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Abstract
Classification of cancer based on gene expression has provided insight into possible treatment
strategies. Thus, developing machine learning methods that can successfully distinguish among
cancer subtypes or normal versus cancer samples is important. This work discusses supervised
learning techniques that have been employed to classify cancers. Furthermore, a two-step feature
selection method based on an attribute estimation method (e.g., ReliefF) and a genetic algorithm
was employed to find a set of genes that can best differentiate between cancer subtypes or normal
versus cancer samples. The application of different classification methods (e.g., decision tree, k-
nearest neighbor, support vector machine (SVM), bagging, and random forest) on 5 cancer
datasets shows that no classification method universally outperforms all the others. However, k-
nearest neighbor and linear SVM generally improve the classification performance over other
classifiers. Finally, incorporating diverse types of genomic data (e.g., protein-protein interaction
data and gene expression) increase the prediction accuracy as compared to using gene expression
alone.
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1. INTRODUCTION
The advent of DNA microarrays enabled the simultaneous monitoring of expression levels
of thousands of genes [1–2], and have driven the rise of computational analyses involving
machine learning techniques. These methods have been used to extract patterns and build
classification models from gene expression data, and have aided in cancer prediction [3–6]
and prognosis [7–9]. Prior reviews discussed classification methods applied to cancer data
but have focused predominantly on the performance of the classification models from a
computational perspective without an in-depth exploration of the biologically relevant
information that could be extracted [10–13]. This paper reviews different classification
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methods applied to cancer gene expression data and predicting cancer survivability and
recurrence as well as identifying biomarkers involved in cancer-related pathways.
Furthermore, we present a two-step feature selection method based on an attribute
estimation method (e.g., ReliefF) and a genetic algorithm, perform a comparative analysis of
commonly applied classifiers (decision tree, bagging, random forest, k-nearest neighbor, and
support vector machine) on 5 well-known gene expression datasets [14–18], and show that
no single classification method outperforms all the others. Classification based on an
integrative approach combining gene expression with other genomic information (e.g.,
protein-protein interaction data) improved the classification performance over using gene
expression data alone.

Classification models applied to gene expression data have differentiated between different
cancer subtypes as well as between normal and cancer samples [19–20]. In addition to gene
expression data, clinical data (e.g., tumor type, risk factor, stage of the disease, age of the
patient, etc.) have been integrated with gene expression data to increase the classification or
prediction accuracy. Models based on clinical and gene expression data improve the
prediction accuracy of a disease outcome as compared with predictions based on either data
alone [21]. However, as the number of features (e.g., genes) and information increase, it
becomes more challenging to integrate the disparate data into a reliable classification model.

The use of gene expression data to develop classification models presents several
challenges. The small number of cancer samples typically available to train the model
compared with the number of features present (e.g., genes) can degrade the performance of
the classifier and increase the risk of over-fitting. Cancer classification based on gene
expression data contains a large number of features, which requires a relatively large
training set to learn a classifier (e.g., model) with a low error rate. Over-fitting a
classification model can be avoided by choosing a subset of features (or genes) to learn a
model. Feature selection methods can address the challenges arising from high data
dimensionality and small sample size. Feature selection decreases the dimensionality of the
feature space, and mitigates the challenge of small sample size prevalent in most microarray
studies.

This paper is arranged as following: Section 2 discusses feature selection and its impact on
performance as well as different classification models (decision tree, bagging, random
forest, k-nearest neighbor, support vector machine) that have been applied to classify cancer
data. Section 3 reviews applications where classification models have been employed to
identify biomarkers for cancers and to predict prognosis of cancer patients. In section 4, a
two-step feature selection method is presented and applied on 5 well-known cancer datasets.
Different evaluation functions (e.g., classification methods) are performed to assess whether
a particular method is more capable of classifying cancer data, given its inherent
heterogeneity. Finally, section 5 discusses the improved prediction accuracy obtained by
integrating gene expression data with other genomic information, as well as improved
robustness and prediction accuracy across different classifiers by incorporating a two-step
feature selection method into the pipeline.

2. CLASSIFICATION METHODS
Classification is assigning a category to a sample (e.g., test sample) from a pre-defined set of
categories based on prior information (e.g., training samples). This prior information
corresponds to training samples with established categories. The training samples are used to
learn a classification model that can later be applied to predict the category to which the new
samples belong. There are many methods that can be used for classification. This paper
focuses on 3 classification methods that are most often applied in cancer research.
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Figure 1 shows a generalized classification framework. First, a feature selection method is
used to select a set of informative genes from a training set. Next, a model or classifier is
learned based on the features (or genes) selected from a training set. After generating a
classification model, the model is applied to a test set to predict the class of the samples in
this set. The performance of the classification model is determined by the training and test
errors. The training error corresponds to the number of misclassified samples in the training
set while the test error refers to the number of misclassified samples in the test set. The goal
of all classification models is to achieve low training and test errors. An iterative approach
to feature selection could also be used, where the performance of the learned model is
evaluated based on a pre-determined criteria and a new set of features is selected and used to
learn a new model which is repeated until the pre-defined level of prediction accuracy is
achieved.

2.1. Feature Selection
Feature selection is a preprocessing technique aiming to select the most informative genes
that can differentiate among groups, i.e., cancer subtypes, or normal vs. cancer samples. A
feature selection method reduces the dimensionality of the original feature space [Y1, Y2, …
Yn] to a lower dimensional space by selecting a subset of genes:

(1)

