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Summary

Clinical trial designs for targeted therapy development are progressing toward the goal of
personalized medicine. Motivated by the need of ongoing efforts to develop targeted agents for
lung cancer patients, we propose a Bayesian two-step Lasso procedure for biomarker selection
under the proportional hazards model. We seek to identify the key markers that are either
prognostic or predictive with respect to treatment from a large number of biomarkers. In the first
step of our two-step strategy, we use the Bayesian group Lasso to identify the important marker
groups, wherein each group contains the main effect of a single marker and its interactions with
treatments. Applying a loose selection criterion in the first step, the goal of first step is to screen
out unimportant biomarkers. In the second step, we zoom in to select the individual markers and
interactions between markers and treatments in order to identify prognostic or predictive markers
using the Bayesian adaptive Lasso. Our strategy takes a full Bayesian approach and is built upon
rapid advancement of Lasso methodologies with variable selection. The proposed method is
generally applicable to the development of targeted therapies in clinical trials. Our simulation
study demonstrates the good performance of the two-step Lasso: Important biomarkers can
typically be selected with high probabilities, and unimportant markers can be effectively
eliminated from the model.

Keywords
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1 Introduction

Cytotoxic chemotherapies continue to be the primary form of treatment for cancer. The
treatment effects of cytotoxic agents come from their ability to eradicate rapidly dividing
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cancer cells. However, such detrimental effects are not specific to cancer cells, as rapidly
dividing normal cells (e.g., hair or bone marrow) are often harmed by cytotoxic agents as
well, and thus often results in side effects with varying severity. Historically, both the
development and application of chemotherapy in treating cancer have been largely based on
a specific cancer diagnosis, which is determined by the location and microscopic appearance
(histology) of the tumor. Thus, patients diagnosed with cancer of the same classification are
typically given the same treatment. Research has shown, however, that patients with similar
tumor histologies may respond differently to the same chemotherapy. Hence, the
administration of chemotherapy guided by a traditional tumor diagnosis may expose patients
to excessive toxicity and result in unwanted side effects.

Unprecedented advances in life science, mainly during the last two decades, have
revolutionized the landscape of cancer drug development via an exciting concept known as
“personalized medicine”. The development of new molecularly targeted therapy is a major
thrust to seize the promise held by personalized medicine. The new way for cancer drug
development involves identifying specific regulators that play key roles in various processes
of cancer biology, and developing molecularly targeted agents for these regulators to block
signaling events associated with the growth of tumors. Unlike traditional approaches,
personalized medicine uses novel diagnoses to screen for patients who are most likely to
benefit from specific treatments based on an association between the molecular profiles of
patients and the targeted effect of a specific therapy. This approach then assigns treatments
that are individually tailored to patients according to their own molecular profiles.

As recognized in the Clinical Path Initiative, a program created by the U.S. Food and Drug
Administration (FDA), one important component of targeted agent development is the
identification and validation of biomarkers as molecular targets for patient screening and
clinical endpoint evaluation. Current technological capabilities in genomics and proteomics
allow researchers to quickly collect a large amount of biomarker information from patients
in a cost-effective fashion. Therefore, the key issue in the design of clinical trials for
personalized medicine is the ability to identify important and meaningful predictors from a
pool of many possible variables.

Based on functions in diagnosis and treatment selection for cancer patients, biomarkers can
be roughly classified into two categories: prognostic markers and predictive markers.
Prognostic markers reflect a healthy status or a disease stage of a patient; they are associated
with disease outcomes regardless of the treatment. One obvious prognostic biomarker is age.
Older ages usually imply shorter survival times on all treatments. In prostate cancer, a
common prognostic biomarker is the prostate-specific antigen (PSA), for which a higher
value of PSA reflecting a larger tumor burden and, consequently, poor prognosis of a
patient. On the other hand, biomarkers that can predict differential treatment efficacy in
different marker groups are called predictive markers. For example, a high level of human
epidermal growth factor receptor 2 (HER-2) is a predictive marker for trastuzumab, a
targeted breast cancer therapy approved by the FDA. In the clinical trials for targeted
therapy development, one primary goal is centered around the identification and validation
of predictive and prognostic markers. In the linear model setting, treatment effects are
usually characterized by a linear combination of treatment main effects, marker main
effects, and marker—treatment interactions. In this case, a non-zero marker main effect
represents a prognostic marker and a non-zero marker—treatment interaction signifies a
predictive marker.

