
BOBA FRET: Bootstrap-Based Analysis of Single-Molecule
FRET Data
Sebastian L. B. König1*, Mélodie Hadzic1, Erica Fiorini1, Richard Börner1, Danny Kowerko1,

Wolf U. Blanckenhorn2, Roland K. O. Sigel1*

1 Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland, 2 Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland

Abstract

Time-binned single-molecule Förster resonance energy transfer (smFRET) experiments with surface-tethered nucleic acids or
proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise
ratio (SNR) in smFRET time traces, research over the past years has focused on the development of new methods to extract
discrete states (conformations) from noisy data. However, limited observation time typically leads to pronounced cross-
sample variability, i.e., single molecules display differences in the relative population of states and the corresponding
conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess
whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand,
etc.) are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological
interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability.
Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly
used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important
sequences derived from the self-cleaving group II intron Sc.ai5c (d3’EBS1*/IBS1*) is used as a model system. Through
statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic
and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data,
BOBA FRET), as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/.
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Introduction

Förster Resonance Energy Transfer (FRET), distance-depen-

dent energy transfer via a long-range dipole-dipole interaction,

occurs between a donor fluorophore and an acceptor, which is

typically (but not necessarily) also a fluorophore [1]. FRET results

in a decrease in both donor emission intensity and lifetime, as well

as the appearance of acceptor fluorescence [2]. Monitoring FRET

between a single pair of dyes (smFRET) attached to a biomolecule

can resolve both static and dynamic heterogeneity within a

sample, i.e. differences between molecules and time-dependent

conformational changes of individual molecules, both of which

would otherwise be hidden through ensemble averaging [3,4].

smFRET experiments are performed either on freely diffusing or

surface attached molecules, the latter approach allowing for

observation over an extended period of time. Technically,

experiments with diffusing samples are implemented using a

confocal microscope suitable for single-photon detection (time-

correlated single photon counting, TCSPC). Experiments involv-

ing surface-tethered molecules can also be conducted with the

aforementioned confocal microscope setup [5], although a wide-

field or total internal reflection geometry is typically used for

excitation, followed by detection with a CCD camera, resulting in

time-binned FRET trajectories [6,7]. Statistical analysis of such

time-binned data is the objective of this article.

As smFRET data are generated from the emission of single

fluorophores, the signal-to-noise ratio (SNR) is generally an issue,

and considerable effort has been geared towards the development

of tools to analyze noisy time traces. Ideally, such tools should

permit to determine the number of conformational states in the

system, their relative occurrence, and the rates at which they

interconvert [8]. Cumulated FRET histograms have proven useful

for simple two- or three-state systems, in which the approximation

of individual FRET distributions with a normal distribution leads

to minimal discrepancies [2]. When there is no or minimal overlap

between the FRET distributions, the relative occurrence of the

states is quantified by defining arbitrary cutoff values between

FRET distributions (thresholding, Figure 1) [9]. In the case of

moderate overlap, multiple Gaussian fits are typically performed

to extract quantitative information (Figure 1) [10]. Under these

circumstances, dwell times, i.e. the time spent in a certain FRET

state until a conformational change occurs, can also be easily

determined by thresholding, typically followed by fitting the dwell

time histograms to exponential decay models to extract the rates of

conformational rearrangement (Figure 1) [11–14]. However, when

the SNR deteriorates (short exposure times or fluorescence
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quenching) and/or the centers of FRET distributions come close

(similar interdye distances or modest conformational dynamics),

these straightforward approaches can no longer be sensibly applied

(Rayleigh criterion, Figure 1).