Feature selection methods are divided into three categories: filter, wrapper, and embedded
methods [22]. Filter methods or external feature selection approaches select features or
genes independent of or separate from the classifier or model. Most filter approaches apply a
score based on t-test or analysis of variance (ANOVA) [23], for example, to each feature.
The features having the highest and most significant scores are then used as inputs to the
classification model. Wrapper methods embed the feature selection method within the
learning approach. Using wrapper methods, different feature sets are generated and
evaluated in a classification method to identify a set of features (e.g. genes) that best
distinguishes between the samples of different classes. A commonly applied wrapper
method is genetic algorithms [24–25], which are searched-based heuristic methods that
follow the process of evolution using genetic operators (e.g., mutation and crossover) to
introduce genetic diversity into the population. Genetic algorithms randomly or
preferentially select fitter individuals to move onto the next generation. Other wrapper
approaches include sequential forward and backward selections. Sequential forward
selection (SFS) is a greedy search algorithm that initially starts with an empty set of features
and sequentially adds features (e.g., genes) that maximize an evaluation function. On the
other hand, sequential backward selection (SBS) starts with a full set of features and
sequentially removes features that decreases the value of the evaluation function the least.
Other methods, such as the bidirectional search, combine sequential forward and backward
selections to find a locally optimal set of features. Because enumerating all feature subsets in
order to obtain the optimal set of features (or genes) for classification is computationally
infeasible, wrapper methods (e.g., genetic algorithms, SFS, SBS …) are good heuristics to
approximate a solution (e.g., a subset of features for classification). The last feature selection
category is embedded approaches. Embedded approaches are methods that are inherent in
the classifier/model (e.g., decision tree). For instance, Information Gain and Gini Index are
measures of impurity, that assess how well the classes are separated based on a given
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feature. They are inherently used by decision trees for deciding the splitting criterion that
chooses which feature to use to split the training data in the tree.

Another way to reduce the dimensionality of the feature space is through feature extraction
(e.g., principle component analysis and discriminant analysis) which transforms gene
expression data to a lower dimensional space using a linear combination of features or
through non-linear mapping or transformation:

(2)

A commonly applied feature selection method is clustering [26–28] (where the genes within
the same cluster are highly correlated) which reduces the redundancy among the selected
genes for classification. For example, a two-layer feature selection method based on
clustering was employed to select genes with reduced redundancy [26]. Using four
clustering methods, k-means, self-organizing map (SOM), hierarchical agglomerative and
hierarchical divisive clustering, the dataset was partitioned into clusters such that the intra-
cluster similarity is higher than the inter-cluster similarity. One representative gene was
further chosen from each cluster to reduce redundancy and used as an input for a sequential
forward selection method to obtain a set of features that can best separate different groups
(or classes). Additionally, an iterative 2-way clustering approach has also been employed to
obtain a set of genes such that the ones within the same cluster are highly correlated as
compared to the ones outside the cluster [27]. Other grouping methods involved clustering
interdependent features using an evaluation function to quantify this interdependence (e.g.
Information measure) [28]. More recent feature selection methods include Partial Class
Relevance (PCR) and Full Class Relevance (FCR), which reduce the dimensionality of the
feature space while retaining informative and non-redundant genes to help in achieving high
classification accuracy for cancer prediction [29]. Similarly, support vector machine (linear
kernel, penalty parameter C = 100) recursive feature elimination (SVM-RFE) algorithm
integrated with T-statistic has been used to select differentially expressed genes and has
achieved high classification accuracy across different microarray datasets. It was found that
a subset of the selected differentially expressed genes by SVM-RFE is known to be involved
in colorectal cancer development (CASP3, DOT1L, GRB2, and TNRC6A) [30]. This
supports the use of feature selection methods to provide insight into known as well as novel
biomarkers. Finally, a hybrid negative correlation method has been applied to identify a
subset of genes that were used as features for a classifier [31]. The aforementioned feature
selection methods represent some of the approaches taken to select non-redundant and
informative genes that have been used to distinguish among cancer subtypes or normal vs.
cancer samples. It should be noted that using feature selection (notably those that mainly
reduce redundancy) for classification could result in loss of meaningful biological
information from the discarded genes (e.g., genes that are not selected for classification).

2.2. Decision Trees
Decision trees are among the earliest classification methods. They are still frequently
applied due to their robustness (e.g., ability to deal with noise through pruning) and
simplicity (e.g., sequence of logical expressions). Additionally, decision tree classifiers are
considered human readable because they are easily interpretable as compared to methods
such as support vector machine (SVM) and k-nearest neighbor. There are four main design
components in a decision tree. First, a splitting criterion decides which feature to use to
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split the data upon. Second, a stopping criterion decides when to halt the tree growth.
Third, pruning is applied to decrease the size of the tree to tolerate noisy data and increase
the decision tree accuracy. Fourth, dealing with missing values is another design component
where many strategies can be applied to address the missing attribute values such as
ignoring the missing value, replacing the missing value with the mode of a nominal attribute
or the mean/median of a numerical attribute. A simple decision tree, with gain ratio as a
splitting criterion, has been shown to achieve comparable performance to more advanced
classification methods such as SVM, using radial basis (γ = 0.01) or linear kernel [32].

Figure 2 shows an example of a decision tree structure which is a directed tree that starts at
the root node and links or expands to form external nodes known as leaf nodes representing
the classes or categories, while the branches represent combinations of features that lead to
the class labels. A decision tree structure begins at the root node and continues downwards
where it is recursively created until a stopping criterion is reached to form the leaf nodes. A
stopping criterion could be based on a training error or until an impurity measure less than a
predefined threshold is achieved. After learning a decision tree structure from the training
set, test samples are applied on the generated decision tree and assigned to the class of the
appropriate leaf node. In classification terminology, each node holds a feature (i.e., gene),
and based on the value (i.e., expression) of this feature, the next node it links to is
determined. For instance, in the decision tree structure of Figure 2, a sample “S1” with the
following values 6, 1, and 2 for features “g1”, “g2”, and “g3”, respectively, will be assigned
to class “A”, as the root node carrying feature “g1” holding a value of 6 links to feature
“g3”, and a “g3” value of 2 links to a leaf node that holds class “A”.

In cancer classification terminology, the nodes represent genes that have specific expression
levels while the leaf nodes represent the type of cancer. A major challenge in building a
decision tree for cancer classification based on gene expression data is to determine which
genes to use in forming the tree structure. An evaluation function is applied to assess how
well the genes are able to separate the different cancer subtypes or normal vs. cancer
samples. The evaluation function is viewed as an inherent feature selection method and is
considered an impurity measure that assesses how well the classes are separated based upon
the selected gene. An impurity measure of 0 represents total separation between the different
classes, while an impurity measure of 1 represents evenly distributed classes among the
child nodes.