Our research is motivated by one of the first biopsy-based and biomarker-integrated clinical
trials for targeted agent development at MD Anderson Cancer Center. The trial is referred to
as BATTLE, which stands for “Biomarker-based Approaches of Targeted Therapy for Lung
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Cancer Elimination” as described in Zhou et al. (2008) and Kim et al. (2011). One of the
main aims of the BATTLE trial is to establish a program for clinical trials with targeted
therapy development. The BATTLE trial also seeks to identify molecular features in tumor
tissues that correlate with tumor response and to discover new signaling pathways to be
tested in future trials. Building from the success of the original BATTLE trial, several
follow-up trials are being planed at MD Anderson Cancer Center with primary goals of
validating the findings in the BATTLE trial and identifying biomarkers associated with
treatment effects of novel combinations of targeted therapies. The selection of variables
from numerous biomarkers is an important aspect of these new trials for targeted therapy
development.

To embrace the demand of emerging targeted agent trials, we propose a two-step variable
selection strategy for the time-to-event endpoint to identify important biomarkers, as the
selected biomarkers can be subsequently used in the adaptive randomization procedure to
assign more patients with better treatments based on patients” marker profiles. Hence, the
variable selection must be accurate and robust, meaning that the selected biomarkers should
be able to provide good prediction and the selection should be stable against variation in the
data. The least absolute shrinkage and selection operator (Lasso) proposed by Tibshirani
(1996) and its various extensions are suited to this purpose, as Lasso can handle variable
selection and parameter estimation simultaneously. Lasso is a natural choice of the statistical
approach to targeted agent development, for which marker identification and treatment
effect estimation are equally important. To better incorporate the variable selection process
into the Bayesian adaptive design framework, we implement the Bayesian Lasso, which
simplifies the selection of the tuning parameter and takes into consideration the uncertainty
of variable selection. Our marker selection strategy consists of two sequential steps: Step 1
uses the Bayesian group Lasso to screen for biomarkers with either prognostic or predictive
values for grouped variables (with each biomarker group as a selection unit); and step 2
applies the Bayesian adaptive Lasso for refined variable selection among the biomarkers
identified in the first step. Our simulation study demonstrates that this Bayesian two-step
Lasso strategy outperforms the usual one-step Lasso variable selection methods.

It often occurs in oncology trials that many participants have already failed at least one prior
treatment, and the experimental new drug may be their only hope for effective disease
control. One incentive for participation in a clinical trial is the potential of providing
effective treatments to patients within the trial. To find effective treatments for each patient,
biomarkers that can differentiate treatment effects among patients need to be identified.
Lasso-type methods have been extensively developed in the context of variable selection,
which offers a suitable tool for modeling covariate effects in targeted agent development.
The combination of Lasso with Bayesian adaptive randomization can help us to achieve the
goal of treating patients better, as we continue to learn from accumulating data to identify
important biomarkers for treatment selection and progressively optimize patient allocation
based on biomarker information.

The remainder of this paper is organized as follows. In Section 2, we provide an introduction
to Lasso and its Bayesian implementation under the Cox proportional hazards model, and
propose a Bayesian two-step Lasso strategy motivated by the need for biomarker
identification for targeted agent development. In Section 3, we examine the performance of
the Bayesian two-step Lasso method through simulation studies in terms of identifying both
prognostic and predictive markers. We conclude with some discussions in Section 4.
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2 Bayesian Two-step Lasso Strategy