Noise in smFRET time traces can be reduced through

smoothing, i.e. by averaging out the inherent noise of the data

collection process and hence emphasizing the discrete nature of

the FRET levels [15]. While linear rolling point averaging (also:

moving or sliding averaging) is known to obscure transitions with

dwell times shorter than the averaging window, the more

sophisticated non-linear forward backward filter initially proposed

by Chung and Kennedy and adapted by Haran partly overcomes

this problem [16,17]. Nevertheless, it also tends to average out

very brief excursions to conformational intermediates in our

hands. Taylor et al. recently presented an implementation of

wavelet shrinkage to denoise smFRET time trajectories (Figure 1)

[18,19]. Here, the observed time series are transformed into a

frequency component, followed by suppression of the noise

assumed to lie within the high-frequency region of the transfor-

mation and inversion of the transformation that yields (in theory) a

denoised dataset [18,20]. It should be noted, however, that noise

and signal often overlap in smFRET data, and thus such

transformations may lead to spurious oscillations close to the

transition (Gibb’s phenomenon) [21]. A further application of

wavelet transformation is termed change-point identification and

has recently been implemented to denoise smFRET data [22]. An

extensive overview of strategies for noise removal in so-called

piecewise constant signals (constant signal levels connected by

abrupt transitions) has been given elsewhere [21].

Hidden-Markov modeling (HMM, Figure 1) was first applied on

TCSPC data by Yang and Xie [23,24], and later utilized for

analyzing time-binned FRET trajectories by the groups of Ha

(‘‘HaMMy’’, [8]), Gonzalez Jr. (‘‘vbFRET’’, [25]), Herschlag

(‘‘SMART’’, [26]), and Dillingham (‘‘CSSR’’, [27]), as well as

groups from other research fields (‘‘QuB’’, [28]). Briefly, a Markov

process is a sequence of state-to-state transitions, becoming

‘‘hidden’’ because of the experimental noise [8]. Consequently,

HMM attempts to reconstruct the underlying time trace based on

transition probabilities of a molecule from a state A to a state B,

and emission probabilities, i.e. the likelihood of observing a FRET

value when the system is in a discrete state l assuming the noise can

be modeled by a given statistical distribution [10,29]. Different

approaches have been employed to determine the exact number of

states: (i) deliberate overfitting followed by model selection using

the Bayesian information criterion (BIC) or the Akaike information

criterion (AIC) [8,25,27], or (ii) a maximum evidence approach for

both model selection and determination of the model parameters

[25]. Hidden Markov approaches enjoy great popularity nowa-

days such that an extensive body of literature has been published

on this topic, including implementations for short time traces

[30,31] and multivariate HMM dealing with more than one time

trace at a time [5,32]. Nonetheless, it should be mentioned that the

basic assumptions do not always hold true for single-molecule

processes (single-exponential kinetics, vide infra), especially when

memory effects or large variations in folding kinetics are observed

that go beyond the scope of classical kinetics [18,33].

With the cumulated histograms and/or the dwell times at hand,

both the thermodynamic equilibrium and the kinetics associated

with the conformational changes can be characterized. To this

end, the corresponding error is typically estimated via the

goodness of the fit to the data (GOF) [34,35]. The GOF reports

on how well the model describes the experimental data and is

mainly determined by the SNR. Important contributions to the

noise are made by the stochastic nature of photon emission (shot-

noise), background noise, electron multiplier noise, read-out noise,

dark noise, resolution-induced noise [3,36–41], as well as

photophysical effects like quantum yield fluctuations and spectral

changes or technical aberrations such as focal drift or fluctuations

in laser intensity [3,41,42]. In turn, this approach neglects cross-

sample variability (differences between single molecules) as it relies

on building an ensemble from all smFRET time traces at once.

Single-molecule data are however known to frequently display

intermolecular heterogeneities that may originate from limitations

with regard to the observation time (photobleaching) or technical

issues. These frequently manifest as pronounced differences

regarding the relative population of conformational states, and

as differences in the absolute FRET values observed between

individual smFRET time traces (heterogeneous broadening)

[33,43]. Consequently, approximation of the error by the GOF

is expected to underestimate the variance at the expense of the

robustness of data interpretation. It must be emphasized that

precise estimation of the variance of the sample is crucial in order

to assess whether a difference between different treatment groups

is real or has occurred solely by chance, for example a change in

the relative population of the conformational states in response to

the addition of a small molecule. Such statistical testing has, to the

best of our knowledge, not been reported in the field of single-

molecule FRET.