Decision trees have been shown to achieve high prediction accuracy in classifying colon
tissue samples, with only one of 62 samples misclassified [33]. Entropy defined as

(3)

where P is the probability of a tissue being normal, was used to select the genes that achieve
the lowest impurity measure to split the training set upon. They achieved a classification
accuracy of 98% using only three genes (IL–8, CANX, and RAB3B) related to tumors.
Another study applied a new splitting criterion that allowed the testing of more than one
feature (e.g., gene) at a single internal node [34]. That method achieved an accuracy that
outperformed the commonly used decision tree classifiers (e.g., methods based on testing
one feature at a single internal node). Decision tree classifiers have also been used to predict
the survivability of patients with lung cancer and found to outperform the more advanced
Naïve Bayes (see APPENDIX) approach using data collected from the Surveillance
Epidemiology and End Results (SEER) database [35]. These studies illustrate that decision
trees using one or multiple features at a single internal node were successfully applied for
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cancer prediction and prognosis, achieved high classification accuracy, and outperformed
other classification approaches (i.e., Naïve Bayes, SVM).

Building a decision tree through a recursive method can reveal correlations between genes
[12]. This is achieved through the process of selecting the nodes to split, which provides
information about the structure of the data as well as relationships between genes. Figure 3
shows a simple tree structure used to differentiate between acute lymphoblastic leukemia
(ALL) and acute myelogenous leukemia (AML), where a decision tree can be interpreted as
a sequence of logical expressions. The following two rules can be deduced from the tree
structure in Figure 3 (note that CD33, PSMD12, and C18ORF1 are symbolic identifiers for
protein-coding genes):

• CD33 < 312.5 AND PSMD12 < −25 OR CD33 > = 312.5 AND C18ORF1 < 39.5
→ AML

• CD33 < 312.5 AND PSMD12 > = −25 OR CD33 > = 312.5 AND C18ORF1 > =
39.5 → ALL

A decision tree, however, tends to be a weak distinguisher for cancer subtypes or between
normal and cancer samples since it often over-fits the model. In other words, decision tree
performs well when training a model that generates a small training error. On the other hand,
the performance degrades quickly when applied to the test samples. An ensemble of
decision trees can be used to overcome the over-fitting problem. An ensemble model trains a
number of classifiers using different subsets of the training data, different features, or
different learning methods. Once a set of classifiers (or decision trees) is constructed, the
results are integrated through a combination method such as the majority vote algorithm. An
ensemble of decision trees was shown to perform better than single decision tree classifiers
when applied to cancer microarray data [36–37]. Ensemble learning can improve the
performance of a classification model by employing multiple learners (classifiers) and
combining their predictions. Two popular ensemble approaches have been used in cancer
classification, bagging and random forest. Bagging creates subsets of cancer samples from
the training data and samples the training set with replacement. After generating a number of
subsets of cancer samples, the subsets are used to learn or to construct a number of decision
trees. The predictions of these decision trees are combined through the majority vote
algorithm. Random forest is another ensemble approach that combines the bagging approach
with the selection from a random subset of features (or genes) rather than from the entire set
of features (or genes) [38]. The error in random forests is estimated using the
misclassification probability of out-of-bag observations. Specifically, two-thirds of the
training set is used to construct a tree while one-third is used as a test set (e.g., out-of-bag) to
compute the out-of-bag error estimate. This error estimate represents the number of times
the predicted class of a test sample (Si) is not equal to the true class in all the constructed
trees where (Si) was out-of-bag (or chosen to be in the validation set) averaged across all test
samples. Therefore, random forests, through the use of the unbiased out-of-bag error
estimate, can avoid over-fitting, and hence cross-validation is not required.

2.3. K-Nearest Neighbor
K-nearest neighbor is a non-parametric classification method that is often used when the
underlying distribution (e.g., normal or Gaussian) of the data is unknown. Using this
method, cancer samples are transformed to a metric space where distances between samples
can be determined. This method is based on a distance function (or similarity measure) such
as a Euclidean distance or Pearson correlation between a test sample and its k-nearest
training samples. The general idea behind k-nearest neighbor analysis is to classify a test
sample based upon the most common (majority) class in its k-nearest training samples.
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Figure 4 shows an example of a test sample and its 4-nearest neighbors. Using 4-nearest
neighbors, the test sample is assigned to “Class 2” since the majority of its nearest neighbors
belong to “Class 2”. Unlike decision trees, k-nearest neighbor does not reveal information
about the structure of the data but makes use of the correlation between the expression
values of the genes through the distance function employed [12]. Additionally, k-nearest
neighbor is sensitive to redundant features because all of the features contribute to the
similarity measure between a test sample and its neighbors [39]. Thus, feature selection must
be used to eliminate the redundancy among the selected features prior to classification. Also,
k-nearest neighbor requires high running time when the training set is large [39]. This is
because classification is conducted based on the entire feature set, which can be expensive in
computing the distance between a test sample and all the training samples. Finally, the
choice of the number of neighbors’ k can greatly affect the performance of the classifier.

Different measurements for the distance function have been used, including the Euclidean
distance, Minkowski’s metric, correlation, etc. K-nearest neighbor using Euclidean as a
distance function was shown to achieve high classification accuracy for leukemia and
malignant gliomas cancer predictions [40–41]. Similarly, k-nearest neighbor using
Euclidean distance and prognostic features (clump thickness, marginal adhesion, single
epithelial cell size, etc.) achieved a prediction accuracy of 99.12% for breast cancer
survivability [42]. These studies suggest that k-nearest neighbor with a simple distance
measure, Euclidean distance, can achieve high classification performance for cancer
prediction and prognosis. Although the k-nearest neighbor classification method is
simplistic, it has outperformed the more sophisticated approaches such as SVM. For
example, two modified versions of k-nearest neighbor, k-discriminant adaptive nearest
neighbor and k-local hyper-plane distance nearest neighbor, applied to 5 cancer microarray
datasets showed better performance than SVM with either linear (penalty paramater C = 1)

or radial basis  kernels [43]. In addition
to SVM, the reported results show that k-nearest neighbor performs well in practice for
cancer prediction, achieves high prediction accuracy, and can outperform other classification
methods such as decision tree and Naïve Bayes [44].