2.1 Bayesian Cox’s Proportional Hazards Model

In clinical trials for targeted agent development, the time-to-event (TTE) outcomes, such as
progression-free survival (PFS) or overall survival (OS), are typically the clinically
meaningful endpoints. Unless a good short-term surrogate endpoint is available, the
recommended primary endpoint is often PFS or OS. Under the Cox proportional hazards
model (Cox, 1972) the hazard function for subject i with covariates X; is given by

B (8]X:) =ho (t) exp (X,78),

where hy(t) is the baseline hazard function and £is a vector of unknown parameters. In an
alternative formulation, model (1) can be viewed as a special case of a multiplicative
intensity model based on the counting process (Clayton, 1991; and Fleming and Harrington,
1991). For subject i, i =1, ..., n, the counting process and the at-risk process are denoted by
N;(t) and Y;(t) respectively, where N;j(t) represents the number of events in the time interval
[0, t], and Y;(t) = 1 if subject i has not experienced the event or has not been censored by
time t, and Y;(t) = O otherwise. The intensity process for subject i is given by

B (EX0) =Y3 (¢) ho () exp (X7 8)

for which we model the baseline cumulative hazard function Hy (t) = [ ho (s) ds through a
gamma process prior (Kalbfleisch, 1978). We partition the time axis into J segments based
on the observed event times, and define the increment of the cumulative baseline hazard in

t - . .
(ti-1. t] as dHoj=[y_ ho (s)ds. Then, the likelihood function can be written as
L(8, Ho|D) =11 11 {idHose (X-T,G)}AN”e {~VijdHojexp (X78) }
s 410 _izljzl 1] 0j XPp 7 XP i 07 XP 7 (2)

where Hg = (Hoy, ... , Hog), D denotes the observed data, AN;j is the number of events in
(-1, tj] for subject i, and Yj; = 1 if subject i is at risk at time tj, otherwise Yjj = 0. The
likelihood in (2) is equivalent to assuming that AN;;, the increment of the counting process

Ni(t) in (tj_g, tj], follows independent Poisson distributions with mean Y;; dHo; exp (XZT) B,
The gamma process prior for the baseline cumulative hazard function can be expressed as

H0~GP (CHO*, C) s

where c is a parameter to weigh the confidence about the prior information, and g, * is the

base measure which is an increasing function with Hy* (0) =0. If we let Hy* (¢) =r¢ where r
is a prespecified hyperparameter, this leads to an exponential distribution for the survival
time. The gamma process prior implies that the dHg; ’s have independent gamma
distributions,

dHoGamma (cHo™ (t; —tj—1)c),j=1,---,J. (3
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2.2 Bayesian Lasso

Lasso is essentially an L{-penalized least square estimator. More specifically, let Y be a
vector of responses of length n, and X be the design matrix of the covariates of dimension n
x p, where p is the total number of predictors. The Lasso estimator is given by

~ P
,BL:arg?in {l (8) —I—)\Z[ﬂﬂ} ;

=1

where the least square objective function 1(8) = (Y — XA)T (Y — X/), \ is a tuning parameter,
and the penalty function takes an Ly norm. This is related to the ridge regression, in which

P 2
the penalty takes an L, norm )‘ijle " To improve the performance of Lasso in various
practical situations, many extensions of Lasso have been developed. As a remedy for
inconsistent estimation of the large model parameters, Zou (2006) proposed the adaptive
Lasso,

5 : ~ 15|
ﬂA:arg;mn (5)+/\Z~L5 ,

=067

~ LS . . . .
where 5; is the usual least square estimator of /4 without any penalty term. Yuan and Lin
(2006) developed the group Lasso for selecting important factors that are grouped together,

K
,BG:arg[Ijnin {l (Biy- 5 By) +/\Z||/6k||Gk} )

k=1

T T K

where ! (P15 B ) =Y — Zklekﬁk> (Y B dexkﬁ’“), K is the number of groups,
1/2

J is a vector of f's belonging to group k, ||ﬂk||Gk:(r6kKGk) / and G is a postive definite
matrix. For convenience, Gy is often set to be the identity matrix. Different multiplication
factors can be imposed on the group penalty function, especially when the dimensions of the
predictor groups are different. The group Lasso facilitates the selection of predictor groups
when the grouping information is known in advance.

