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Abstract
Microarrays do not yield direct evidence for functional connections between genes. However,
transcription factors (TFs) and their binding sites (TFBSs) in promoters are important for inducing
and coordinating changes in RNA levels and thus represent the first layer of functional interaction.
Similar to genes TFs act only in context, which is why a TF/TFBS-based promoter analysis of
genes needs to be done in the form of gene(TF)-gene networks, not individual TFs or TFBSs. In
addition, integration of literature and various databases (e.g. GO, MeSH, etc) allows adding genes
relevant for the functional context of the data even if they were initially missed by the microarray
as their RNA levels did not change significantly. Here we outline a TF-TFBSs network-based
strategy to assess involvement of transcription factors in agonist signaling and demonstrate its
utility in deciphering the response of human microvascular endothelial cells (HMEC-1) to
leukemia inhibitory factor (LIF). Our strategy identified a central core of eight TFs, of which only
STAT3 had previously been definitively linked to LIF in endothelial cells. We also found potential
molecular mechanisms of gene regulation in HMEC-1 upon stimulation with LIF that allows for
the prediction of changes of genes not used in the analysis. Our approach, which is readily
applicable to a wide variety of expression microarray and next generation sequencing RNA-seq
results, illustrates the power of a TF-gene networking approach for elucidation of the underlying
biology.
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Introduction
Microarrays record a snapshot of transcriptional changes caused by the administration of
drugs or agonists to cells and define all changes, as far as the genome is covered by the
microarray design, regardless of whether they have relevance to the functional actions of the
drug or agonist (1). They provide long lists of genes that show changes in steady-state RNA
levels, but do not yield direct evidence for functional connections between genes and miss
even important genes if their steady state RNA levels are not significantly changed.
However, as recently demonstrated by results of the ENCODE project (2), functional
interactions of genes depend on a variety of functional genomic elements with transcription
factors (TFs) and their binding sites (TFBSs) in promoters and enhancers being important
for inducing and coordinating changes in RNA levels. Moreover, multiple databases and the
scientific literature provide huge amounts of functional information on genes and their
interactions including TFs. Therefore, an approach based on elucidation of TF/TFBS
interactions (i.e. networks) by promoter analysis of genes with significantly changed
transcripts is very well suited to elucidate functional connections between significantly
changed genes in microarray data sets that might be missed in any individual gene or factor
oriented analysis.

Attempts to include additional data frequently make use of pathways, GeneOntology (GO)-
terms, or molecular features such as transcription factor binding sites (TFBSs) in the vicinity
of genes, e.g., an approach focusing on transcriptional regulation by transcription factor
binding was recently described (3). However, with the exception of pathways all these
approaches just produce more lists still missing a structured biological context. Another
clear-cut lesson from ENCODE as well as many previous smaller scale studies is that
neither genes nor TFs or their corresponding TFBSs act in isolation, but are highly
interconnected usually in the form of gene-gene networks. Biological functionality only
becomes apparent on the network level (pathways representing small networks themselves).
Moreover, integration of additional functional connections as taken from the literature and
various databases (e.g. GO, MeSH, etc.) allows for inclusion of genes relevant to functional
context of the data even if they were initially missed as their RNA levels do not change
significantly. An integrative approach has the additional advantage to compensate for the
intrinsic weaknesses of individual methods; enrichment analyses are necessarily biased by
uneven distribution of knowledge, co-citation literature networks face the same challenge
and in addition inevitably contain variable numbers of false positive connections. However,
by bringing several lines of evidence together outliers due to erroneous results of one
method are readily identified and discarded. This rationale is based on “biological
consistency”, i.e. every finding in one area of analysis must be reflected in the results of
other lines of evidence also in order to be accepted as real.

We developed a widely applicable strategy entirely focusing on TF and TFBSs-centered
networks complemented by literature and knowledge mining for expression profiling. Other
approaches report as the final results GO-terms, pathways, associated TFBSs. These are only
“stepping stones” in our strictly context/network-oriented approach. One of the most
important principles of this strategy is to complement findings from expression data with
conclusions drawn from our network approaches (biological consistency between data and
knowledge based analyses). We applied this strategy to elucidate the potential involvement
of transcription factors in the regulation of genes in response to leukemia inhibitory factor
(LIF) in human microvascular endothelial cells (HMEC-1). We were able to identify a
central core of eight TFs based on multiple lines of evidence, most likely involved in the
regulatory network of LIF-induced gene expression changes in HMEC-1 cells, although
initially almost 100 TFs showed significant expression changes (one line of evidence). We
also found potential molecular mechanisms of gene regulation in HMEC-1 cells upon
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stimulation with LIF that allowed prediction of changes of genes observed on the microarray
but not used in the analysis. This demonstrates clearly the power of a TF-gene networking
approach for elucidation of the underlying biology. Our approach is widely applicable to
high-throughput analyses of transcriptional changes such as all expression microarrays as
well as all pertinent next generation sequencing (NGS) applications (ChIP-seq, RNA-seq,
bisulfite-resequencing), where the capability to reduce the amount of data to a biologically-
linked small network is especially important.