2.4. Support Vector Machine
SVM is a supervised learning method widely used in classification and regression analysis.
SVM is often used in cancer classification [45–49] and is robust to noise. The robustness to
noise was achieved by showing that a regularized SVM is equivalent to a robust
optimization problem (e.g., SVM is the solution to robust classification) [50]. SVM builds
models by separating the data with either a linear or non-linear decision boundary. SVM
finds the hyper-plane that maximizes the margin or separation of the data from the different
classes (Figure 5). Specifically, SVM seeks a hyper-plane that best separates the classes by
maximizing the distance of the closest training samples to the hyper-plane. For a 2-class
(binary) classification problem, samples of one class are located on one side of the hyper-
plane while samples of the other class are located on the other side of the hyper-plane.

Figure 5 shows data points for 2 classes that are linearly separable along with a decision
boundary determined by SVM such that the distance from the boundary to the closest
training samples is maximized. Thus the 2 classes are considered linearly separable if a
hyper-plane wτx + b = 0 exists where w is a vector, b is a scalar, and the data point (i.e.,
feature vector containing the gene expression) x is assigned to one of the 2 classes if the
following is satisfied:
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(4)

Most datasets are non-linearly separable. In this case, SVM converts the data points into a
higher dimensional space through a kernel function and then separates the data with a hyper-
plane. Different kernel choices are available (e.g., linear, sigmoid, polynomial, radial basis),
each associated with a set of parameters [51], and yielding a decision boundary that can
separate cancer subtypes or normal vs. cancer samples. By minimizing a function (e.g.,
generalization error estimate), a kernel can be selected and its parameters automatically
tuned to obtain a set of parameters that yield improved prediction performance [52]. Multi-
class SVM is still an active area of study to design an optimal method that can classify more
than two classes.

Classification models based on SVMs applied to gene expression data have successfully
differentiated among different cancer subtypes as well as between normal and cancer
samples [19, 45]. SVMs using three kernels (linear, polynomial, and radial basis) with the

parameters degree = 2, penalty parameter C= 1, and  have been used to
classify cancer subtypes based on gene number of classes expression data, with an accuracy
as high as 97% [19]. Functional analyses through the Human Genome Index (HGI)
identified that 65% of the genes selected by SVM were related to the cancer, lending support
to the ability of classification methods in identifying genes involved in cancer-related
pathways [19]. Additionally, SVM with a polynomial kernal

 achieved a higher classification accuracy than k-nearest
neighbor and Naïve Bayes classifiers [46]. Similarly, classification based on SVM with
radial basis (γ = 0.02, penalty parameter C = 50) and linear (penalty parameter C = 50)
kernels has demonstrated to achieve high classification accuracy on many different
(leukemia, colon, prostate, lung, and breast) cancer datasets [47, 48]. Finally, ensemble of
SVMs has also been applied to classify cancer samples. A bagged ensemble of linear SVMs
(penalty parameter C = 1) was employed to classify malignant tissues and achieved better
classification accuracy than single linear SVM classifiers (penalty parameter C = 1) [49].
These studies show that classification using SVM was successfully applied for cancer
prediction using different cancer datasets and outperformed other classification approaches
(e.g., neural networks, Naïve Bayes, k-nearest neighbor), while retaining genes involved in
cancer.

3. APPLICATION OF CLASSIFICATION FOR CANCER TREATMENT AND
PROGNOSIS

Classification of cancers has been performed to identify potential biomarkers [14, 19, 53, 54,
55, 56]. The assumption in the application of these methods is that by achieving high
prediction accuracy, the selected features of the classification model could be cancer
biomarkers and further investigated for their therapeutic potential. In these studies, feature
wrappers (iterative feature selection method) based on sequential forward search (SFS) and
sequential forward floating search (SFFS) algorithms were employed to identify potential
biomarkers where linear discriminant analysis, logistic regression, and SVM (linear and
polynomial kernels with degree = 2, γ = 10, penalty parameter C = 1) models were used to
measure the accuracy of the selected features in cancer classification [53]. Using SFS and
SFFS, it was found that p53-binding protein, Ras suppressor protein, psoriasis-associated
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protein, and DNA repair gene MSH2, which are related to the development of tumors, were
among the features that provided high classification accuracy in classifying BRCA1
mutation-positive tumors. Additionally, it was found that MAPK1, MAPK7, suppression of
tumorogenicity, and semia sarcoma viral oncogene homolog, which are involved in
tumurogenesis, were among the features that achieved high classification accuracy in
classifying BRCA2 mutation-positive tumors. Therefore, the selected features used to build
the classification model could be potential biomarkers.

A study of 38 bone marrow samples from acute leukemia patients divided into two groups
(AML, ALL) identified 50 genes that were highly correlated with either AML or ALL,
based on correlation and a neighborhood analysis method [14]. Supervised learning was
used to train a classification model based on these 50 informative genes, which was then
applied to a test dataset of 34 leukemia samples, where 29 of the 34 leukemia samples were
correctly predicted or classified. It was found that many of the genes used in classifying the
AML and ALL samples are known oncogenes (c-MYB, E2A and HOXA9) involved in
cancer. Further, one of the selected genes encoded for topoisomerase II, which is a target of
the anti-cancer agent etoposide. This supports the use of classification models in identifying
possible biomarkers. Thus, using an external feature selection method, a set of informative
genes was selected that achieved high classification accuracy with a supervised
classification model and could serve as potential biomarkers.