The Lasso estimator is usually calculated at a grid of tuning parameters of A, and a cross-
validation procedure is subsequently used to select an appropriate A. This often leads to a
convex optimization problem, for which the least angle regression (Efron et al., 2004) is
developed to compute the entire coefficient path at the cost of a full least square fit.
Recently, the coordinate descent algorithm has been successfully applied to speed up the
Lasso computation (Friedman et al., 2007).

In the Bayesian paradigm, Park and Casella (2008) formulated the Bayesian Lasso by
assuming independent Laplace prior distributions for the / ’s,

P
T (ﬂ‘oz) o exp (—\/—U_sz:l|ﬁ]|> .
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Laplace prior distributions can be generated using a scale mixture of normal distributions,
with a gamma prior for A2 and an improper prior for o2 (Kyung et al., 2010),

/6|U27 D'r
D,
TJZI)\Q

/\2

m (0?)

"N, (0,6°D,),

=diag {712, ey Tg} ,

i-i.d. FExponential (A\?/2) ,
‘Gamma (a, b) ,

x 1/02,

Similarly, the Bayesian group Lasso can be formulated as

Brlo?, 7';? N, (0, U2T,§Ik) ;
72A? Gamma (—k—m ot ’\72) :
A? Gamma (a,b),
m(0?) «1/0?,

where my is the dimension of the kth group, Iy is the identity matrix of size my, and aand b
are hyperparameters.

2.3 Bayesian Two-step Lasso Strategy

The Bayesian two-step Lasso procedure was motivated by the need of designing exploratory
trials for targeted therapy development in lung cancer. The trial has two stages. In the first
stage, patients can be equally randomized into treatments. At the end of stage one, additional
exploratory biomarkers will be chosen through variable selection for adaptive randomization
in the second stage. The trial design and conduct, including variable selection and adaptive
randomization of patients, are all implemented in the Bayesian framework. The proposed
Bayesian two-step Lasso procedure will be used for variable selection procedure at the end
of stage one of the trial.

Without loss of generality, we consider three treatment arms: Treatment O corresponds to the
standard (non-targeted) therapy serving as the control; and treatments 1 and 2 are the single
or combined molecularly targeted agents, which leads to two treatment indicators with
treatment 0 as the reference. Suppose that there are K biomarkers under investigation, from
which we aim to identify the prognostic markers and predictive markers for clinical use. Let
f1 be the main effect of treatment 1 (corresponding to covariate x;1), £ be that of treatment
2 (corresponding to covariate X;»), and (3,1, ... , S be those of the K biomarkers
(corresponding to covariates X,1, -.. , X,)- T0 determine which marker is predictive, we also
include the interaction terms between each marker and the two treatment indicators. In
particular, we denote B and S as the interaction effects between marker k and treatments
1 and 2, respectively. Therefore, the parameterization in model (1) can be written as

Tp__
X' p= Bri T+ %,
B0 Lo T Bk Lok
+ﬁlle1mM1+ﬁﬂxszM1

+/61K1‘T1 ‘TAIK+IB2K xTQx]WK °
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Due to the nature of the study, we are concerned with the identification of important
biomarkers, which are either prognostic or predictive. A biomarker is considered prognostic
if the marker’s main effect is statistically significant, whereas a biomarker is considered
predictive if the interaction between the marker and a treatment is significant. Toward this
goal, we propose a Bayesian two-step Lasso strategy with the first step of biomarker group
selection and the second step of individual biomarker selection. In the first step, we group all
of the covariates by markers such that each group contains only one marker, including the
marker main effect and its interactions with the two experimental treatments. The treatment
main effects do not participate in variable selection and they always stay in the model. We
use the Bayesian group Lasso to screen out the groups of model parameters corresponding to
unimportant markers. In other words, the unit of variable selection in the first step is the
entire group associated with each marker, which includes the marker’s main effect and the
marker—treatment interactions. If the group is not important, we remove the whole group. In
the second step, we take a step-down procedure to further examine each individual marker
and its interactions with the two treatments. To obtain consistent estimates for the model
parameters, we use adaptive versions of the Bayesian group Lasso and the Bayesian Lasso to
provide differentiating penalties to parameters based on some initial point estimation. The
detail of the Bayesian two-step Lasso strategy is described as follows.

