MMC.

Fanconi Pathway Genes and Cancer
(Supplemental Figure S3), consistent with the lower drug
sensitivities previously noted for these cells.32

In Vivo Confirmation of Therapeutic Validity and
Comparability of FANC Defects

Xenograft models using PALB2�/� and BRCA2�/� cancer
cell lines were explored because these distal pathway genes
command the greatest therapeutic and clinical interest. Mice
were treated with a single dose of 5 mg/kg MMC. The
DLD1 parental cell line and PALB2þ/� did not respond to
MMC treatment (Figure 2). In contrast, PALB2�/� cell lines
Figure 3 Tumor histological characteristics. Morphological features of pancrea
H&E-stained histological sections of untreated xenografts and xenografts treated
PALB2 mutation, and PALB2�/�1 had a homozygous PALB2 deletion. Black ar
disorganized chromosomes; white arrow, a multinucleated cell in PALB2�/�1. By

The American Journal of Pathology - ajp.amjpathol.org
showed sustained tumor regression through days 18 to 20
(Figure 2). The xenograft responses to MMC mirrored the
in vitro hypersensitivity patterns. We also tested two
BRCA2-null cell lines, CAPAN1 (a naturally occurring
BRCA2-mutated cell line) and an engineered cell line,
BRCA2�/�. These cell lines also had sustained tumor
regression on MMC treatment (Figure 2). This confirmed
that these cell lines had the characteristic phenotype previ-
ously reported for other FANC-null cancer cells.33

Histological sections of xenografted tissues from un-
treated mice and mice 1, 4, and 7 days after treatment with
mitomycin C were reviewed for the extent of mitotic figures,
apoptosis, confluent necrosis, hemorrhage, and fibrosis. In
all xenografts, tissues at day 1 did not have appreciable
differences from that seen in untreated tumors. However, by
day 4, all xenografts null for PALB2 (PALB2�/�1 and
PALB2�/�2) and BRCA2 (CAPAN1 and BRCA2�/�) had
morphological changes characterized by multiple apoptotic
bodies, cellular enlargement lacking an increase in nuclear/
cytoplasmic ratio, prominent nucleoli, multinucleation, and
enlarged eosinophilic cells containing chromosomes in
disarray (Figure 3). These changes were multifocal within a
given xenograft at day 4 and extensive at day 7 after
treatment. Fibrosis and confluent necrosis were not typical
in these xenografts, although CAPAN1 cells had a hyali-
nized and inflamed stroma by day 7. By contrast, no
morphological changes were observed in tumors of the
FANC-WT cell line, DLD1, or the heterozygous PALB2-
mutant line, PALB2þ/� (Figure 3).

High-Magnitude Hypersensitivities to PARP Inhibition
and Acetaldehyde

Both BRCA2�/� and PALB2�/� cell lines had extreme hy-
persensitivities (�1000�) to the positive control condition,
PARP inhibition (KU0058948) (Figure 4). They also had
high-magnitude, 19� to 22� hypersensitivities to acetal-
dehyde (Figure 4), but no differential responses with
tic cancer xenografts treated with MMC. Representative photomicrographs of
at 1, 4, and 7 days were obtained. A PALB2þ/� cell line had a heterozygous
rows indicate apoptotic bodies/debris; red arrow, a ballooned cell with
contrast, no morphological changes were seen in treated PALB2þ/� tumors.

265

http://ajp.amjpathol.org


Figure 4 Chemical sensitivities among an FANC-
deficient cancer cell panel using compoundseliciting
divergences among FANC-null models. Cell pop-
ulations after treatment with PARP I inhibitor,
KU0058948, and the biological metabolite, acetal-
dehyde, at indicated concentrations compared with
untreated cells. The IC50 ratios (pharmacogenetic
windows) comparing parental with FANC-deficient
cells were determined from an average of three in-
dependent experiments; they are displayed within
graphs of representative experiments. Error bars
indicate SEM of six replicate wells in a representative
experiment.