A network-constrained SVM model was applied on 2 breast cancer gene expression datasets
to identify cancer biomarkers and to predict clinical outcome of patients [55]. The method
integrated gene expression with protein-protein interaction data and identified genes that
were highly enriched in pathways related to cancer progression, i.e., cell cycle and cell
proliferation. Many of the hub genes identified were enriched in signaling pathways such as
TGF-beta, MAPK, and JAK-STAT. Similarly, a combined approach of genetic
programming and SVM found many genes involved in tumorgenesis (i.e., ERK/MAPK
signaling, Wnt/betacatenin signaling, PI3K/AKT signaling, apoptosis signaling and TGF-
beta signaling), supporting classification methods in revealing potential cancer biomarkers
[56].

In addition to biomarker discovery, classification methods also have been used to predict
patient survivability, cancer recurrence, and prognosis [7, 8, 9, 57, 58, 59, 60]. The
prediction of patient survivability or cancer recurrence indicates whether an event (e.g.,
death or recurrence of a disease) will occur within a specific time. This is achieved by
computing the probability of occurrence or predicting the occurrence or non-occurrence of
an event. Prediction of cancer recurrence is important in that, for example, the prediction of
prostate cancer recurrence helps urologists determine whether to operate on patients with
localized prostate cancer [57]. Similarly, the prediction of survival time is an important topic
in cancer research where a classification model is learned from training data to predict the
time range patients will survive. Such prediction helps to decide whether a patient should
receive a treatment or what type of treatment (e.g., chemotherapy) the patient should
receive. Because cancer treatments are often associated with side-effects that might lead to
death, a model that could predict the survival time of patients without therapy based on
certain features could help in the decision-making process of whether to seek treatment or
not. Classification models have been successful in predicting survival time. Three different
classification methods (artificial neural networks, decision trees, and logistic regression)
were applied to cancer statistics data to predict patient survivability [58]. Sixteen variables
(grade, stage of cancer, lymph node involvement, extension of disease, etc.) were used to
predict the class of a patient (“survive” or “did not survive”). The results were obtained
through the use of 10-fold cross-validation, and decision tree was found to outperform other
classifiers, achieving a classification accuracy of 93.6%, sensitivity (measures the proportion
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of true positives correctly identified) of 96.0% and specificity (measures the proportion of
true negatives correctly identified) of 90.7%. In another study [59], an artificial neural
network classification model, using TNM features, e.g., size of the tumor, distant metastasis,
and regional lymph node involvement, was found to outperform the more traditional TNM
(T: size of the tumor, N: regional lymph node involvement, M: presence of metastasis)
staging system in predicting the 5-year survival rate of breast and colorectal cancer patients
using the American College of Surgeons’ Patient Care Evaluation dataset. The artificial
neural network model achieved higher prediction accuracy than the TNM staging system
(77% vs. 72%). Similar results were obtained when the artificial neural network model was
applied to predict the 10-year survival rate of breast cancer patients using the National
Cancer Institute’s Surveillance, Epidemiology, and End Results breast carcinoma dataset
(73.0% accuracy of artificial neural network vs. 69.2% of TNM). Thus, artificial neural
network outperformed the TNM staging system in predicting cancer prognosis. Another
approach used artificial neural networks to predict patient survival time based on microarray
and clinical data as features [60], and showed that the model achieved high correlation
between the observed and the predicted survival times for patients with diffuse large b-cell
lymphoma (DLBCL), follicular lymphoma (FL), and ovarian cancer with a correlation
coefficient of 0.956281, 0.770620, and 0.86795, respectively.

4. COMPARISON OF METHODS
Most studies evaluate a single classification method, with occasional comparisons
performed on more than three methods. To evaluate whether any of the existing
classification models discussed above performed better than the others, we applied each of
the classification models as well as an ensemble of decision tree classifiers on 5 cancer
datasets. Due to the instability of single decision tree classifiers, an ensemble of decision
trees (bagging/random forests) was employed. Prior to classification, a two-step feature
selection method was applied on 5 cancer datasets to decrease the dimensionality of the
feature space and to obtain a set of genes that can best distinguish between different classes
(e.g., normal vs. cancer samples). The first step (ReliefF) filters out irrelevant genes that are
unable to differentiate between groups, and the second step applies a wrapper heuristic
method (e.g., genetic algorithm) to obtain the best set of features for classification. The
datasets used were (1) a leukemia dataset containing 72 samples of human acute leukemia,
of which 25 are acute myeloid leukemia (AML) and 47 are acute lymphoblastic leukemia
(ALL) samples [14], (2) a mixed-lineage leukemia (MLL) dataset, of which 24 are acute
lymphoblastic leukemia (ALL), 20 are mixed-lineage leukemia (MLL), and 28 are acute
myeloid leukemia (AML) samples [15], (3) a colorectal cancer dataset consisting of 18
cancerous and 18 normal samples [16], (4) a diffuse large B-cell lymphomas (DLBCL)
dataset containing 58 samples of diffuse large B-cell lymphoma (DLBCL) and 19 samples
of Follicular lymphoma (FL) [17], (5) and a prostate dataset containing 10 normal and 10
prostate cancer samples [18].

4.1. ReliefF
ReliefF, an algorithm that estimates the quality of features (e.g., genes) [61], was employed
as a filtering method to decrease the dimensionality of the feature space and to obtain a set
of genes that can be used as an input to a second layer wrapper method (e.g., genetic
algorithm). ReliefF weighs each gene as to how much it can differentiate among different
classes (cancer subtypes or cancer versus normal samples). A gene that differentiates
samples belonging to a different class has a higher weight and rank than a gene that
differentiates samples belonging to the same class. Additionally, ReliefF assumes that
dependency exists between different features (e.g., genes).
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Let si be a random sample (e.g., normal/cancer sample), Hsi be the nearest neighbors
belonging to the same class of sample si, and Msi be the nearest neighbors belonging to a
different class of sample si. ReliefF finds a margin such that the distance between si and Hsi
is minimized while the distance between si and Hsi is maximized:

(5)

Therefore, choosing the k-nearest neighbors of si such that they belong to the same class
(nearest hits Hsi) and the k-nearest neighbors of si such that they belong to a different class
(nearest misses Msi), the quality estimate of every gene is updated according to the values of
si, Hsi, and Msi.