Step 1—We group each biomarker’s main effect and the corresponding two biomarker—
treatment interactions together,

T
X8 =pn Ty +Br %,
+ (/61\11 Ty H1120 Ty H01 L Ty Ty ) Groupl

+ Bk Tarie 51 Ty Ty T ) Group K.

Let = (Buk Pk, ST, k=1, ..., K; and for group variable selection, the shrinkage priors
for f are given by

Brlo?, 7 N (0,0°7:°L;)
2 41 A2
7° Gmma (mk2 , 2Hﬁ~k“2) )
A? Gemma (a,b),

mo? o 1/0?,

where 3, is an initial posterior estimate of /& under noninformative prior distributions. The

use of 3, in the prior distribution of 7, 2 enables different penalties for different groups of
variables, an idea similar to the Bayesian adaptive Lasso.

Let g,(V, ..., 8,(™ denote the m posterior samples of /5, and let ﬁk:m_lzizlﬁk(i)
denote the corresponding posterior mean. We can construct a distance measure from 3, () to

By

‘ NN W
dk“):(ﬁk“)—ﬁk) Wl - (ﬁk —ﬁk),z':lm m,
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where W) is the posterior sample variance—covariance matrix. We denote the empirical

cumulative distribution function of &k as  Fi (d)=m 'Y " I (d’“(i)<d), and then the
kth biomarker group will be selected if

-T

By Wi B>F (61),

where F,~! (-) is the empirical quantile function and 8, is a tuning parameter between 0 and
1.

Step 2: We apply the Bayesian version of the adaptive Lasso for finer variable selection
after the relevant groups are selected in the first step. Let S be the set of model parameters
for the selected marker groups, including the marker main effects and marker—treatment
interactions. The prior for 4 in the Bayesian adaptive Lasso of the second step is

m(B;|\) o exp (—/\ZIE—J)

jes

Using the exponential mixture of normal distributions, we have

ﬂj|02,7j2 - N (0,0’2Tj2),

7;2|A? 4 Exponential 5—22

A2 Gemma (a,b),
7 (0?) x 1/02,

<
N——

where Bj is an initial posterior mean estimate of /4 under noninformative prior distributions.
At the end of the second step, the markers’ main effects and the marker—treatment
interactions are selected individually based on the posterior distribution of each parameter.
For example, a particular marker main effect or marker—treatment interaction will be
selected if the & posterior credible interval does not include zero, where 8, is another tuning
parameter between 0 and 1.

The values of 61 and &, can be calibrated to achieve desirable frequentist properties for
variable selection. In the general clinical trial setting for targeted therapy development, the
clinical study team needs to propose a null study case and an alternative study case based on
available medical information. Usually, drug development is not going to be viable even if
the pre-assumed treatment effect for the null case is true. Based on the available data, the
alternative case should be the most likely case that can provide patients with meaningful
treatment improvement. The null and alternative study cases can be used to tune §; and &, in
the simulations to control the error rates. In clinical trials for targeted therapy development,
hypothesis testing is typically conducted for treatment effects in both the overall patient
population and certain predefined patient subgroups. When all the null hypotheses are true,
the probability of rejecting at least one hypothesis is defined as the family-wise error rate.
Since our main goal is variable selection, the strong control of the family-wise error rate is
too stringent and not the best measure for evaluating the methods.

Instead, in our simulations, we tune the values of 6, and &, based on the mean error rate of
variable selection. In particular, all the parameters are set to be zero in the null case. For
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each parameter, we can calculate the probability of being erroneously chosen by our
Bayesian two-step Lasso method over a large number of simulations. The mean error rate of
variable selection is the average selection probability of all parameters under the null case.
Within the sets of 81 and 8, values that meet our error rate control criterion, the set that
maximizes the power of variable selection is chosen for trial conduct. Here, power is defined
as the average selection probabilities of all non-zero parameters under the alternative case.