Pioneered by Efron [44], the bootstrap scheme is a resampling

method to assess the accuracy of sample estimates that has since

been applied in numerous branches of biological research

including phylogenetics [45], environmental science [46], force-

based single-molecule biophysics [47,48], or molecular dynamics

simulations in conjunction with smFRET experiments on freely

diffusing molecules [49]. In bootstrapping, the distribution of the

whole population, including measures of variance, is estimated

from a sample distribution of the size n (n replicates) [51]. During

the resampling process, N values of the sample distribution are

randomly selected with an equal probability of 1/N and multiple

selections are allowed (resampling with replacement) [50].

Typically, N = n to avoid pseudoreplication and the resampling

procedure is repeated M times to compute the variance, where

100#M#500 is usually considered sufficiently robust in phyloge-

netic research, though more conservative approaches may involve

several thousand rounds of bootstrapping [46].

To meet the challenge of making smFRET data analysis more

robust, we have designed a software package called BOBA FRET

(BOotstrap-BAsed analysis of smFRET data) to estimate the cross-

sample variability associated with time-binned smFRET measure-

ments using Efron’s bootstrap (Figure 1) [44]. The program is

freely available and its implementation is straightforward. Herein,

we illustrate its workflow to perform both thermodynamic and

kinetic analysis of smFRET data: First, the algorithm is shown to

be compatible with well-established approaches to analyze

smFRET time traces and characterize its robustness using a set

of simulated data. Second, BOBA FRET is applied to an

experimental dataset, the cation-dependent interaction of the

exon-binding sequence 1 (d3’EBS1*) and the intron-binding

sequence 1 (IBS1*), which are derived from a crucial part of the

59splice site recognition complex in the group II intron Sc.ai5c
found in Saccharomyces cerevisiae (Figure 2). With the bootstrapped

errors at hand, we perform statistical hypothesis testing to assess

whether cation-induced effects on interaction kinetics and shifts

conformational equilibrium are statistically significant [51–53].

Bootstrap-Based Single-Molecule FRET Analysis

PLOS ONE | www.plosone.org 2 December 2013 | Volume 8 | Issue 12 | e84157



Materials and Methods

Simulations
smFRET time traces were simulated for an intramolecular two-

state system. First, discretized time traces were created under the

assumption that state-to-state transitions are governed by single-

exponential kinetics, followed by addition of Gaussian noise.

Standard parameters were based on previous simulations and

defined as follows: FRETA = 0.3 (undocked state), FRETB = 0.7

(docked state); SNR = 3.5 (average total intensity = 24.5 photons

bin21 s21); SNR distribution width = 0; observation time = 4000 s;

kdocking = 0.1 s–1, kundocking = 0.04 s–1 (average number of transi-

tions = 114 per time trace) [8]. For each set of parameters,

100 time traces were analyzed, followed by an estimation of the

cross-sample variability (vide infra). All simulations were performed

using a home-built script written in MATLAB.

Oligonucleotides
The RNA sequence pair was derived from the exon-binding site

1 (EBS1) and the intron-binding site 1 (IBS1) found in the primary

cox1 transcript in cerevisiae. They are referred to as d3’EBS1* and

IBS1* according to the nomenclature used in previous studies

(Figure 2) [33,51]. Labeled oligonucleotides were purchased

PAGE-purified from IBA AG (Göttingen, Germany) and addi-

tionally HPLC purified [54]. All chemicals were purchased from

Sigma-Aldrichs (Buchs, Switzerland).