Ghosh et al
formaldehyde or glyoxal solution (Table 2). Three replicate
experiments were done with KU0058948 and acetaldehyde,
and the 90% CIs of the pharmacogenetic window between
the parental and null cells using KU0058948 were found to
be 831� to 1057� for PALB2�/�1 cells and 1066� to
1199� for BRCA2�/� cells. The 90% CIs with acetaldehyde
treatment were 15� to 29� for PALB2�/�1 cells and 15� to
23� for BRCA2�/� cells. We used p53R cells to explore
whether acetaldehyde produced DNA strand breaks in
cultured FANC-WT cells. Our results indicate that acetal-
dehyde induced a weak p53 response in p53R cells, infer-
ring no major toxicity in FANC-competent cells through
initial DNA strand breaks. Both BRCA2�/� and PALB2�/�

genotypes were tested using several other aldehydes (a two-
to nine-carbon series) (Table 2), including acrolein, but-
yraldehyde, crotonaldehyde, benzaldehyde, glutaraldehyde,
phenylacetaldehyde, cinnamaldehyde, acetaldehyde dimethyl
acetal, and aminoacetaldehyde dimethyl acetal. We explored
structure-activity relationships centered around acetaldehyde.
A series of aliphatic and aromatic aldehydes (one to nine
carbons) were examined in the hope that a higher molecular
Table 2 Relative Chemical Sensitivities of FANC-Null Genotypes

Treatment Class

Pharmacogenetic windows

PALB2�/�

Melphalan Cross-linker 20� (0.25 mmol/L)
Mitomycin C Cross-linker 17� (10 nmol/L)
Cisplatin Cross-linker 15� (0.6e0.7 mmol/L)
KU0058948 PARP inhibitor 1000� (0.075 mmol/L)
Etoposide Topoisomerase II inhibitor 8� (50e60 nmol/L)
Camptothecin Topoisomerase I inhibitor 6� (0.625 nmol/L)
Formaldehyde 1-C aldehyde d
Acetaldehyde 2-C aldehyde 22� (0.7 mmol/L)
Other tested
aldehydesz

2-9C aldehydes d

*Windows were defined as the ratio of the IC50 values of parental cells and
Supplemental Figure S2.

yData from our prior reports.8,29
zSee Results.
ND, not done; d, less than twofold window.

266
weight might lead to a less volatile lead candidate with a
similar biological response. Because aldehydes are also well
known to be unstable and yet exceptional cross-linking
agents, we also tried to replace the active aldehyde moiety
with a protected aldehyde synthon (acetaldehyde dimethyl
acetal and aminoacetaldehyde dimethyl acetal) capable of
generating the active functionality on degradation. None of
these treatments elicited differential responses between WT
and null cells (Table 2). They were either uniformly toxic or
benign to all cell types. We tested the sensitivities of the
proximal genes, FANCC and FANCG, with the PARP in-
hibitor, KU0058948, and with the biological metabolites,
acetaldehyde and formaldehyde; there was a low-magnitude
3� difference with PARP inhibition, and 2� and 3� dif-
ferences with acetaldehyde (Figure 4) and formaldehyde
(Table 2), respectively.

Chromosomal Breakage and Instability

BRCA2�/� and PALB2�/� cells displayed increased chro-
mosomal instability, which was further enhanced after
(IC50 of null cells)*

BRCA2�/� FANCC�/�/� FANCG�/�

25�y 14�y 14�y

23�y 13�y 12�y

16�y 9�y 7�y

1133� (0.022 mmol/L) 3� 3� (17 mmol/L)
10�y d y d y

6�y ND ND
d 2.8� (2 mmol/L) 2.8� (2 mmol/L)
19� (w1 mmol/L) d 2.4� (5.3 mmol/L)

d ND ND

gene-knockout cells; data are from the graphical results of Figure 4 and
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treatment with DEB and acetaldehyde. Treatment-induced
breakage serves as a conventional diagnostic test for the
FA syndrome. The number of breaks/gaps scored per cell
was 0.1, 0.5, and 1.3, respectively, for the untreated
parental, BRCA2�/�, and PALB2�/�1 cells. The number of
breaks and gaps per cell scored on DEB treatment were
0.03, 5.2, and 4.2, respectively, for the parental, BRCA2�/�,
and PALB2�/�1 cells (Supplemental Figures S4 and S5, A
and B). For acetaldehyde-treated cells, there were no breaks
in parental cells but many breaks in the BRCA2�/� and
PALB2�/�1 cells (Figure 5). Numerous fragments were seen
in these cell lines, along with rings, broken or intact trir-
adials, quadriradials, and other complex radials, indicating
breakage and rejoining of chromatids and/or chromosomes
(Figure 5). BRCA2�/� and PALB2�/� cells, therefore, dis-
played much higher rates of induced chromosomal aberra-
tions than parental cells.