The goal of the Bayesian group Lasso in the first step is to screen out unimportant
biomarkers, so that more efficient variable selection can be achieved in the second step on a
reduced parameter space. We take a loose or more lenient selection criterion in the first step
to minimize the chance of important biomarkers being excluded, and at the same time the
goal of reducing the parameter dimension for the second variable selection can still be
achieved. The screening of variables before applying a formal variable selection procedure
has been used in practice, for which Fan and Lv (2008) provided a formal justification based
on sure independence screening. Instead of screening each variable individually, we use a
Bayesian group Lasso to screen all variables simultaneously.

3 Simulation Study
3.1 Model Setups

The primary goal of targeted therapy development is to identify prognostic or predictive
biomarkers that can guide the molecular diagnosis and personalized treatment optimization
for patients. Following this plan, we conducted simulations to evaluate the variable selection
procedure using our Bayesian two-step Lasso strategy. We investigated 50 biomarkers
including both prognostic and predictive markers, among which odd-numbered biomarkers
were binary and even-numbered biomarkers were continuous. All biomarker values were
generated from a multivariate normal distribution, and binary biomarkers were obtained by
dichotomization with a fixed marker-positive percentage at 50%.

The true values of covariate effects are given in Table 1 for the null Model, alternative
model 1, and alternative model 2, where the first row represents the marker main effects,
and the remaining two rows correspond to the marker—treatment interactions. Fifty markers
are used in the simulations for the null and alternative model 1, and 15 markers are used for
alternative model 2. Fifty markers yield a total of 152 model parameters related to marker
and treatment effects. To save space, the true parameter values related to the first 15 markers
are shown in Table 1, and those not shown are all zero. We set the treatment main effects to
be zero for both experimental treatments, and focused on the identification of important
biomarkers. For alternative model 1, one can see that marker 1 (odd-numbered markers are
binary) is a prognostic marker as patients with positive status of marker 1 would have
improved survival regardless of their treatments. Similarly, marker 2 (even-numbered
markers are continuous) is also prognostic for better survival. Markers 3 and 4 are
prognostic for worse survival, and markers 5 through 12 are all predictive markers with
small prognostic effects. All markers in alternative model 2 are binary.

To mimic the common setup of a phase Il exploratory trial in oncology, our simulation study
involved a total sample size of 150, with an accrual period of four years and one additional
year of follow-up. Patients’ survival times were generated from the proportional hazards
model by assuming an exponential survival distribution. In particular, we assumed that T;,
the survival time for the ith patient, follows an exponential distribution with rate parameter

Ao exXp (Xz‘Tﬁ), where the baseline hazard rate A = 0.02 and X; is the covariate vector of the
ith patient. The censoring time, C;, was generated from a uniform distribution on (0, Cmnax),
where Cmay IS a constant that was adjusted to control the censoring rate at 7% and 15% for
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the null and alternative cases, respectively. The observed data were i.i.d. copies of (Z;, A;,
Xi), where Z; = min{T;, C;} A; = I(Tj = C;), and I(:) is the indicator function.

In the gamma process prior for the baseline hazard rate, we used the hyperparameters of r =
0.01 and ¢ = 0.001 in (3). We specified a Gamma(1, 10) as the prior distribution of A2, with
mean 10 and variance 100. The point estimates of parameters depend on the number of time
segments for modeling the baseline hazard in the Cox proportional hazards model. In our
simulations, we used 30 segments to model the baseline cumulative hazard function.

3.2 Simulation Results

As discussed previously, the values of the tuning parameters & and &, are determined by the
mean error rate of variable selection. We conducted 1000 simulations for different
combinations of &; and & under both the null and alternative cases, and chose the values of
61 and & that can control the mean error rate of variable selection under the null case and
maximize the mean selection probability of non-zero parameters under the alternative case.