smFRET Imaging
Microfluidic channels for total internal reflection microscopy

(TIRFM) were prepared from quartz slides (Finkenbeiner,

Waltham, MA) as described [55]. The inner surface of the

chamber was passivated with biotinylated BSA (Sigma-Aldrich,

Buchs, Switzerland), and Cy3-labeled d3’EBS1* was immobilized

via a biotin-streptavidin linkage (Figure 2) [56]. The smFRET

imaging buffer contained 50 mM MOPS, 100 mM KNO3, 1 mM

M(NO3)2 (M2+ = Ni2+ or Co2+), 1% D-glucose, 165 U/mL glucose

oxidase, 2170 U/mL catalase, 1 mM Trolox, 25 nM Cy5-labeled

IBS1*, pH 6.90 [57]. Cy3 and Cy5 emission levels were

monitored in a prism-based total internal reflection fluorescence

microscope upon alternating laser excitation (ALEX) as described

elsewhere [56,58]. Briefly, fluorophores were excited at 532 and

640 nm in an alternating fashion using diode lasers (CrystaLaser

Figure 1. Generalized scheme for analyzing time-binned smFRET data. Bootstrapping can be used both in thermodynamic and kinetic
analysis and is compatible with numerous data formats. Bold frames indicate functionalities available in BOBA FRET. a)As defined in the introduction,
see also Gopich and Szabo [37]. b)Rayleigh criterion: two subpopulations are indistinguishable when their peak positions are separated by one
standard deviation or less [2]. c)See [9]. d)See [10,34,35]. e)See [5,8,25–28,32]. f)See [18,19]. g)Multivariate tests (MANOVA) are conceivable to assess
whether two or more outcome variables are significantly different at a time, for example the center and the width of a FRET distribution [66]. h)See
[12]. i) j)See [34]. k)See [14,64]. l)Typically used in fluorescence correlation spectroscopy (FCS) [78].
doi:10.1371/journal.pone.0084157.g001

Bootstrap-Based Single-Molecule FRET Analysis
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lc., Reno, NV, USA) attenuated to an intensity of ,5 mW using

neutral density filters (Laser2000 GmbH, Wessling, Germany).

Fluorophore emission was spectrally separated with dichroic

mirrors (AHF AG, Tübingen, Germany) and projected side-by-

side onto a CCD camera (Andor Technology plc., Belfast,

Northern Ireland). Photons were collected over 6 minutes at a

spatial resolution of 2566256 pixels and a time resolution of

100 ms.

Data Analysis
smFRET movies were analyzed with a home-built Matlab

software (Matlab version 8.20.701, license 49040, MathWorks,

Nattick, MA). Briefly, the local level of background noise was

determined and subtracted from dye emission profiles by creating

a sub-image (20620 pixel), followed by calculating the mean

photon count rate of the 20 darkest pixels within this area, a

method to locally determine background noise adapted from the

commonly used aperture photometry approach [3,59]. Fluores-

cence time traces were further corrected for leakage of Cy3

emission into the Cy5 channel (,7%, determined experimentally).

Emission time traces were manually selected for anticorrelation

and stable acceptor emission to calculate time-dependent apparent

FRET efficiencies FRET(t) as.

FRET(t) ~
PC(t)

Cy3exc
Cy5em

PC(t)
Cy3exc
Cy3em zPC(t)

Cy3exc
Cy5em

ð1Þ

where PC(t)
Cy3exc
Cy3em denotes the Cy3 photon count rate upon Cy3

excitation, and PC(t)
Cy3exc
Cy5em stands for Cy5 emission upon Cy3

excitation.

Characterization of the Thermodynamic Equilibrium
To characterize the thermodynamic equilibrium, n individual

FRET time traces FRET(t)i were binned to 1D histograms

hi(FRET) using a binning interval of 0.01 FRET units, yielding

m individual FRET bins. Subsequently, a normalized cumulated

Figure 2. Studying d3’EBS1*/IBS1* interaction by smFRET. The d3’EBS1* hairpin is labeled with Cy3 and tethered to the surface of a quartz
slide passivated with biotinylated BSA via a biotin-streptavidin linkage. Docking of a Cy5-IBS1* strand is characterized by the appearance of Cy5
fluorescence and a decrease in Cy3 emission due to FRET. Figure adapted from [70].
doi:10.1371/journal.pone.0084157.g002

Bootstrap-Based Single-Molecule FRET Analysis
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FRET histogram was created for all smFRET data recorded under

identical imaging conditions:

�hh(FRET) ~

Pn
i~1

hi(FRET)

Pn,m

i,j~1

hi(FRETj)