Discussion

Multigene Cancer Panels for Preclinical Studies Provide
Novelty and Cancer Modeling

Our multigene panel consisting of engineered FANCC-,
FANCG-, BRCA2/FANCD1-, and PALB2/FANCN-null
human cancer cell lines had the shared phenotypes typical
of FANC pathway defects, including hypersensitivities to the
ICL agents and g-radiation in vitro, and comparable tumor
regression in xenograft models when treated with a single
dose of MMC. The same panel had divergences of hyper-
sensitivities for some chemicals, however, including the
epidemiologically important ethanol metabolite, acetalde-
hyde, the PARP inhibitor, KU0058948, and the topoisomer-
ase II inhibitor, etoposide. High-magnitude pharmacogenetic
windowswere observed. These were distinguished from prior
work in avian and noncancer mammalian cells, which had
Figure 5 Metaphase chromosomes after acetaldehyde exposure. Acet-
aldehyde exposure to PALB2�/� and BRCA2�/� cells promoted widespread
chromosomal aberrations. Thick arrows indicate chromatid breaks; thin
arrows, dicentric chromosomes; asterisks, fragments. cb, chromosome
breaks; cg, chromosome gaps; R, rings; 3r, triradials; 3r-b, broken trir-
adials; 4r, quadriradials; 4r-f, quadriradials with fragments.
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low-magnitude (<5�) changes.19,20,34 A panel of cancer
cells, also novel in being tumorigenic, enables chemothera-
peutic animal trials of pharmacogenetically targeted agents
and could aid preclinical therapeutic explorations.

FANC-Null Status Is Insufficient to Convey Every FANC-
Related Hypersensitivity to Cancer Cells

The large numerical discrepancies found in the current work
clearly challenge a loosely held, but conventional, dogma
that FANC-null cells might largely share a set of common
chemical hypersensitivities used to make some clinical de-
cisions. Our results advance the idea that knowledge of
divergent phenotypes may be useful to dissect differing
functions in proximal and distal FANC genes and in antici-
pating rational treatment of patients with differing FANC
genotypes. This idea was promoted by Gallmeier and Kern32

using a natural cell line, supported by Hucl et al29 using
experimental cancer lines, and with divergences of lower
magnitude, echoed in prior studies of noncancer cells.34 Our
high-magnitude divergences of hypersensitivities seen for
acetaldehyde, a PARP inhibitor, and etoposide may be gene-
dependent, affected by clonal variation or by the choice of the
tumor cells under study. Notably, the same considerations
apply to real human tumors in a setting of personalized
therapy. Thus, panel-based strategies comparing the sensi-
tivities of matched, engineered genotypes with differing
chemical probes suggest insights for genetic epidemiology,
prevention strategies, and exploration of novel therapeutic
options because of the discrepant hypersensitivity patterns
being unambiguous, emerging in multiple knockout clones,
and remaining stable in these models. Our work supported
concerns that the mere knowledge of a patient’s FANC ge-
notype may be insufficient to predict the success of a broad
FANC-targeted, personalized cancer therapy.

Comparison of Formaldehyde with Acetaldehyde in
Human Cancers

Both formaldehyde and acetaldehyde are natural human me-
tabolites known to damage DNA and to elicit hypersensitive
responses in FANC-null cells. In ourmodel, the formaldehyde
pharmacogenetic window was 2� to 3�, whereas that of
acetaldehyde could be a log larger, at 19� to 22�. These
pharmacogenetic windows implied that the BRCA2 and
PALB2 genes in our syngeneic matched cell line pairs pro-
tected against one third to one half of the toxicity caused by
formaldehyde, but near 96% of the toxicity caused by acetal-
dehyde. This suggests that acetaldehyde may have had the
larger role in driving the evolutionary selection operating on
the BRCA2 and PALB2 genes. Intriguingly, studies of inheri-
ted syndromes and cancer epidemiological features imply that
the FANC gene system may be adequately optimized to pro-
tect certain organs, such as the ductal epithelia of pancreas
and breast, oral cavity, and upper aerodigestive tract (among
others), whose risk of cancer is elevated by both ethanol intake
267
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andFANCgenemutations. The consequences of acetaldehyde
damage might unite those two types of observation.

Acetaldehyde-Induced DNA Damage and Potential
Therapeutic Options

Acetaldehyde, an intermediate metabolite of ethanol break-
down, is carcinogenic.35 Genotoxicity was also reported
when cells from an FA patient were exposed to acetaldehyde,
and chromosomal aberrations appeared under conditions in
which cells of a healthy person experienced little effect.36 The
best-studied DNA adduct from acetaldehyde is N2-ethyl-20-
deoxyguanosine,37 which is increased in liver DNA obtained
from ethanol-treated rodents and in white blood cells from
human alcohol abusers. The carcinogenic potential of
this product is unclear. A different adduct, 1,N2-propano-20-
deoxyguanosine, formed from acetaldehyde in the presence
of histones and other basic molecules,38 may be responsible
for some mutagenic and genotoxic effects of acetaldehyde.