After applying ReliefF, the genes were ranked according to their weight. Since there is no
explicit cut-off, the point of inflection in the plots (Figure 6), which happens to be 10%, was
used. Hence, the top 10% of the genes were used as inputs to the genetic algorithm.

4.2. Genetic Algorithm
The output of ReliefF (top 10% genes) was used as an input to a genetic algorithm to obtain
a set of genes that can best differentiate among different classes. We encoded each
individual (an individual represents a subset of features) of the genetic algorithm using a
binary feature vector (Figure 7), where the size of the vector is equal to the number of genes
that are input to the genetic algorithm (e.g., top 10% genes). The values within the binary
feature vector determine which features are selected for evaluation (e.g., classification) [62].
A value of 0 in the binary feature vector encodes a feature (e.g., gene) that is not selected for
evaluation, while a binary value of 1 encodes a feature (e.g., gene) that is selected for
evaluation. Each individual is trained using a subset of features (indices of the feature vector
containing a binary value of 1) and evaluated using prediction accuracy.

The following parameters were used for the genetic algorithm:

• Population size: 100.

• Maximum number of generations: 100.

• Selection method: Tournament selection with size = 2 (two individuals are selected
at random and the one with higher fitness value moves to the next generation).

• Elitism rate: 10 individuals.

• Crossover: 2-point crossover with probability 0.6.

• Mutation: Random mutation with probability 0.05.

The initial population is created by randomly assigning binary values (1 or 0) to each
individual (e.g., feature vector). The fitness function of every individual is defined as the
predictive accuracy of a classification method; each individual is evaluated using the
classification methods reviewed (e.g., decision tree, k-nearest neighbor, support vector
machine, bagging, and random forest). Leave-one-out cross validation (LOOCV) method, a
special case of k-fold cross validation where k is equal to the number of observation in the
original sample, was used to avoid over-fitting. In LOOCV, a sample is left out of the
training and used to validate the model. Thus, the model is trained on k-1 samples where k
corresponds to the number of samples in a dataset. This cross validation method is repeated
k times and the average error rate is computed. Since the genetic algorithm is a non-
deterministic method, an average of 10 different runs was used to compute the final
accuracy.
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The two-step feature selection method was run on gene expression data alone and again on
the combined gene expression and protein-protein interaction data. The human protein-
protein interaction network was obtained from BioGrid (thebiogrid.org). For the integrative
approach, the first nearest neighbors of the top 10% of the genes in the protein-protein
interaction network as well as the output from ReliefF were used as inputs to the genetic
algorithm.

4.3. Tools
LIBSVM [63], a tool that implements SVM, was used to evaluate the genetic algorithm with
the following kernels:

• Linear: u′ * v where cost = 1

•
Polynomial: (γ * u′ * v)degree where , degree = 3, cost = 1,

•
Radial Basis: e(−γ *|u − v|2) where , cost = 1

•
Sigmoid: (γ * u′ * v) where , cost = 1

Matlab’s classregtree function, with Gini index as a splitting criterion, was used to
implement the decision trees. Bagging was implemented using Matlab’s TreeBagger
function (number of trees = 100) where the number of features to randomly select at each
decision split is equal to the number of total features. Similarly, random forest was
implemented using Matlab’s TreeBagger function (number of trees = 100) where the
number of features to randomly select at each decision split is equal to the square root of the
total features. Also, Matlab’s knnclassify function (with Euclidean distance) was used to
implement the k-nearest neighbor evaluation method. Additionally, Matlab’s princomp
function was used to perform principle component analysis. The two-step feature selection
method (ReliefF and genetic algorithm) was implemented in Matlab where the number of
nearest neighbors used by ReliefF was set to 5. Finally, it should be noted that classifiers
such as SVMs, decision trees, and ensembles (bagging or random forests) also have inherent
feature selection methods in their implementation, that select support vectors which are
training samples located on the margin of SVMs or deciding upon the splitting criterion for
the decision trees and ensembles.

4.4. Results
Figure 8 illustrates the advantage of using a genetic algorithm to select a set of features that
can best distinguish among different cancer subtypes or cancer vs. normal samples. Using a
genetic algorithm, the performance increases across generations due to the selection of fitter
individuals.

The prediction accuracies obtained using 10 different evaluation functions for the two-step
feature selection method based on gene expression data are shown in Table 1. Based on the
results, linear SVM achieved the highest prediction accuracy of 99.89% with the MLL
dataset, slightly outperforming 1-nearest neighbor (99.65%), 5-nearest neighbor (99.47%),
polynomial SVM (99.37%), and 3-nearest neighbor (99.26%). Similarly, linear SVM
achieved the highest prediction accuracy of 99.4% with the leukemia dataset, followed by
polynomial SVM with a prediction accuracy of 99.01%. SVM with the polynomial kernel
achieved the highest prediction accuracy of 99.93% with the colon cancer dataset, followed
by 1-nearest neighbor, 3-nearest neighbor, 5-nearest neighbor, decision tree, and linear SVM
with prediction accuracies of 99.91%, 99.83%, 99.79%, 99.77%, and 99.67%, respectively.
Furthermore, 3-nearest neighbor achieved the highest prediction accuracy of 99.69% with
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the DLBCL dataset, slightly outperforming 1-nearest neighbor (99.67%) and 5-nearest
neighbor (99.66%). A decision tree induction approach achieved the highest prediction
accuracy of 99.35% on the prostate cancer dataset, largely outperforming the other
classifiers.

Table 2 exhibits the results obtained using 10 different evaluation functions for the two-step
feature selection method based on gene expression as well as protein-protein interaction
data. The results in Table 2 demonstrate that 1-nearest neighbor, 3-nearest neighbor, 5-
nearest neighbor, and linear SVM achieved a maximum prediction accuracy of 100% with
the MLL dataset, while random forest achieved the highest prediction accuracy of 100%
with the leukemia dataset. For the colon cancer dataset, 7 evaluation functions achieved a
maximum prediction accuracy of 100%. The three nearest neighbor methods along with
linear SVM achieved the highest prediction accuracy of 100% with the DLBCL dataset.
Linear SVM, decision tree, 5-nearest neighbor, and bagging achieved the highest prediction
accuracy of 100% with the prostate dataset.