Figure 1 shows the mean selection probabilities of parameters at different values of & and
&. The x-axis represents the average selection probabilities of all parameters under the null
case, and the y-axis exhibits the average selection probabilities of non-zero parameters under
the alternative case. Three values of & = (0.7, 0.8, 0.9) are shown, and the results for the
same value of & are plotted on the same curve. For illustration, the values of &; are given by
the data points on the first curve (& = 0.7). The curves labeled as “Group.Adapt” are results
from our Bayesian two-step Lasso with the Bayesian group Lasso in the first step and
adaptive Lasso in the second step. On the other hand, those curves labeled as “Adapt.Adapt”
are results from the two-step Lasso with the Bayesian adaptive Lasso in both steps.

Each data point in Figure 1 corresponds to one pair of 6; and &, values, which can be used to
choose the optimal combination of & and &. For example, if the target value for the mean
error rate of variable selection under the null case is about 0.08, the pair of 5 = 0.2 and & =
0.7 would give the highest mean selection probability of non-zero parameters under the
alternative case. On the other hand, if we would like to control the mean error rate under the
null case to within 0.05, we can choose 6, = 0.8 and & = 0.2. Figure 1 shows that
“Group.Adapt” is always better than “Adapt.Adapt” when the mean error rate is controlled
at the same level.

Table 2 shows that the mean bias using the “Group.Adapt” is smaller than that using the
“Adapt.Adapt” procedure. The mean bias is calculated by averaging over all relevant
parameters under either the null case or the alternative case. The point estimation of our
Bayesian two-step Lasso method is also compared with the frequentist one-step adaptive
Lasso, which has the mean biases of 0.00081 and —0.00141 under the null and alternative
cases, respectively. The result shows that the posterior mean of our Bayesian two-step Lasso
method is comparable and slightly better than the frequentis one-step adaptive Lasso in
terms of estimation bias. The average mean squared errors of parameters are shown in the
lower panel of the Table 2. The “Group.Adapt” procedure still performs slightly better than
“Adapt.Adapt”. For the frequentist one-step adaptive Lasso, the average mean squared
errors are 0.02238 and 0.07149 for the null and alternative model 1, separately.

Based on the results in Figure 1, 6; = 0.2 and & = 0.7 were chosen to control the mean error
rate under the null case at 0.08. The point estimates and the marginal selection probabilities
of the model parameters in both the null case and the alternative case are shown in Table 3.
Under the null case, the posterior means for all parameters are all close to zero. The
selection probabilities for all parameters are generally under 0.10 with a maximum of 0.12.
Under the alternative case, the parameters are reasonably well estimated but the estimation
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biases of parameters for binary markers are generally larger than those for continuous mark-
ers. Important continuous biomarkers have substantially higher selection probabilities than
their binary counterparts.

Furthermore, we performed additional simulation studies to compare the operating
characteristics of our Bayesian two-step Lasso strategy versus the one-step method under
alternative model 2 in Table 1. For this simulation, we assumed all 15 markers to be binary
with a fixed marker-positive percentage of 50%, and & = 0.8 was used for the one-step
method, and 61 = 0.2 and & = 0.8 for the two-step method. For each method, the first panel
represents the estimation bias of the posterior mean, the the second panel shows the
posterior standard deviations, and the last panel gives the marginal selection probability of
each parameter. For ease of exposition, the bias is multiplied by 100. The overall
performance of point estimation of the Bayesian one-step and two-step Lasso methods are
similar for parameters with true values of zero, while the biases of the two-step method are
much smaller for parameters that are truly non-zero. A further comparison of the standard
deviations in Table 4 shows that the two-step strategy generally results in more variations
for parameter estimates compared with the one-step method. The powers of different
methods can be compared by the selection probabilities of truly non-zero parameters, and
the type | error rates are characterized by the selection probabilities of the parameters with
true zero values. The two methods have similar type I errors, i.e., similar selection
probabilities for zero-valued parameters. For the power of variable selection, the two-step
method outperforms the one-step method, as the selection probabilities for non-zero
parameters are better using the two-step method than those using the one-step method.