, i~1,2,:::,n and j~1,2,:::,m: ð2Þ

While individual time traces may be inconclusive in some cases

depending on the observation time, the conformational intercon-

version kinetics, the SNR and the complexity of the system,

distinct FRET distributions will develop in the cumulated FRET

histogram if discrete conformational species are present and

resolvable [3]. The relative occurrence of these states was then

quantified by thresholding or multiple Gaussian fitting (Eqs. (13)

and (S5)). In threshold-based analysis, the occurrence is quantified

by the integral over the area of the cumulated FRET histogram

that is assigned to one conformation. For this purpose, the

integration limits are defined as 2‘, th1, …, thn, +‘, where th

refers to a threshold. Without a loss of generality, we defined the

threshold value to distinguish two FRET distributions A and B as

(FRETA+FRETB)/2, which corresponds to the midpoint between

their centers FRETA and FRETB.

Characterization of the thermodynamic equilibrium was also

performed using dwell times. The underlying principle is that the

time the molecules spend in different discrete states can be directly

used to infer the position of the conformational equilibrium. For

d3’EBS1*/IBS1*, the docked fraction was used to calculate the

association constants Ka as described in the Supplementary

Information S1 (Eqs. (S1) and (S2)). The approaches used to

determine dwell times and subsequent processing steps are

outlined in the next section.

Figure 3. Summary of the different analytical approaches performed in conjunction with bootstrapping to extract thermodynamic
or kinetic parameters from time-binned smFRET data in this study. The respective input and output variables are indicated as well. Please
refer to the method section for a detailed mathematical description.
doi:10.1371/journal.pone.0084157.g003

Bootstrap-Based Single-Molecule FRET Analysis
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Characterization of Kinetics
Dwell times were determined from individual time traces

FRET(t)i via thresholding at (FRETA+FRETB)/2 or using the

freely available software vbFRET [25]. In short, vbFRET employs

a maximum evidence (ME) approach for model selection (the

number of FRET states L), followed by inferring the model

parameters (FRET values and transitions) by a combination of

variational Bayesian expectation maximization and hidden Mar-

kov modeling (HMM) [60]. As their duration was unknown, the

first and the last dwell time of each time trace were consistently

discarded. Additionally, a weighted k-means algorithm was

applied to transition density plots (TDP) created from the vbFRET

data to cluster the coordinates (FRETbefore transition; FRETafter

transition) into k subgroups and assigned each transition to one of the

k centers (, FRETbefore transition .k,,FRETafter transition .k). The

principle of k means clustering is illustrated in Figure S1 and is a

well-precedented approach to cluster data that has been applied to

heterogeneous HMM data previously [61,62].

For single-exponential state-to-state transitions occurring in a

stochastic manner with rate constants that do not vary over time, k

subgroups in the TDP correspond to L FRET states with k = L2 2

L. The corresponding dwell times are in this case exponentially

distributed [26]. Consequently, dwell times were binned to

histograms that then were used to calculate the normalized

cumulative probability distributions 1{normalized cumP, which

were in turn fitted to exponential decay functions to extract the

corresponding rate constants [11–13]. Here, single- and stretched

exponential decays were used to approximate simulated and

experimental data [14,34,63]:

1{normalized cumP~
XO

p~1

ap exp { t
�

tp

� �� �
, p~1,2,:::,O, ð3Þ

1{normalized cumP~ exp { t
�

t1=e

� �b
h i

, ð4Þ

where O denotes the number of exponential decays (single-

exponential: O = 1), ap is the amplitude, and tp the average dwell

time in the conformational state (decay constant). The decay time

t1/e refers to the time required for 1{normalized cumP to drop

to 1/e of its initial value and the stretching exponent b 0vbƒ1ð Þ
is a means to quantify the width of the rates distribution [64]. Both

tp and t1/e were used to determine the rate constants associated

with conformational changes as described in the Supplementary

Information S1 (Eqs. (S3) and (S4)).

Bootstrapping in Thermodynamic and Kinetic Analysis of
smFRET Data

Following the conventions in the field, the variability of the data

vector is assumed to be due to limited observation time,

experimental noise, instrumental aberrations (heterogeneous

broadening, vide supra), and irresolvable molecular motion [8,25].