Materials and Methods
Materials

Cell culture reagents were obtained from Invitrogen (Carlsbad, CA, USA). Epidermal
growth factor was from BD Biosciences (Franklin Lakes, NJ USA), hydrocortisone from
Sigma-Aldrich (St. Louis, MO, USA), recombinant human LIF from Millipore (Billerica,
MA, USA), and fetal bovine serum (SH30070.03) from Thermo Fisher Scientific (Waltham,
MA, USA).

Experimental design
HMEC-1 cells were obtained from the Centers for Disease Control and Prevention (CDC),
and grown in MCDB 131 with 15% fetal bovine serum (FBS), 10 ng/mL epidermal growth
factor, 1 μg/mL hydrocortisone, 10 mM glutamine, and antibiotic-antimycotic. Cells were
grown in 100 mm dishes to near confluency and incubated in medium with 0.5% FBS 12–15
hours before being used in experiments. Cells were dosed with vehicle or 2 ng/mL LIF for
90 min at 37°C, placed on ice, and washed 2x with 10 mL ice cold Hanks’ buffered saline
solution.

Microarray analysis
RNA was isolated using the RNAquous-4PCR Kit from Applied Biosystems (Foster City,
CA, USA). RNA quality was established using the NanoDrop 3300 Fluorospectrometer
(Thermo Scientific) and Agilent 2100 Bioanalyser. Only samples with a 260/280 ratio close
to 2 and RNA Integrity Number (RIN) value > 9 were processed for microarray analysis.
Microarray processing was performed by the core facility of the University Of Mississippi
School Of Medicine using Agilent technology and whole human genome slides. Cy3 and
Cy5 dye swap and background correction were applied. Genes were considered
downregulated with treatment to control ratios < 0.5 and upregulated with treatment to
control ratios > 2. Image processing was done using ImaGene (version 8.0.1) and statistical
analysis performed using the R statistical program (version 2.10.1). Array signals for 6
replicates (channel median values) were calculated by first subtracting the local background
mean followed by normalization using loess (within array) and quantile (between arrays)
algorithms. P values for differential expression were determined using the R/Bioconductor
package limma, which incorporates both Bayesian and linear modeling methods and is
routinely used in microarray data analyses (4). In the calculation of signal values for each
probe there was a subtraction of the local background, which is the recommended procedure
to remove bias (e.g., one array or part of an array was not washed as well after
hybridization). This is thought to represent somewhat of a trade-off with reduced bias and
lower variability for highly expressed genes but with higher variability for genes with low
expression. For that reason, we used an unadjusted p-value < 0.05 as significance threshold.
Annotation for the probe sets on the array was obtained from the Gene Expression Omnibus
(GEO) at the NCBI using accession number GPL4133 and from the Agilent internet site
(http://www.chem.agilent.com/cag/bsp/gene_lists.asp).
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Regulatory network analysis
Figure 1 summarizes the strategies used for the analysis of the significantly regulated genes.
We separated up-and down-regulated genes by GO and pathway-analysis in order to find
TFs specifically associated with up or down-regulation. The whole strategy is a combination
of five results originating from three independent lines of evidence: a) mRNA values and
their relative changes, b) literature and pathway analysis, c) sequence-based promoter
analysis (Figure 1 top “lines of evidence”). The only experiment-specific data used were the
list of significantly regulated genes and their expression values. We posed our main focus
onto the analysis of TF genes and their potential targets in order to understand the
transcriptional effects of LIF treatment.