The prediction accuracy obtained using the integrative approach (gene expression and
protein-protein interaction) was higher compared to using gene expression alone in 46 out of
the 50 cases reported. Such result suggests that combining gene expression data with other
genomic information (e.g., protein-protein interaction data) can increase the prediction
accuracy. Taking an integrative approach, a perfect classification (accuracy = 100%) was
achieved in 20 out of the 50 cases reported. A Wilcoxon rank-sum test was performed to
ensure the non-randomness of the difference in the obtained results using gene expression
compared to the integrative approach. The two sets of results were found to be significantly
different (p = 0.0059). Therefore, these results illustrate that an integrative approach
including protein-protein interaction and gene expression data creates more reliable models
compared with using gene expression data alone.

To compare the two-step feature selection method with other methods, principle component
analysis and ReliefF (alone) based on gene expression were applied to the 5 cancer datasets,
and the prediction performances of the aforementioned classifiers were tested. The results in
Table 3 show that models based on the two-step feature selection method largely
outperformed models based on principle component analysis or ReliefF (alone). Using the
two-step feature selection method, higher classification accuracy was achieved in 47 out of
the 50 cases reported compared to the principle component analysis approach. Similarly,
higher classification accuracy was achieved by the two-step feature selection method than
ReliefF (alone) in 46 out of the 50 cases reported. Specifically, the average accuracies
achieved by the two-step feature selection method, ReliefF, and principle component
analysis were 86.33%, 81.1%, and 76.5%, respectively, illustrating that the two-step feature
selection method outperforms the other two (single feature selection) approaches. A
Wilcoxon rank-sum test was performed on the two-step feature selection versus PCA, two-
step feature selection versus ReliefF, and PCA versus ReliefF, and the results were found to
be significant with p-values of 5.24e−6, 0.0018, and 0.0098, respectively. The results
obtained by the two-step feature selection method were further compared with other
approaches in the literature. For instance, a multi-test decision tree [34] achieved a
prediction accuracy of 85.83%, 85.42%, 91.17%, and 61.76% for the colon cancer, DLBCL,
leukemia, and prostate cancer datasets, respectively. By applying the two-step feature
selection method with a simple decision tree induction approach as an evaluation function,
our method was able to outperform the multi-test decision tree approach by achieving a
prediction accuracy of 99.77%, 92.21%, 96.84% and 99.35% on the colon cancer, DLBCL,
leukemia, and prostate cancer datasets, respectively. Similarly, the two-step feature selection
method used with decision tree, ensemble models (bagging or random forests), k-nearest
neighbor (k = 1, 3, or 5), and SVM (linear or polynomial), outperformed the neighborhood
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analysis method [14] which demonstrated a prediction accuracy of 93.94% for the leukemia
dataset.

Building a classification model based on gene expression data, the prostate cancer dataset
was the most difficult to classify, with an average accuracy of 77.8920% for all 10
classifiers (Figure 9). Similarly, taking the integrative approach, the prostate dataset was
also the most difficult to predict, with an average prediction accuracy of 85.5770%, which is
higher than that using gene expression alone. The leukemia and DLBCL datasets were the
easiest to classify, with a prediction accuracy of 92.1220% and 92.2590%, respectively,
using gene expression, and 94.0230% and 94.2220%, respectively, using an integrative
approach.

As shown in Figure 10, the highest average accuracy of a classifier for all 5 cancer datasets
based on gene expression was achieved by linear SVM (98.6540%), followed by 5-nearest
neighbor (98.3240%). Similarly, linear SVM (99.8320%) achieved the highest performance
using the integrative approach, followed by 5-nearest neighbor (99.7220%). On the other
hand, the worst performing prediction method was the radial basis SVM, with a prediction
accuracy of 42.9320% for the gene expression approach and 56.4340% for the integrative
approach.

5. DISCUSSION
Genetic algorithms are computationally expensive and infeasible when the feature set is
large. Therefore, applying a filter method that reduces the dimensionality of the feature
space and removes unimportant/irrelevant genes is essential. ReliefF is a feature estimator
method that accounts for dependencies among features, weighs each gene based on its
ability to differentiate between groups to obtain a candidate gene set. Applying ReliefF
reduces the computational complexity of the genetic algorithm. On other hand, applying
ReliefF alone does not perform well because of the small sample sizes of most microarray
datasets. A genetic algorithm could mitigate this problem by conducting an optimized search
on the candidate gene set obtained by ReliefF to select the best subset of features. Therefore,
the integration of ReliefF and genetic algorithms leads to an effective two-step feature
selection method that can best differentiate among classes.

The choice of the evaluation function (e.g., classifier) is essential for a feature selection
method to achieve high prediction accuracy. For the two-step feature selection method
presented, linear and polynomial SVM as well as k-nearest neighbors with k = 1, 3, and 5
are shown to achieve higher prediction accuracies than radial basis and sigmoid SVM. This
suggests that using simpler SVM kernels could be sufficient for most cases. The two-step
feature selection method achieved a relatively high performance in 8 out of the 10 classifiers
tested based on gene expression alone or an integrative approach based on gene expression
and protein-protein interaction data, thereby suggesting the method is robust. The simplistic
approach of k-nearest neighbor achieved high performance across all 5 datasets, because
decisions on test samples are made based on the entire training set, this is in contrast to
SVMs (e.g., Sigmoid and Radial SVMs) which use a subset of the data (i.e., support vectors)
to form the margin (separation). Even though decision tree classifiers use the whole training
set, they are considered unstable learning methods because small changes in the selected
features or the training data could cause a drastic change in the decision tree structure. In the
analysis, decision trees achieved a maximum classification performance with the colon and
prostate datasets, but were outperformed with the leukemia and DLBCL datasets that used
the other classification methods. This high performance achieved by decision trees is largely
due to the genetic algorithm which conducts an optimized search for a set of features (e.g.,
genes) to be used as an input for splitting a decision tree. Ensemble approaches (e.g.,
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bagging and random forest) applied to decision trees were significantly outperformed by
most of the other classifiers based on gene expression. However, using an integrative
approach, ensemble models achieved a relatively high classification performance across all
5 cancer datasets.