Bootstrapping allows to characterize the data space of an ensemble

of smFRET time traces, and thus, to quantify cross-sample

variability and allowing for its application in statistical hypothesis

testing.

Bootstrap samples were built for a multi-sample problem given

by a random sample of n smFRET time traces, each of which is

composed of a discrete number of time bins B {FRET(t)1,

FRET(t)2, …, FRET(t)n}, observed from a completely unspecified

probability distribution F according to Efron [44]. The ensemble

of time trajectories were used to create the corresponding single

molecule FRET histograms {h1(FRET), h2(FRET), …, hn(FRET)}.

Resampling was then performed with replacement, where each

single-molecule time trace FRET(t)i has a probability of.

Bn

,X
n

Bn,

to be selected. Here, Bn denotes number of time bins of the nth

individual FRET time trace, and the whole expression can be

regarded as a weighting factor that accounts for differences in

length of individual time traces. Subsequently, bootstrap samples

(boba) were created from previously selected time traces FRET(t)�i
and FRET histograms h�i (FRET):

FRET(t)boba~ FRET(t)�1,FRET(t)�2, . . . ,FRET(t)�N
� �

,

i~1,2, . . . ,N
ð5Þ

h FRETð Þboba~ h�1 FRETð Þ,h�2 FRETð Þ, . . . ,h�N FRETð Þ
� �

,

i~1,2, . . . ,N
ð6Þ

where N was set to n to prevent pseudoreplication [45]. It should

be emphasized, that in the case of an equal length of the time

traces (constant observation time, no photobleaching etc.) the

probability simplifies to 1/n, i.e. each time trace and its

corresponding histogram has the same probability of being

selected (molecular weighting). Normalized cumulated FRET

histograms of the bootstrap-based ensemble were calculated as:

�hh(FRET)boba~

PN
i~1

h�i FRETð Þ

PN,m

i,j~1

h�i (FRETj)

, ð7Þ

using a Monte Carlo method to approximate the bootstrap

distribution with a random sample of the size N, the creation of

bootstrap samples was repeated M times, yielding an independent

random ensemble of bootstrap time traces

FRET(t)1
boba,FRET(t)2

boba, . . . ,FRET(t)M
boba, as well as the cor-

responding histograms

h(FRET)1
boba,h(FRET)2

boba, . . . ,h(FRET)M
boba and normalized

cumulated FRET histograms
�hh(FRET)1

boba,�hh(FRET)2
boba, . . . ,�hh(FRET)M

boba. The bootstrap

mean �XX boba and the corresponding standard deviation sboba were

estimated according to [50]:

sboba~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k~1

Xk{ �XXð Þ2

M{1

vuut , k~1,2, . . . ,M: ð8Þ

Here, X denotes the random parameter whose variability is to

be estimated, for example the relative occurrence of a certain

FRET population Al given by a certain state l in the thermody-

namic analysis.

The bootstrap distribution of Xboba~X FRET(t)boba,F̂F
� �

,

depends on both the random sample FRET(t)boba and the sample

Bootstrap-Based Single-Molecule FRET Analysis
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probability distribution F̂F . Xboba is expected to approximate the

real underlying distribution X FRET(t),Fð Þ well, including its

mean and standard deviation. In this study, we chose M = 100,

following the conventions from other fields [45], because a time-

consuming increase of M would yield only moderate improve-

ments (Figure S2) [44]. It is important to emphasize that the noise-

induced fluctuation around discrete values in smFRET time traces

is entirely time-independent (stochastic). This is not always the

case for time series, which would then require more sophisticated

mathematical treatments (Figure S3) [44,65].