Analysis downstream of the significant microarray signals was carried out using the
standard integrated analysis package Genomatix Software Suite (Genomatix Software
GmbH, Munich, Germany) and the various databases and software tools within this package,
including all of the following: Gene-ontology (GO)-analysis was carried out by the program
GeneRanker using default parameters recommended by the supplier. All literature-based
analyses were carried out using the Genomatix Pathways System (GePS), which combines
co-citation analysis from the whole PubMed database with canonical pathway analysis.
GePS was used with the default parameters recommended by the supplier. Promoters used
for TFBSs analysis were all extracted from the ElDorado genome database (Release
12/2010) using the program Gene2Promoter. The various promoter collections were then
analyzed using the program RegionMiner, which contains precompiled databases of TFBSs
match numbers for whole genomes and whole-genome promoter collections, and for which
over-representations and p-values are automatically calculated. We refer to whole-genome
promoter collections as the relevant background throughout this study.

Promoter context is defined as sets of TFBSs that show a specific organization within
sequences: The individual TFBSs (e.g. TFBSs A, B, and C) and their relative order is
conserved (A-B-C only, A-C-B rejected), and a flexible but limited distance range is
allowed between the individual TFBSs, and which also must have a conserved strand-
orientation. In this way a complete framework of three TFBSs would have the annotation
A(+) - distance range 1 - B(−) - distance range 2 - C(+) where + and − symbolize the strand
orientation of the individual TFBSs. Such a framework needs to be found conserved in a
minimum number of sequences (sequence quorum) which can be set as a user parameter.
Throughout this study we used the following parameters: Minimum number of TFBSs in a
framework 3, variation of distance range 20 (in case no results were found, this was
increased to 30), minimum distance 10, maximum distance 200 (between TFBSs). The
sequence quorum was set high initially (no results) and then stepwise reduced till
frameworks of three elements were found or the minimum quorum was reached without
finding frameworks. For each search single TFBSs identified as important in previous
analyses were set as mandatory elements and all frameworks found with the described
settings were collected as framework sets and the sets were the evaluated.

Evaluation for association of the frameworks with the respective promoter sets was carried
out using the program ModelInspector as follows: Each set was searched for matches in the
promoters of the specific set the frameworks were derived from, various larger subsets from
the significantly regulated genes (such as network genes, 3-and higher up-regulated genes,
etc.). This was compared to match results obtained either from all microarray-derived
promoters or all promoters from the human genome (automatically carried out by
ModelInspector). The over-representation of the framework sets in the specific promoter
sets as compared to random sampling of the genome was calculated. These are the results
shown in the tables. For more detailed description of the methodologies see (5).
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Results
Differentially expressed genes

Steady-state mRNA levels of HMEC-1 cells were analyzed by microarray assays for genes
significantly changing in mRNA level in response to LIF treatment. LIF-treated cells were
compared to untreated control cells. Microarray files were analyzed as described in Methods
using the Bioconductor package limma in order to find the significantly regulated genes. We
found a total of 1,171 genes significantly regulated between the LIF-treated cells and the
control: 589 genes were up-regulated and 582 genes were found to be down-regulated. Out
of the 1,171 genes 1,107 were annotated allowing Gene Ontology (GO) and pathway
analysis, which were the first steps in our data analysis.

GO-term and pathway analysis
We had a total of 368 GO-terms from the significantly (p-value ≤ e−03) associated biological
processes. Table 1 shows the top ten GO-terms according to their p-value. There is a clear
preference for kinase-cascade signaling in GO-terms, which is a hallmark of multiple signal
transduction pathways. Therefore, we went on to pathway analysis as the third step using the
GenomatixPathwaySystem (GePS, Genomatix Software, Munich) database/tool. Table 2
shows the six pathways that were significantly associated with the 1,107 regulated (and
annotated) genes. Again, JAK-STAT regulation is evident (IL7 signaling pathway).
However, several other signaling pathways are also found. There were 7 transcription factor
families, i.e., TFs that are very similar and bind to the same motifs, directly implicated by
the six pathways (AP1, ETS, STAT, HNF, CREB, CEBP, DDIT3). This step concluded the
analysis of the knowledge–based GO- and pathway-based line of evidence.

TF-regulation analysis
This is another line of evidence independent from the literature-based analyses shown
above, except for the literature-derived TF-gene annotation. The only common starting point
is the list of significantly changed genes. GePS is also able to identify genes for TFs and we
used this feature to evaluate the number of TF genes that show altered expression. We found
50 TF genes to be up-regulated among the 1,107 genes and 45 TF genes down-regulated.
Merging results from pathway and TF-regulation analysis showed that from the pathway-
associated TF genes ETS and CEBP factors were up-regulated, while AP1 and Jun (a CREB
family factor) were down-regulated, yielding a total of 4 differentially expressed TFs so far
supported by two lines of evidence (expression data and pathway analysis). However, as
many more TFs were regulated we also looked for additional evidence for association of
these factors with regulated genes. This step concluded the analysis of the konwledge–based
lines of evidence.

