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Abstract

Due to their potential as a control modality in brain-machine interfaces, electrocorticography (ECoG) has received much
focus in recent years. Studies using ECoG have come out with success in such endeavors as classification of arm movements
and natural grasp types, regression of arm trajectories in two and three dimensions, estimation of muscle activity time series
and so on. However, there still remains considerable work to be done before a high performance ECoG-based neural
prosthetic can be realized. In this study, we proposed an algorithm to decode hand trajectory from 15 and 32 channel ECoG
signals recorded from primary motor cortex (M1) in two primates. To determine the most effective areas for prediction, we
applied two electrode selection methods, one based on position relative to the central sulcus (CS) and another based on the
electrodes’ individual prediction performance. The best coefficients of determination for decoding hand trajectory in the
two monkeys were 0.481560.0167 and 0.778060.0164. Performance results from individual ECoG electrodes showed that
those with higher performance were concentrated at the lateral areas and areas close to the CS. The results of prediction
according with different numbers of electrodes based on proposed methods were also shown and discussed. These results
also suggest that superior decoding performance can be achieved from a group of effective ECoG signals rather than an
entire ECoG array.
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Introduction

Over the past two decades, brain-machine interfaces (BMI) have

been developed utilizing the growing understanding of brain

function and the development of technology to measure brain

activity. BMIs translate brain signals into commands for control-

ling devices such as cursors [1], spelling devices [2], robot arms,

and neural prosthetics [3–6]. This new communication pathway

has not only the potential to help to disabled persons but also

provide insight into the motor system of the brain [7–13]. A

number of methods have been developed to measure brain signals.

BMIs are mainly categorized into two types, invasive and non-

invasive BMIs, according to the signal source. BMI systems have

been developed using modalities such as multi-neuron activity

[14,15], local field potentials [16,17], electroencephalography

[1,7,18,19], and functional magnetic resonance imaging [20].

Electrocorticography (ECoG) has been in focus as a less invasive

recording method for BMIs [21–36] since the first ECoG-based

BMI succeeded in one-dimensional cursor control in human

subjects [21]. ECoG signals have higher signal-to-noise ratio and

spatiotemporal resolution than non-invasive recording methods,

because ECoG electrodes are laid on the surface of the cerebral

cortex. ECoG recording has also been shown to have long-term

stability [22,23], and its level of clinical risk is lower compared with

invasive methods, because the electrodes do not penetrate the

brain. Classifications of arm movement direction [24,25], 3D

cursor control [26], natural grasp type [27,28], and hand posture

[29,30] have been achieved by using ECoG signals. Two-

dimensional [31–33] and three-dimensional (3D) hand trajectories

[22,23] and muscle activities [34] have been decoded using

epidural or subdural ECoG signals in time series. Despite these

successes, however, which locations are most effective for ECoG-

based hand trajectory prediction and how different numbers of

effective ECoG signals affect decoding performance are still open

questions.

In this study, and in investigation of these questions, we

attempted to decode hand trajectory from ECoG signals. We

recorded 15 and 32 ECoG signals of the primary motor cortex

(Ml) and 3D hand positioning simultaneously in two Japanese

monkeys while they performed reaching and grasping tasks. We

predicted 3D hand trajectories using our previous signal prepro-

cessing method [34] and a partial least squares (PLS) method. Two

methods for electrode selection were proposed in order to examine

the questions previously mentioned. Prediction performances with
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different combination of electrodes using the proposed decoding

methods were compared. Both methods showed equivalent ability

to predict hand trajectories. Our results indicated that 3D hand

trajectories can be predicted using nine or ten ECoG signals and

that ECoG electrodes with higher performance were concentrated

at the lateral areas and areas close to the central sulcus (CS).

Methods

Ethics statement
All experimental procedures were performed in accordance

with the Guidelines for Proper Conduct of Animal Experiments of

the Science Council of Japan and approved by the Committee for

Animal Experiments at the National Institutes of Natural Sciences

(Approval No.: 11A157). The animals’ welfare and steps taken to

ameliorate suffering were in accordance with the recommenda-

tions of the Weatherall report, ‘‘The use of non-human primates in

research’’. The animals were monitored closely, and their welfare

was assessed on a daily basis, or several times a day if necessary.