Prior literature suggested that acetaldehyde produced
ICLs39 and implicated a role of the FANC DNA-damage
response network in protecting cells against these cross-
links. Our finding of widely differing pharmacogenetic
windows (19� to 22� in cells null for some FA genes and 2�
for others) may dampen support for the ICL theory somewhat
as amajor mechanism of action of acetaldehyde, given that all
FANC defects in our panel had similar levels of hypersen-
sitivity when tested using other ICL agents. Nonetheless, our
cytogenetic observations support a mechanism producing
widespread chromosomal breakage in BRCA2�/� and
PALB2�/� cancer cells exposed to acetaldehyde.

The IC50 for acetaldehyde in our PALB2- and BRCA2-null
cells was �700 mmol/L. This concentration is not physio-
logical in untreated humans. Data from human volunteers,
however, indicate that local salivary acetaldehyde concen-
trations could reach 450 mmol/L at high blood alcohol con-
centrations, far higher than the genotoxic threshold.40 It is
plausible that ethanol, acetaldehyde, or ethanol-disulfirum
administration could generate acetaldehyde levels sufficient
for producing differential effects on FANC-null cells arising
in carriers of FANC-gene mutations, long-term effects that
could occur far lower than the IC50 concentration.

Implications for Cancer Epidemiology and Prevention

Cancer risks from ethanol could be stratified better in epide-
miological studies by determining the BRCA2 and PALB2
mutational gene status of individuals in studied populations.
Cancer risks of BRCA2 and PALB2 carriers could be further
stratified by metrics gauging the exposure to acetaldehyde
and ethanol and by examining gene polymorphisms of the
ADH and ALDH2 genes. The polymorphisms govern the
tissue concentrations of acetaldehyde and, indirectly, the
tendencies to ingest alcohol.

Potential interventions to reduce cancer mortality in the
carrier population can be discussed. FA patients and carriers
268
might experience increased risks of cancer on consumption
of alcohol or foods containing high levels of acetaldehyde.
Reports in the literature suggest the use of aldehyde an-
tagonists or aldehyde dehydrogenase agonists.41e44

Chemical prophylaxis or even aldehyde-based chemo-
therapy for FANC-null neoplasms might, in theory, pose an
alternative at least as attractive as the current use of pro-
phylactic surgery in BRCA2 mutation carriers. Given the
levels of acetaldehyde achieved in humans in voluntary and
anecdotal settings,45,46 one could speculate possibly treating
PALB2- and BRCA2-deficient precursor neoplasms or can-
cers with either local infusion of acetaldehyde or systemic
ethanol/disulfirum. Conversely, long-term exposure to
acetaldehyde should also selectively harm FA patients or
FANC-mutation carriers.

Clinical Importance of Large-Magnitude
Pharmacogenetic Windows

Prior studies documenting hypersensitivities of BRCA2-null
states to a positive control condition (PARP inhibition) were
comparable to our results. By using revertant mutants of the
BRCA2 gene, the hypersensitivity of the naturally occurring
CAPAN1 cancer line to PARP inhibition was 1300�, and to
the cross-linker cisplatin, 12�.15 In CHO V8 BRCA2-null
cells, approximately 1000� sensitivity from PARP inhibi-
tion was observed.9 Mouse ES cells deficient for BRCA2
had a 100� sensitivity to PARP inhibition.9

Chemical hypersensitivities of PALB2-deficient states
were also reported. However, gene-knockdown models had
underestimated the large magnitudes of hypersensitivities
seen in true genetically null cells.47e54

Experimental tumor regression is a dramatic demonstra-
tion of high-magnitude pharmacogenetic windows. Regres-
sion was documented in naturally occurring FANCC-,
BRCA2-, and PALB2-deficient cancer xenografts after single-
dose ICL treatments.33,55 In our study, the engineered, syn-
geneic human PALB2-null cancer model produced a 16�
hypersensitivity to MMC, an approximately 1000� hyper-
sensitivity to PARP inhibition in the null cells in vitro, and
strong tumor regression in vivo after a single dose of MMC.
To provide perspective for such numbers, the mutation-

targeting drugs, gefitinib (Iressa) and imatinib (Gleevec),
were shown to have wide pharmacogenetic windows (10�
to 20�) in in vitro studies of the relevant matched cells.2,3

Large divergences of IC50 values, produced by different
chemicals among FANC-null states, in our cellular models
may likewise aid advances in the epidemiology, prevention,
and therapy in the settings of FANC mutations.
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