Statistical promoter analysis for TFBSs
Sequence-based analyses have the advantage to be largely independent of the above
mentioned heavily knowledge-dependent methods. The genomic sequence (and thus the
promoters) is universal, entirely independent of literature and the detection of TFBSs is
based on sequence patterns derived by sequence analysis. The only part where knowledge
comes into play is the completeness of the library, i.e. TF identification. TFs may act
directly or indirectly on genes and some may change transcriptional activity without any
apparent change in their own mRNA levels. In order to estimate direct regulation by TFs we
decided to look at the other end of TF-mediated transcriptional regulation namely the TFBSs
in the promoters of differentially regulated genes. If any particular TF is directly involved in
regulation of a set of genes, then those genes should contain at least one TFBS for such TFs.
Thus TFBSs for factors prominently involved in mediating transcriptional signaling might
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be statistically enriched in the regulated promoters. Lack of overrepresentation does not
preclude a functional connection but a positive result is an additional evidence for inclusion.
We extracted all 5,371 promoters associated with the 1,107 regulated genes using the
Gene2Promoter tool (Genomatix Software GmbH, Munich) and analyzed them for statistical
overrepresentation of TFBSs from the MatBase Matrix Family Library (Version 8.3,
Genomatix Software GmbH, Munich). A total of 53 TFBSs families were found to be
overrepresented (as compared to a random sampling from all promoters in the human
genome, using a cutoff threshold of a z-score of 2.00), 47 TFBSs families were in those
promoters that were upregulated and 6 TFBSs families were associated with up-regulated
TF genes (HOMF (HMX1), FKHD (FOXD1), BCDF (OTX1), CEBP (CEBPD), IRFF
(IRF1, IRF8), DMRT (DMRTB1).

In promoters from down-regulated genes 35 TFBSs were found to be significantly
associated, 6 of which were also associated with down-regulated TF genes FKHD (FoxP4,
FOXJ2), PARF (HLF), VTBP (TBP), NKXH (NKX2-2, NKX2-3), HOXF (HOXD8), OCT1
(POU2F1). It became evident that different factors belonging to the same TF family (e.g.
forkhead, FKHD) and their respective TFBSs were associated with up- and down-regulated
genes. It also became evident that 8 transcription factor families showed up in at least 2 of 3
analyses (Table 3). Of the 3 that were not associated with a differentially expressed TF gene
(STAT, HOMF, HOXF) only STAT was directly associated with one of the six associated
pathways as well as being co-cited with LIF in the context of vascular endothelium (6),
resulting in a short list of 6 TFs: FKHD, IRF, OCT1, CEBP, BCDF, and STAT (Table 3).

So far the selection was based on a combination of classical analyses essentially focusing on
individual TFs. Next we focused on functional connections between TFs not necessarily
restricted to these 8 TFs in Table 3 but using them as a starting set.

Promoter context analysis of TFBSs (frameworks)
Presence of TFBSs is a physical phenomenon while the organization of TFBSs into clearly
defined groups (frameworks) is connected to transcriptional function. Thus frameworks
establish another line of evidence on top of the TFBSs presence. Thus we extended our
analysis to find such TFBSs networks in regulated promoters. Table 3 shows three forkhead
factors one of which was up-regulated transcriptionally (FOXD1) while two (FOXP4 and
FOXJ2) were down-regulated. As all three factors are able to bind to the same FKHD
binding sites (MatBase, Matrix Family Library Version 8.3, Genomatix Software GmbH)
this suggests that the transcription factors most likely act in different contexts with other
factors. Such context can be specifically addressed and elucidated by promoter analysis for
conserved TFBSs frameworks (strand, order and distance correlated sets of TFBSs) (5).
However, as there are 2,744 promoters associated with the up-regulated genes
(Gene2Promoter, Genomatix Software GmbH, Munich) systematic analysis of all up-
regulated promoters could not be carried out due to technical limitations of the software
(limit is 1000 promoters due to the combinatorial explosion of possible TFBSs
combinations). Therefore, we decided to select the subset of 764 promoters of three-fold or
more up-regulated genes.