This included veterinary examinations to ensure that they were

not suffering, as well as the use of analgesics, antiemetics, or

antibiotic therapy if necessary. The animals were housed

individually on a 12-hour light/dark cycle and provided a rubber

toy and ample food and water in their home cage. No animals

were sacrificed in this study.

Behavioral Task
Two Japanese macaques (Monkey A: male, 8.9 kg; Monkey B:

female, 4.7 kg) were trained to perform right hand reaching,

grasping, pulling, and releasing tasks as shown in Figure 1A. The

monkeys performed these tasks repeatedly and continuously for

B

subject A

subject B

CS

rostral

la
te

ra
l

3m
m

3mm

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

4 5 6 7

21

1412 13

29

15

CS1mm

3 ch 6 ch

  9 ch 12 ch

#3  #2  #1

#4   #3   #2  #1
1 2 3 8

9

17

11

24

25 26 27

16

rostral

la
te

ra
l

10

18 19

28

20 22

30

23

31 32

15 or 16 ch

A ECoGs

Home
button

Elastic
band

Touch sensor

Left

Position marker

*1
*2

*3

*4

*5

*1

*2

*3

*4

AS

Figure 1. Behavioral task and location of ECoG electrodes used
in decoding. A) Monkeys performed right hand reaching, grasping,
pulling, and releasing tasks in a 3D workspace. During the task, ECoG
and hand positioning were recorded simultaneously. B) The planar-
surface platinum electrode arrays were implanted on the gyrus
between the central sulcus (CS) and the arcuate sulcus (AS) in the
primary motor area in left hemisphere. The locations of all 15 and 32
electrodes in monkey A and monkey B are shown with defined channel
numbers. Locations of 3, 6, 9, 12, and 15 or 16 electrode groups used in
decoding are denoted with green solid, purple dotted, blue dotted,
brown dotted, and blue solid lines, respectively. The column nearest the
CS was column #1 in the rostral-caudal direction, and the row in the
medial-lateral direction was row *1. Note that electrodes inside the blue
line were used in both column and row decoding.
doi:10.1371/journal.pone.0083534.g001
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Figure 2. Example of measured trajectory and frequency band
feature data during a movement task. Frequency band feature
data were sorted into channels and frequency bands, as shown at the
top. The X, Y, and Z positioning data recorded from the markers
attached to the hand of monkey B, are shown at the bottom.
doi:10.1371/journal.pone.0083534.g002
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over 700 s. Monkey A performed a total of 134 trials, and monkey

B performed 248 trials.

Both monkeys underwent surgery to implant an ECoG

electrode array under anesthesia after they completed behavioral

training. We chronically implanted a platinum ECoG array

(Unique Medical Corporation, Tokyo, Japan) over the left M1,

which contained 15 (monkey A: 563 grid) and 32 (monkey B: 468

grid) channel electrodes, as shown in Figure 1B. Electrode

locations were identified from anatomical views during surgery,

preparation of brain and postoperative x-ray images. The midline

of the brain was estimated from the sagittal suture and used to

landmark electrode locations in the medial-lateral direction. The

center electrode 8 in monkey A was approximately 15 mm from

the midline. The medial electrodes in monkey B were located

approximately 14 mm from the midline. The ECoG arrays were

nearly parallel to the midline. In the rostral-caudal direction, for

both monkeys A and B, centers of electrodes in column #1

(monkey A:3, 6, 9, 12, 15; monkey B: 7, 15, 23) were placed 1–

2 mm rostral of the central sulcus. Electrode 31 in monkey B was

placed 1–2 mm caudal of the central sulcus. Descriptions of the

technical and surgical details can be found in our previous work

[34].

Data recording
ECoG signals were sampled at 4 kHz using an acquisition

processor system (Plexon MAP System; Plexon, Inc., Dallas, US).