Based on the results of Table 1, there is no classification method (individual or ensemble)
that universally outperforms all other classifiers; however, on average, k-nearest neighbor (k
= 1, 3, or 5) and linear SVM achieved the highest prediction accuracy across different cancer
datasets. However, as a challenge with cancer classification, a classification method can be
designed to outperform all others for a specific dataset, but can be easily outperformed when
tested on a different dataset. Furthermore, the small number of samples and the large
number of features (genes) compound the difficulties in designing a model for cancer
classification that consistently achieves high prediction accuracy with small training time
across different datasets.

Studies have suggested that the integration of gene expression and other biologically
relevant information can create more reliable models. For example, an algorithm that
integrates gene expression data with network information (i.e., protein-protein interaction
data) achieved high classification accuracy and improvement in the biological
interpretability of the results [64]. Similarly, a genetic algorithm was employed to identify
subnetwork markers for predicting breast cancer metastasis [65] where high classification
accuracy was achieved using any of the 6 classification methods (logistic regression, SVM,
decision tree, Adaboost, random forest, and Logiboost), thereby creating a robust model that
is more consistent and accurate than models based on gene expression data. An integrative
approach [66] that combined protein-protein interaction and gene expression data identified
biomarkers for breast cancer metastasis, and found genes highly enriched in cell cycle,
apoptosis, DNA repair, Jak-STAT, MAPK, ErbB, Wnt, and p53 signaling pathways where
the overlap of the identified genes across different microarray datasets using the integrative
approach was significantly higher than models based on gene expression data alone.

Similarly, the two-step feature selection method achieved improved prediction accuracy
based on an integrative approach compared to using gene expression alone. Additionally, the
two-step feature selection approach achieved high classification accuracy across a diverse
set of evaluation functions (e.g., SVM, k-nearest neighbors, decision trees, and ensemble
approaches), suggesting that the approach is not sensitive to the choice of classifier. The
two-step feature selection method retained known biomarkers across all 5 cancer datasets
tested in the present study. Specifically, it retained genes that are known to be related to
these cancers. The identified genes were repeatedly selected by the genetic algorithm across
many generations due to their ability to differentiate different cancer subtypes or cancerous
versus normal samples. The top four repeatedly selected genes by the genetic algorithm in
the colon dataset were the following: MSH2, a gene known to be associated with hereditary
nonpolyposis colorectal cancer [67]; CLU, a gene associated with cancer promotion,
metastasis and pro-survival processes [68]; TAGLN, a diagnostic marker of colon cancer;
and IGF2R, a mutated gene identified in colon cancer. Using the prostate cancer dataset, the
top gene repeatedly selected by the genetic algorithm was MDM2, an oncoprotein which is a
cellular inhibitor of p53 and an inhibitor of the activation of genes involved in cell cycle
arrest and apoptosis [69]. Furthermore, using the DLBCL dataset, RhoH and MUM1
(prognostic factors for DLBCL), BCL6 (an oncogene involved in chromosomal
translocation), and ICAM1 (a cell surface receptor involved in lymphoid trafficking and
extravasation [70]) were the top four genes repeatedly selected by the genetic algorithm.
TCF3 (a gene involved in the Wnt signaling pathway), FLT3 (a proto-oncogene), and
ANPEP were the top three genes in the leukemia dataset. In addition to retaining known
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genes involved in the different cancers, the two-step feature selection method was also able
to identify potential novel genes among the top ranked list of genes.

6. CONCLUSION
Cancer classification has been useful in predicting cancer survivability and recurrence. Thus
far, cancer classification has identified potential biomarkers involved in cancer-related
pathways. Biomarker identification could improve if more and diverse data types are
integrated into the classification models, as with the integration of protein-protein
interaction data. Nevertheless, a challenge remains in that there is no classification approach
that can perfectly classify all types of cancers. However, the integration of gene expression
data with network and other genomic data could improve upon the classification models
based on gene expression data alone to achieve better predictions of cancer and
identification of cancer biomarkers that could be potential therapeutic targets.
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APPENDIX
A Naïve Bayes is a probabilistic classifier that estimates the probability of attributes (or
features), under the assumption that the features are conditionally independent given a class
y, from the training data:

Hijazi and Chan Page 19

J Healthc Eng. Author manuscript; available in PMC 2013 December 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


(A1)

The classification process using a naïve Bayes approach starts by estimating P(x1|y)…P(xn|
y) as well as P(y) using the training data. The second step classifies a test sample by
choosing the class that maximizes the following probability:

(A2)

Hijazi and Chan Page 20

J Healthc Eng. Author manuscript; available in PMC 2013 December 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Classification framework.
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Figure 2.
Example of decision tree structure.
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Figure 3.
ALL/AML decision tree.
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Figure 4.
Illustration of 4-nearest neighbors method.
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Figure 5.
Illustration of linear SVM.
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Figure 6.
Distribution of Relief scores with respect to features. The dashed line corresponds to the
10% cut-off used. A) Leukemia; B) MLL; C) Colon; D) DLBCL; E) Prostate.
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Figure 7.
Representation of a chromosome (e.g., individual).
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Figure 8.
Performance of the genetic algorithm across 100 generations based on gene expression with
two evaluation functions: A) Decision Tree, and B) Linear SVM.
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Figure 9.
Average accuracy of the 5 cancer datasets for all 10 classifiers using gene expression and the
integrative approach.
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Figure 10.
Average accuracy of the 10 classifiers for the 5 cancer datasets using gene expression and
the integrative approach.
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