We analyzed these 764 promoters for frameworks of at least three TFBSs (essentially
representing regulatory networks with one molecular mechanism), where one of TFBS was
mandatory (exhaustively for all six TFBSs families corresponding to the six most important
TFs identified in this study). Table 4 summarizes the results of these context searches. Most
framework sets show a modest association with the selected promoter set (Z-score cutoff
2.00, promoters of three-fold or more up-regulated genes) except for one FKHD-group
(3.13) and the STAT-group, which has the highest association (> 8 fold overrepresented).
However, none show an association with all regulated microarray promoters (the STAT
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group being borderline with 2.03). However, restriction to one model that contained also a
second associated TFBS (CEBP) resulted in more selective results (Table 4, last row).
Interestingly, the two TFBSs families HOMF and HOXF originally found but discarded
based on few lines of evidence, showed up numerous times in context of the significant
factors. Thus, all six previously selected TFs, OCT1, FKHD, IRF, CEBP, BCDF, and STAT
were also supported by associated TFBSs framework context (3-fold or more up-regulated
promoters).

Functional context analysis (TFBSs-frameworks) already linked several TFBSs even when
based only on a statistical selection (≥ 3-fold up regulated). Therefore, we expected an
approach based on a subset based on biologically linked genes to confirm the results and
maybe be even more successful.

The following analysis is currently only possible using the Genomatix solution, which is
commercial. However, as also indicated in figure 1 this analysis is optional and essentially
supports the findings achieved without it, albeit in a much faster time with much less
interactive steps.

Pathway network analysis
We used another selection method that is more biology-oriented. Based on the initially
associated pathways and the regulated genes the new pathway-network tool determines a
subset of genes that link those pathways into a network with optimal co-citation
connectivity, i.e. the network of genes has the highest number of co-citation based edges
(normalized for gene count). This is motivated by best-knowledge based biological
connections bypassing any fold-change based criteria and should be more biologically
correlated to LIF action than the 3-fold or higher sub-section as expression values represent
only one of three selection criteria (pathways, co-citations, and expression changes). The
network method is entirely data-driven, and requires no more input than the complete list of
all regulated genes (Hahn et al in preparation). A network of 335 genes was defined (as
detailed in Methods) by this method 190 of which were up-regulated, connecting all six
significantly associated pathways into one network. We then applied the exact same strategy
as for the unselected and the 3-fold-up-regulated genes to the analysis of the network-
selected genes.

GO-term analysis comparison
All together the network was significantly associated with 988 GO-terms (as compared to
368 for all regulated genes). Table 5 shows that several GO/Medical Subject Heading
(MeSH) terms significantly associated with both gene groups (all regulated and network-
selected genes) show a dramatic lower p-value in the network genes than in all regulated
genes suggesting a sharper focus on the corresponding biology by the network selection.

Pathway analysis
The 190 up-regulated genes of the network were significantly associated with 10 pathways
(Table 6). These 10 pathways are related/overlap as can be seen from the fact that there were
six genes shared by 5 out of 10 pathways (SOCS3 ZAP70, ITK, PDGFRA, PRKCD, SYK).
Promoter modeling of this set of 6 genes most common to the 10 pathways revealed also a
strong association with STAT and FKHD TFBSs (data not shown).

Statistical promoter analysis for TFBSs
The 190 up-regulated genes in the network were associated with 18 TFBSs (data not shown)
and although there were only 49 down-regulated genes, they were associated with 17 TFBSs
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(data not shown). As shown in Table 7 the network analysis so far identified 8 TFs
supported by at least 2 of four lines of evidence (TF mRNA regulation, network pathway
association, TFBSs association with up and/or down-regulated network promoters). Notably,
there is an overlap of 5 factors (in bold) already identified by the same approach in all
regulated genes. Joining all lines of evidence including the network analysis, all together a
list of 8 TFs emerged, confirming the initially detected OCT1 and adding SP1 to the list
(Table 8).

Promoter context analysis of TFBSs (frameworks)
An analogous approach as described for the 3-fold or more up-regulated promoters based on
network-derived up-regulated promoters yielded framework sets that also were associated
with the up-regulated network promoters as well as with the 3 and more up-regulated
promoters (data not shown).

TFBS-frameworks in promoters are associated with transcriptional regulation of the
corresponding genes and can be located by computational search in promoters of genes not
involved in the detection of those frameworks. Hence, they are also suitable to predict
transcriptional up-regulation for genes that contain such frameworks in their promoters.