ECoG signals were filtered with band-pass filters through multi-

channel bio-signal amplifiers (monkey A: 1.5 Hz high-pass and

1 kHz low-pass analog filters, MEG-6116, Nihon Kohden

Corporation, Tokyo, Japan; monkey B: 0.7 Hz high-pass and

8 kHz low-pass analog filters, Plexon, Inc., Dallas, USA).

3D-positions of various points of the right arm were recorded

using reflective markers tracked with an optical motion capture

system (Eagle Digital System; Motion Analysis Corporation, Santa

Rosa, CA). The system used twelve infrared cameras operating at

200 frames/s to track the positions of multiple reflective markers

(4-mm-diameter spheroids). A total of fourteen markers were

attached to the right arm of each monkey but we used only the

wrist marker to extract hand positioning. In addition to optical

data, the motion capture system also recorded analog signals from
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Figure 3. Predictive error sum of squares in model training for
monkey B. The blue line and green line show predictive error sum of
squares (PRESS) and R2 values, respectively, for different numbers of
latent variables used in the PLS model. The optimal number of 20 is
denoted with the red dotted line.
doi:10.1371/journal.pone.0083534.g003
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the external stimulator (SEN-8203; Nihon Kohden Corporation,

Tokyo, Japan) for synchronization with the neural recordings. The

neural data were down-sampled to 500 samples per second, and

the motion data were up-sampled to 500 samples per second to

match the neural data, similar in manner to our previous work

[35].

Preprocessing and feature selection
Raw ECoG signals were re-referenced to a common average

reference (CAR) to increase the signal-to-noise ratio in the

preprocessing phase. The CAR method calculates the mean of

all channels, and subtracts this value from the selected output

channels [36,37].

Nine specific frequency bands were selected for further analysis:

d (1.5,4 Hz), h (4,8 Hz), a (8,14 Hz), b1 (14,20 Hz), b2

(20,30 Hz), c1 (30,50 Hz), c2 (50,90 Hz), c3 (90,120 Hz),

and c4 (120,150 Hz). These specific bands were selected due to

their correlation with motor activity, as shown in previous ECoG-

based BMI studies [27–34]. Band-pass filters for each of the nine

frequency bands were used to transform the re-referenced ECoG

signals into nine separate time series. Then, each time series was

rectified and smoothed with a Gaussian filter of 0.1 s width (s:

0.04 s). Finally, the smoothed time series xij(t)at time t were z-

score normalized to produce the final ECoG source signal zij(t)as

follows:

zij(t)~
xij(t){mij

sij

ð1Þ

where, i and j are the electrode channel and the frequency band,

respectively.mij and sij denote the mean value and the standard

deviation of xij(t) over a 2 s interval before time t, respectively.

These zij(t) became the final ECoG feature signals for use in hand

trajectory prediction. An example ECoG feature signal during a

trial movement is shown in Figure 2.

Partial Least Squares Regression
Partial least squares regression (PLS) was used to decode the 3D

hand positioning from ECoG. Because of its utility in variable

selection and dimension reduction, PLS has been widely used in

the fields of brain imaging, computational chemistry, data mining,

and others [22,23,38–41].

The 3D hand positioning at time t, Yp(t), was decoded using the

ECoG feature signal zij(t) over a 0.6 s interval before time t and

can be described as

Yp(t)~
X15or16

i~1

X9

j~1

X19

k~0

vijkzij(t{kDt)zv0 ð2Þ

where, p represents the predicted value of each xyz-coordinate,

Dt is 30 ms, vijk are the weights according to the ECoG feature

signal zij(t) at electrode channel i, frequency band j, and time

t{kDt, and v0 is the bias.

The PLS methods calculates a set of orthogonal factors called

latent variables to model the relationship between two sets of data.

Ten-fold cross validation was used to evaluate prediction by the

model. To avoid over-fitting, the predictive error sum of squares

(PRESS) was calculated to find the optimal number of latent

variables in the PLS model, which can be described as

PRESS~ Yp{Yo

�� ��2 ð3Þ

where Ypis the predicted hand position, and Yois the observed

hand position.