4 Discussion

Our Bayesian two-stage Lasso strategy is motivated by the need in the trial design for
targeted therapy development for patients with non-small cell lung cancer at MD Anderson
Cancer Center. Due to the exploratory nature of these trials, both learning information and
treating patients effectively are important contributing factors for success. Therefore, such
trials are typically divided into two stages. The primary objective of the first stage is to find
biomarkers with prognostic or predictive values for use in the adaptive randomization of
patients in the second stage of the trial. According to the FDA guidelines, biomarkers used
in adaptive randomization must be CLIA certified (e.g, they must meet the requirements of
the Clinical Laboratory Improvement Amendments—CLIA), which places a limit on the
number of biomarkers that may be used in the adaptive stage. Therefore, the selection of
biomarkers in the first stage is essential to the success of the adaptive randomization in the
second stage. Since usually multiple experimental treatments are compared with the control
treatment in trials for targeted therapy development, a biomarker is deemed important if it is
marginally important or if it is important for at least one experimental treatment. Our
Bayesian two-step Lasso strategy fulfills this requirement by bridging the Bayesian group
Lasso and adaptive Lasso. The simulation results indicate that the Bayesian two-step Lasso
strategy improves upon the one-step procedure. Foremost, using the group Lasso in the first
step screens out biomarkers that are not important prognostically or predictively for any of
the treatments. Then, as evidenced by the simulation results, using the adaptive Lasso in the
second step of our strategy leads to better variable selection. The Bayesian group Lasso in
the first step not only serves as an initial screening step to reduce the parameter space for the
second step, it also possesses the similar spirit as the strong heredity principle of variable
selection (Chipman, 1996). The parameters used in making decisions can be tuned using
different frequentist operating characteristics of our method. The error rates of variable
selection can be controlled numerically through simulations, which is especially applicable
to trial designs in the exploratory phase of drug development.
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Other stepwise Lasso strategies are also available for variable selection. For example, the
relaxed Lasso is a two-step method, with the first Lasso to achieve model selection, and the
second Lasso to achieve parameter estimation with a smaller penalty parameter
(Meinshausen, 2007). Our two-step strategy is better suited to the Bayesian framework
implemented in the design of BATTLE-type trials, where biomarker information is collected
in the first stage and adaptive randomization kicks in during the second stage. The Bayesian
two-step method can be easily implemented in trial designs for other targeted agents that are
characterized by multiple treatments and multiple biomarker with a goal of identifying both
prognostic and predictive markers.
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Figure 1.

Mean selection probabilities of parameters at different values of 5; and &. The x-axis gives
the mean selection probabilities of all parameters under the null case, and the y-axis gives
the selection probabilities of non-zero parameters under the alternative case. Three values of
& =(0.7, 0.8, 0.9) are plotted, and the results for the same value of &, are shown on the
same curve.
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Table 2

Comparison of mean point estimation bias between two different Bayesian two-step Lasso methods:
“Group.Adapt” implements the Bayesian group Lasso in the first step of variable seleciton, and
“Adapt.Adapt” uses the Bayesian adaptive Lasso in both the first and second steps. The parameter &, is fixed

at 0.7.

&=01 §=02 6=03 &=04 &=05 &=06

Average Bias Estimation

“Group.Adapt”

Null 0.00063 0.00056 0.00045 0.00042 0.00016 0.00014
Alternative  —0.00118 -0.00113 -0.00110 -0.00065 -0.00088 -0.00087

“Adapt. Adapt”

Null 0.02643 0.02114 0.01638 0.01234 0.01234 0.00890
Alternative  0.03556 0.03029 0.02529 0.02053 0.02053 0.01606

Average MSE Estimation
“Group.Adapt”

Null 0.01281 0.01372 0.01286 0.01070 0.00790 0.00555
Alternative  0.02309 0.02384 0.02352 0.02260 0.02243 0.02244

“Adapt. Adapt”

Null 0.01761 0.01585 0.01442 0.01331 0.01331 0.01243
Alternative  0.03413 0.03291 0.03231 0.03228 0.03228 0.03259
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