Framework-predicted gene regulation is confirmed by microarray data
We selected the FKHD-CREB-SORY framework (defined from promoters of ITK,
PDGFRA, SYK) as it is associating 2 relevant TFBSs (FKHD and CREB) with the central
genes of the gene-interaction network-derived pathways. All promoters of up-regulated
genes on the whole microarray were searched with this framework. Any matching promoter
is supposed to be associated with an up-regulated transcript, which in turn can be verified
using the microarray data for these genes. It is important to note, that none of these
microarray results have been used at any time to generate the framework, which makes them
independent data. The framework was overrepresented in the promoters of the up-regulated
genes on the microarray (6.41 fold enriched) matching just 11 promoters (Table 9). The only
down-regulated gene was skipped as it was not annotated and thus not suitable for further
evaluation. We then used GePS to construct a co-citation linked network from the 206
genome.-wide matches. A central AREA connected five genes including the three input
genes and consisting of: ITK-SYK-KDR (Vascular endothelial growth factor receptor 2
VEGFR2)-PDGFRA-BRAF (Figure 2). BRAF was also associated with 4 of the 10 network-
up-regulated genes associated pathways.

Discussion
We applied a predominantly data-driven and strictly network-focused strategy to the
analysis of microarray data - in our case HMEC-1 cells treated with LIF. Several attempts
have already been published employing more data-driven strategies, such as identification of
co-expression of transcription factors and their putative target genes (7), which worked best
in yeast. A more recent approach aimed at the identification of functionally coordinated TF-
clusters also in human and Arabidopsis microarray data (8). These and many other
approaches are truly data-driven analyses but focus on expression data only while our
approach was designed to include as many sources of information as possible in a data-
driven and network-focused analysis. Even the simplest analysis of the ENCODE data as
published recently in Nature (Nature 489, 2012) provided overwhelming evidence how
strongly network-oriented gene regulation is.

The actions of LIF include several mRNA independent steps such as kinase cascades which
can never be observed directly in microarray data (6). However, we were not only able to
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identify STAT as a central factor in LIF action solely by data analysis but could also
determine a short list of eight TFs most of which were not known to be important for LIF
action (Table 8). IRF8, STAT3, SP1, IRF from that list are significantly associated with
myeloid leukemia (p = 1.21e−10) yielding further support for the validity of the TF selection.

The most compelling part of the regulatory network-oriented analyses is the ability to
actually predict RNA changes of other genes not used in the definition of the TFBSs
frameworks defining regulatory networks. We ran the prediction using a network-associated
framework containing two of the best associated TF/TFBSs (FKHD-CREB-SORY), found
11 promoters of genes interrogated on the microarray and 10 of these matched the prediction
derived from the framework analysis. At this point verification by other experimental
methods such as RT-PCR, NGS or the like would be required to turn most likely candidates
into verified transcriptional regulators or transcriptional targets (by ChIP-seq, ChIP-on-chip,
siRNA or vector-driven over-expression approaches), but this is clearly beyond the scope of
this study that focused on strategies for the computational data analysis. However,
supporting evidence can also be collected from existing knowledge: Four of the core TFs are
part of the androgen receptor pathway (STAT3, SP1, POU2F1, and ATF2) and three are part
of the IL-6 and the c-Myc signaling pathways respectively (STAT3, CEPBD, IRF1, and
CEBPD, IRF8, SP1). This may allow selective inhibition of such pathway-oriented
downstream reactions, which might even enable differentiating inflammatory responses
from others such as angiogenesis.

Our strategy focused early onto TFs, their TFBSs and the potential functional network-
context by combining knowledge-based measures (GO-terms, pathways, co-citations) with
experimental data (expression changes) and genomics-based sequence analysis (TFBSs and
promoters) as outlined before (9). The almost perfect agreement of framework-derived
predictions with the actual microarray readings on genes is another line of supporting
evidence. We used specific prior knowledge solely to judge our results not to generate them,
e.g. we used the knowledge about STAT and SOCS3 involvement to qualify our results as
valid but both factors were identified without explicit use of this knowledge.