Two methods for electrode selection
To investigate which electrode locations were more effective, we

decreased the number of electrodes for prediction using two

methods and compared their respective performance.

In the first method, electrodes were selected based on their

implantation position. Previous physiological studies have shown

that cortico-motoneuronal cells that encode muscle-activation

patterns reflected in EMG activity are located predominantly in

the anterior bank of the central sulcus (CS) [42,43]. Our previous

work [34] also showed that the area close to the CS might be key

to decoding muscle activity. Therefore, we selected electrodes in

groups of 3, 6, 9, 12, and 15 or 16 electrodes, expanding in

distance from the CS as shown in Figure 1B. We refer to this

method hereafter as location-based selection.

For the second selection method, electrodes were chosen based

on prediction performance. Performance values for the PLS model

using only one electrode were calculated and sorted by their

coefficients of determination (R2). Then, electrodes with high

performance were added in turn to train a new PLS model. To

investigate the effective frequency band for prediction, perfor-

mance values for the PLS model using only d (1.5,4 Hz), c3

(90,120 Hz), and c4 (120,150 Hz) bands were also calculated

for each electrode. We refer to this method hereafter as

performance-based selection.
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Analysis
The entire 700 s of experiment data were divided into two parts,

500 s of training data and 200 s of test data. Ten-fold cross

validation was employed to train the PLS model on the 500 s of

training data. Then, the 200 s of test data were used to evaluate

the PLS model.

PRESS values were calculated to find the optimal number of

latent variables in the PLS model. Smaller PRESS values were

associated with greater PLS model performance. Typically, the

PRESS value decreases when effective latent variables are added

to train the model. Then, if over-fitting occurs, the PRESS value

increases. A good choice is to stop adding latent variables as soon

as the PRESS value increases. In this study, however, the PRESS

value decreased quickly when the number of latent variables was

within 20, but then plateaued soon after, as shown in Figure 3 and

Figure S1. Thus, we selected 20 as the optimal number of latent

variables.

Weights of the prediction model were analyzed to evaluate the

contribution of each the nine frequency bands used in this study.

The contribution of frequency band Confb was calculated as

Confb(j)~
P

i

P
k

Dvijk D
,P

i

P
j

P
k

Dvijk D ð4Þ

Where, vijk are the weights associated with the ECoG feature

signal zij(t) at electrode i, frequency band j, and time t{kDt.

In addition, 3D hand trajectories were predicted using each of

the nine frequency bands of the ECoG feature signals to

investigate their individual contributions to prediction.

Result

Prediction with the location-based selection method
3D hand trajectories were first decoded using all the ECoG

electrodes. For monkey A, the mean R2 value and standard

deviation (STD) after 10-fold cross validation were

0.484060.0118, and mean R2 using the test data was 0.4806.

For monkey B, the mean R2 values after 10-fold cross validation

and using the test data were 0.842460.0032 (Mean6STD) and

0.7328, respectively.

We verified how decoding performance changes depending on

the number of effective ECoG signals. Positions for the groups of

3, 6, 9, 12, and 15 or 16 ECoG electrodes selected to decode hand

trajectories are shown in Figure 1B. For monkey A, R2 values for

X, Y, and Z positioning were 0.4724, 0.4695, and 0.4997,

respectively, obtained using all 15 electrodes. For monkey B with

all 32 electrodes, R2 values for X, Y, and Z positioning were

0.7126, 0.7644 and 0.7263, respectively. One example of

continuous prediction is shown in Figure 4 (see also Fig. S2 for

monkey A). Actual and predicted hand trajectories in 3D space for

a single trial are also shown in Figure 5 and Figure S3. The best

R2 values for X, Y, and Z positioning were 0.7288, 0.7677, and

0.7526, respectively, obtained using 9 electrodes of monkey B.

Figure 6 shows prediction results over 8 s of test data using 3, 6,

9, 12, and 16 ECoG electrodes for monkey B (Fig. S4). With the
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location-based selection method, 67.3% and 92.9% of the best R2

values were achieved with 3 electrodes for monkeys A and B,

respectively. Best R2 percentages using 6 electrodes were 85.3%

and 96.9%, and 97.9% and 100% using 9 electrodes.

Prediction with the performance-based selection method
For the performance-based method, prediction results for each

individual electrode are shown in Figure 7A. For monkey A, R2

values ranged from 0.0903 to 0.2407. The highest R2 value was

achieved with electrode 10. For monkey B, R2 values ranged from

0.3566 to 0.6269. The highest R2 value was achieved with

electrode 23. Prediction results for each electrode using d
(1.5,4 Hz), c3 (90,120 Hz), and c4 (120,150 Hz) bands are

shown in Figure 7B, 7C, 7D, respectively. R2 values using the d
band ranged from 0.00 to 0.05 and from 20.06 to 0.37 for

monkey A and monkey B, respectively. R2 values using the c3

band ranged from 0.01 to 0.11 and from 0.01 to 0.50, respectively.

The R2 values using c4 ranged from 0.01 to 0.16 and from 0.01 to

0.47, respectively. Performances for the c3 and c4 bands were

similar and generally higher than those of the d band. For both

monkeys, the most effective electrodes were concentrated at the

lateral areas and areas close to the CS, especially for the c3 and c4

bands.

Summary of the two electrode selection methods
Performance details of two electrode selection methods are

shown in Figure 7E. For both monkeys, performance was

improved quickly as the number of electrodes used increased

from 1 to 9. The performance curves fluctuated only slightly when

using 10 electrodes and above. The best R2 values were achieved

using 13 and 10 electrodes for monkeys A and B, respectively.

For both methods, the principle is to select more effective

electrodes in prediction. As shown in Figure 7A, 7B, 7C, and 7D,

higher performance electrodes are concentrated at the lateral areas

and near areas of CS. This result is consistent with the principle of

the location-based selection method.

To confirm this principle, columns electrodes were also used to

predicted hand trajectory. Prediction results in the rostral-caudal

direction, and in the medial-lateral direction are shown in Table 1

and Table 2, respectively.

The highest performance in the rostral-caudal direction was

achieved using column #1 in both monkeys. For monkey A,

performance using column #3 was higher than that using #2.

This might have been an effect of the presence of electrode 10

(Figure 7A). For monkey B, performance using column #3 was

second highest, and performance using column #2 was higher

than that using column #4. Highest performance in the medial-

lateral direction was achieved using row *2 in both monkeys. For

monkey A, performance using row *1 was higher than that using

rows *3, *4, and *5. For monkey B, performance using row *3 was

second highest, and may have been due to the effect of the d band

at electrode 13 (Figure 7B). Performance using row *1 was higher

than that using row *4. Generally, higher performance rows and

columns are at the lateral areas and areas near the CS.

Analysis of specific frequency bands
Weights of the nine frequency bands in the prediction model

were calculated and are shown in Figure 8A as percent

contributions. For monkey B, c3 (90,120 Hz) provided the

highest contribution. The contributions of d (1.5,4 Hz) and c4

(120,150 Hz) were higher than those of h (4,8 Hz), a
(8,14 Hz), b1 (14,20 Hz), and b2 (14,20 Hz).

3D hand trajectories were predicted by using each frequency

band of the ECoG feature signals individually (Table 3). A two-

way ANOVA was employed to judge two effects (X, Y, and Z

positioning, and the nine frequency bands). No significant

differences in prediction performance between X, Y, and Z

positioning were observed in both monkeys (monkey A: F2, 16

= 3.61, p = 0.051; monkey B: F2, 16 = 1.96, p = 0.173). Significant

differences in prediction performance were observed between

frequency bands, (monkey A: F8, 16 = 14.16, p = 6.4161026;

monkey B: F8, 16 = 52.39, s = 4.99610210), as shown in Figure 8B.