A TF involved in the regulation should bind to its target genes and would naturally act
together with other factors in this context, which is modeled by the framework approach (5,
10). Each line of evidence basically provides quantitative results of some kind (scores,
expression values etc.). But it is almost impossible to normalize knowledge-based (11) and
genomics based data in any way that would allow a quantitative comparison. Therefore, we
count a line of evidence as supportive (i.e. associated significantly with the data) or not
without any internal ranking or order. This safeguarded against the bias of “more” evidence
(e.g. from literature) available for particularly popular factors and premature filtering. For
example, STAT factors turned out to be among the most important TFs in the end despite
the fact, that we did not observe a significant mRNA regulation in the microarray data as
STAT is finally activated by phosphorylation even if transcriptionally upregulated (12). The
collection of multiple lines of evidence made the results robust with respect to missing lines
of evidence as long as enough lines remained supportive.

We have successfully used a highly systematic network-focused approach, which can be
applied to almost all high-throughput data sets such as microarrays, NGS-based experiments
(e.g. RNA-Seq, and ChIP-seq) as well as protein-interaction maps with very few
adaptations. The general process contains steps with quantitative limitation requiring some
pre-selections by the scientist, that cannot always be strictly motivated from the data, as in
our case the selection of 3-fold or higher induced genes. Here, a best guess approach is
required, but it is possible to test a few alternatives. This is one of the reasons why we also
used a novel pathway-network oriented approach that does not suffer from such limitations

Werner et al. Page 9
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and essentially confirmed results obtained on the arbitrarily selected gene subset. The
network tool can take an unlimited number of pathways and genes and always results in a
single network, optimal in terms of co-citation based connectivity. The biggest advantage is
that the network is constructed in a fully automatic process within less than a minute
requiring no user-defined parameters. The results appeared to be more focused on the LIF-
relevant biology as indicated by the much lower p-values of pertinent GO-terms. SOCS3
featured prominently as a central gene in the network associated pathways, and is already
known to be involved in the actions of LIF (13). All in all, we hope that this strategy can
contribute another building block for standardized data analysis of experimental high-
throughput methods aiming at rapid selection of subsets of data relevant for the experimental
question.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis strategy and summary of results
The upper part of the figure indicates the three major lines of evidence used in the
subsequent analysis. Three parallel threads of analysis were carried out from the associated
lines of evidence, each using results from all lines of evidence to focus and restrict the next
analysis step. This is indicated by the cross-connections. The whole strategy focused onto
transcription factors (TFs) throughout and collected all positive evidence for involvement of
a TF. *In case no pathways are available GO categories can be used in the same way. **The
pathway network essentially produces a reduced initial list which can be treated exactly the
same way as the initial list.***Promoter analysis for the down-regulated genes is carried out
exactly as for the up-regulated, if a down-regulated TF is thought to be responsible for the
down-regulation.
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Figure 2. Literature-derived co-citation network based on the 206 genes selected by genome-wide
search for the FKHD-CREB-SORY promoter TFBS-framework
This network represents the largest contiguous network detectable in the set of 206 genes.
The central area containing the framework-founding genes ITK, SYK and PDGFRA is
boxed.
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Table 2

Six pathways associated with the differentially regulated genes

Pathway p-value input genes in pathway gene IDs

PDGFR-alpha signaling pathway 1.39E-03 ITGAV, IFNG, SHF, JUN, CSNK2A1,
PDGFRA, CAV1

3685, 3458, 90525, 3725, 1457,
5156, 857

pertussis toxin-insensitive ccr5 signaling in
macrophage

2.42E-03 CCL2, CCR5, JUN, CXCL12 6347, 1234, 3725, 6387

E-cadherin signaling events 5.25E-03 EPHA2, EXOC3, AKT1, HGF, IGF1,
IGF1R, EFNA1

1969, 11336, 207, 3082, 3479, 3480,
1942

IL-7 signaling pathway(JAK1 JAK3
STAT5)

6.74E-03 IL7, RIPK3, AKT1, SYK, ZAP70,
MAPK13, KIT, BRAF, LCK, FGFR2,

IRAK4, PRKCD, PIK3CD, FLT4,
IGF1R, PAK2, CSNK1A1, CAMK2G,

AKT2, PDGFRA, MAP3K2, ITK

3574, 11035, 207, 6850, 7535, 5603,
3815, 673, 3932, 2263, 51135, 5580,
5293, 2324, 3480, 5062, 1452, 818,

208, 5156, 10746, 3702

ATF-2 transcription factor network 6.94E-03 IFNG, POU2F1, SOCS3, JUN, CCND1,
DUSP8, PDGFRA, BCL2, NOS2