The prediction performances using d, c2, c3, and c4 bands were

also significantly higher than that of other bands. Prediction

performance of the h and c1 bands was significantly higher than

that of b2.

Discussion

This study decoded 3D hand trajectories from ECoG signals in

Ml and showed that most effective electrodes were concentrated at

the lateral areas and areas close to the CS. Comparisons between

prediction results suggest that a selection of effective ECoG signals

may be better choice than a whole ECoG array. Our results also

suggested that ECoG signals are of ample quality and efficiency to

control a high performance neural prosthetic.

Which locations are most effective for prediction?
Carmena et. al. (2003) reported that neuron activity recorded

from Ml showed greater efficacy than that from dorsal premotor

Table 1. Prediction results using location-based electrode
selection in the rostral-caudal direction.

Monkey Location R2

x y z mean

A #1 0.3317 0.3397 0.3535 0.3416

#2 0.2959 0.2452 0.3438 0.2950

#3 0.2998 0.2956 0.3580 0.3178

B #1 0.6773 0.7164 0.6980 0.6973

#2 0.6063 0.6593 0.6524 0.6393

#3 0.6591 0.6793 0.6704 0.6696

#4 0.5655 0.6059 0.5578 0.5763

doi:10.1371/journal.pone.0083534.t001

Table 2. Prediction results using location-based electrode
selection in the medial-lateral direction.

Monkey Location R2

x y z mean

A *1 0.3035 0.3008 0.3429 0.3157

*2 0.3640 0.3774 0.4141 0.3852

*3 0.2423 0.2217 0.2873 0.2505

*4 0.1996 0.1807 0.2381 0.2061

*5 0.1851 0.1713 0.2213 0.1926

B *1 0.6343 0.6888 0.6117 0.6449

*2 0.6577 0.6930 0.7069 0.6859

*3 0.6646 0.7005 0.6841 0.6830

*4 0.5729 0.5865 0.5501 0.5699

doi:10.1371/journal.pone.0083534.t002
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cortex, supplementary motor cortex, posterior parietal cortex, and

primary somatosensory cortex. Previous ECoG studies have also

used signals mainly from the primary motor area [27–29]. We

chose M1 based on those previous results and evaluated the

optimal locations in M1. As shown in Figure 7A, ECoG signals

from the lateral areas and near areas of CS also showed greater

efficacy in prediction, especially in the d, c3, and c4 bands

(Figure 7B, 7C, 7D).

How did different numbers of ECoG electrodes affect
performance?

As shown in in Figure 7E, the best mean R2 values for monkeys

A and B were 0.4805 and 0.7496, respectively, in the location-

based selection, and 0.4815 and 0.7780 in the performance-based

selection. Both methods, therefore, appear to have equivalent

ability to predict hand trajectories.

For both monkeys, performance improved quickly as the

number of electrodes used increased from 1 to 9. The performance

curves fluctuated only slightly when using 10 electrodes and above.

Best decoding performance was achieved using a relatively small

number of electrodes, 13 and 10 electrodes in the performance-

based selection for monkey A and monkey B, respectively. The

performances curves of this study are similar to the results of a

previous neuron activity-based study [14], which selected different

numbers of high sensitivity neurons in decoding kinematic

variables. These results suggest that best decoding performance

can be achieved from a relatively small number of effective ECoG

signals. However, it should also be noted that decoding

performance is not simply related to the electrode number but

may more closely depend on the density of electrodes within the

effective areas. Still, with the potential utility of wireless

transmission technology in ECoG [44,45], a relatively smaller

number of electrodes would provide the benefit of lower power

consumption, extending the usage time for wireless BMIs.

Which frequency bands are most effective?
To evaluate the efficacy of specific frequency bands in trajectory

decoding, we compared prediction performances of the nine
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Figure 8. Contribution and performance of specific frequency bands for monkey B. A) Each bar represents the weight of each frequency
band in the PLS model. From top to bottom, the graphs depict contributions to X, Y, and Z positioning, respectively. B) Prediction results using each
frequency band. We performed a two-way ANOVA with effects positioning and frequency bands. Each bar represents the mean R2 value of X, Y, and Z
positioning when comparing observed and predicted hand trajectories. Significant differences between mean R2 values are denoted with *
(p,0.001).
doi:10.1371/journal.pone.0083534.g008

Table 3. Prediction results using individual frequency bands.