3458, 5451, 9021, 3725, 595, 1850,
5156, 596, 4843

TCR signaling in naive CD4+ T cells 8.93E-03 VAV1, AKT1, ZAP70, LAT, FYB,
LCK, LCP2, PTPRC, DBNL, PTEN,

ITK

7409, 207, 7535, 27040, 2533, 3932,
3937, 5788, 28988, 5728, 3702

All associated pathways were ranked by their p-value as determined by the program GePS/GeneRanker (Genomatix Software, Munich). Input
genes in pathways: these genes were part of the list of regulated genes as well as the pathway.
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Table 5

GO/MeSH term comparison all regulated genes/network genes

GO-term p-value 1107 regulated genes p-value 335 network genes

top ranked GO term e-8 e-29

MapKKK cascade e-7 1.32 e-15

signal transmission via phosphorylation event 1.11 e-6 2.80 e-19

inflammation (MeSH disease) 1.93 e-11 2.75 e-64

Selected GO-processes were compared by their p-value. All 3 selected individual GO-terms (rows 2 to 4) showed a much lower p-value for the
network association than for all of the regulated genes.
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Table 6

Ten pathways associated with the 190 up-regulated genes contained in the network

Pathway p-value input genes in pathway

Cytokine receptor degradation signaling 2.84E-04 ILA1, MAP3K2, IRAK4, IL4R, AKT2, IGF1R, FLT4, ITK, IL7, IL1B,
PDGFRA, IFNG, SOCS3, BRAF, PRLR, PRKCD, SYK, FGFR2,

ZAP70

IL-7 signaling pathway(JAK1 JAK3 STAT5) 5.82E-04 MAP3K2, IRAK4, PIK3CD, AKT2, IGFR1, FLT4, ITK, IL7,
PDGFRA, BRAF, PRKCD, SYK, FGFR2, ZAP70

pertussis toxin-insensitive ccr5 signaling in
macrophage

1.86E-03 CCL2, CCR5, JUN, CXCL12

AKT(PKB)-Bad signaling 1.95E-03 MAP3K2, IRAK4, PIK3CD, AKT2, IGFR1, FLT4, ITK, PDGFRA,
BRAF, PRKCD, SYK, FGFR2, TZAP70

Migration 2.15E-03 MAP3K2, IRAK4, PIK3CD, AKT2, IGFR1, FLT4, ITK, PDGFRA,
BRAF, PRKCD, SYK, FGFR2, ZAP70

ATF-2 transcription factor network 2.89E-03 DUSP8, I BCL2, NOS2, PDGFRA, IFNG, SOCS3

Signaling events mediated by PTP1B 3.92E-03 ITGB3, LAT, LYN, SOCS3, PRLR, CSF1R

IL23-mediated signaling events 4.23E-03 CCL2, NOS2, IL1B, IFNG, SOCS3

Class I PI3K signaling events 8.96E-03 ITK, LYN, VAV1, SYK, ZAP70

IL-6-mediated signaling events 9.85E-03 CEBPD, IRF1, VAV1, SOCS3, PRKCD

All associated pathways were ranked by their p-value as determined by the program GePS/GeneRanker (Genomatix Software, Munich). Input
genes in pathways: these genes were part of the list of regulated genes as well as the pathway.
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Table 7

7 associated with genes in the network of LIF-associated pathways

TFBS family TF/up + or down − regulated network pathway association z-score up-regulated
network promoters

z-score down-regulated
network promoters

SP1 KLF11 + + 3.89 2.97

CEBP CEBPD + + 2.79 -

FKHD FOXD1 +
FOXP4 − FOXJ2 − + 2.38 -

IRF IRF1 +
IRF8 + − - 2.54

STAT - + 2.54 -

ETS SPI1 +
PBRM1 + - -

ZBP ZNF219 + − 5.22 -

BCDF OTX1 + − 2.00 -

Column 1 shows the TFBS family of which the individual TFs shown in column 2 are members of. Column 3 indicates whether the TF was directly
implicated by an associated pathway, and columns 4 and 5 indicate the statistical over-representation of the respective TFBS family in network
promoters as compared to all promoters in the human genome.
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Table 9

FKHD-CREB-SORY containing promoters are all up-regulated with one exception.

all microarray
promoters (5371)

all upregulated
promoters (764)

all genome promoters
(101233)

all microarray promoters all upregulated promoters

matches matches matches overrepresentation overrepresentation

11 10 206 1.01 6.41

Overrepresentation analysis was carried out in the same way as for the data in table 4.
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