Monkey Bands R2

x y z mean

A d 0.0987 0.0440 0.1121 0.0850

h 0.0689 0.0873 0.0757 0.0773

a 0.0793 0.1094 0.0800 0.0895

b1 0.1314 0.1206 0.1503 0.1341

b2 0.1860 0.2108 0.2188 0.2052

c1 0.1627 0.1808 0.1634 0.1690

c2 0.1604 0.1476 0.2033 0.1705

c3 0.1602 0.1149 0.1920 0.1557

c4 0.1739 0.1584 0.2103 0.1809

B d 0.5652 0.5970 0.6242 0.5955

h 0.4316 0.4496 0.4263 0.4358

a 0.4169 0.4252 0.3051 0.3824

b1 0.3743 0.4049 0.3318 0.3703

b2 0.2906 0.3389 0.2345 0.2880

c1 0.4567 0.4796 0.3618 0.4327

c2 0.6391 0.6794 0.6628 0.6605

c3 0.6427 0.6844 0.6966 0.6746

c4 0.6477 0.6913 0.6929 0.6773

doi:10.1371/journal.pone.0083534.t003
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physiologically-based frequency bands with 10 Hz-width fractio-

nized frequency bands from 0 to 150 Hz. The physiologically-

based method produced nearly the same or better results (R2

= 0.7328) than the fractionized frequency method (R2 = 0.6815)

for monkey B. These results suggest that the usage of physiological

frequency bands is more effective than non-physiological fractio-

nized frequency bands.

Weight analysis for the PLS model and the results of decoding

performance using each of the nine frequency bands showed that

the d, c2, c3, and c4 bands were more effective than other bands in

this study. Previous ECoG studies have shown the importance of

the high c band in motor decoding and BMI control, such as the

60–80 Hz band in prediction of 3D hand trajectories in monkeys

[22,23], 70–110 Hz in controlling a 3D cursor in humans [26], and

56–128 Hz in grasp detection in humans [28]. The importance of

the d band is also supported by our previous ECoG work [34], and

is consistent with a previous study [27], which employed a low-

frequency band (2–6 Hz) to classify natural grasp types.

Supporting Information

Figure S1 Predictive error sum of squares in model
training for monkey A. The blue line and green line show

predictive error sum of squares (PRESS) and R2 values, respectively,

for different numbers of latent variables used in the PLS model. The

optimal number of 20 is denoted with the red dotted line.

(EPS)

Figure S2 Decoding results using 15 electrodes for
monkey A. Example of prediction of 3D hand positions during

100 seconds test data by using 15 channel ECoG signals. The R2

value between the predicted (blue) and observed (red) trajectories

for X-, Y-, and Z-positions are shown.

(EPS)

Figure S3 Decoding results for monkey A in three
dimensional space. A) Example of 3D hand trajectory

prediction for one trial movement using 3 electrodes. The

predicted and observed trajectories in 3D space are depicted in

blue and red, respectively. The unfilled circles represent the start

point of movement. The two triangles mark hand position at

equivalent time points during movement. Solid circles denote the

end point of movement. B, C, and D) The predicted (blue) and

observed (red) trajectories shown in the X–Y, X–Z, and Y–Z

planes, respectively.

(EPS)

Figure S4 Decoding results for monkey A with different
electrode numbers selected using the location-based
method. Example prediction of 3D hand positioning over 8 s of

test data using 3, 6, 9, 12, and 15 electrodes. The red solid line

depicts actual trajectories. The green solid line, purple dotted line,

light blue dotted line, brown dotted line, and blue solid line

represent predicted trajectories using 3, 6, 9, 12, and 15 electrodes,

respectively.

(EPS)
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