Bootstrapping and Regression (Method 1)
To estimate the bootstrap mean �XX boba and the standard

deviation sboba of the parameter X, we defined a reasonably

general non-linear regression model:

yj~gj(a,xj)zej , j~1,2, . . . ,m ð9Þ

where g denotes a model function of the unknown parameter

vector a approximating the data vector y (outcome variable)

depending on x (input variable), both of which display the length

m. The corresponding residuals ej follow the unspecific probability

distribution ej , F. We fitted y based on a non-linear least square

regression to estimate a [66]:

âa : min
a

Xm

j~1

yj{gj a,xj

� �� �2
, j~1,2, . . . ,m, ð10Þ

which yields the sampling distribution of âa. Subsequently,

bootstrap samples were generated according to Eqs. (5)–(7) and

are henceforth referred to as yboba using the terminology of Eq. (9):

yboba,j~gj(a,xj)zej , j~1,2, . . . ,m: ð11Þ

Regression based on a non-linear least square criterion was

performed in an analogous manner as in Eq. (10):

âaboba : min
a

Xm

j~1

yboba,j{gj a,xj

� �� �2
, j~1,2, . . . ,m: ð12Þ

Applying this procedure on M independent bootstrap samples

yielded a random sample âa1
boba,âa2

boba, . . . ,âaM
boba that was used to

estimate �XX boba and sboba. These values were later used for analysis

of variance (ANOVA) [66].

The non-linear regression model was then applied to the

normalized cumulated 1D FRET histograms �hh(FRET) to quantify

the variability associated with the determination of thermody-

namic parameters. According to the conventions of the field,

different conformational states were quantified by multiple

Gaussian fitting:

g a,FRETð Þ~
XL

l~1

Al exp {
FRET{blð Þ2

2s2
l

( )
,

l~1,2, . . . ,L,

ð13Þ

where L denotes the number of states that was in our case

determined beforehand using a maximum evidence approach (vide

supra), even though other model selection approaches are

conceivable [8,25]. Al refers to the respective amplitudes, bl to

the center values, and sl to the width of the distribution. The

ensemble of model parameters constitute the parameter vector

a(Al ,bl ,sl). The resulting regression model Eq. (11) for each

bootstrap sample is defined as

�hh FRETð Þboba,j~gj(a,FRETj)zej , j~1,2, . . . ,m ð14Þ

and according to the non-linear least square fitting procedure

described in Eq. (12)

âaboba : min
a

Xm

j~1

�hh(FRET)boba,j{gj a,FRETj

� �h i2

,

j~1,2, . . . ,m

ð15Þ

we obtained the representation âak
boba(Al ,bl ,sl) of the sampling

distribution âaboba.

Second, we applied the bootstrap-based regression on 1 -

normalized cumP distributions to quantify the variability associated

with the analysis of kinetics (vide supra, ‘‘characterization of

kinetics’’). The appropriate model function based on Eq. (3) was

obtained through the maximum evidence algorithm, which

samples the model space as well as the parameter space to find

the most evident model and yields the number of components O

[25]:

g a,tð Þ~
XO

p~1

ap exp { t=tp

� �� 	
, p~1,2, . . . ,O ð16Þ

.

Thus, the regression model Eq. (11) for each bootstrap sample

was defined as:

1{normalized cumP(t)boba,j~gj(a,tj)zej , j~1,2, . . . ,m ð17Þ

and

âaboba : min
a

Xm

j~1

1{normalized cumP(t)boba,j{gj(a,tj)
h i2

,

j~1,2, . . . ,m

ð18Þ

Thus, we obtained the representation âak
boba(ap,tp) of the sampling

distribution âaboba. Considerations regarding method 1 are

summarized in Figure 3.

Bootstrapping and Averaging (Method 2)
The bootstrapping formalism described above was also applied

in the analysis of the thermodynamic equilibrium using dwell times

obtained by threshold- or HMM-based analysis of smFRET time

traces. Here, each time trace FRET(t)i is composed of a number of

m dwell times ti,j,l in a discrete state l. As a consequence, each

bootstrap sample FRET(t)boba yields an average dwell time in a

certain state.

Bootstrap-Based Single-Molecule FRET Analysis
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�ttboba,l~
1

N:m

XN,m

i,j~1

ti,j,l , ð19Þ

where i = 1, 2, …, N accounts for the time traces of N different

molecules and j = 1, 2, …, m for the dwell times in the state l.

Again, applying this procedure on M independent bootstrap

samples yielded a random sample âa1
boba,âa2

boba, . . . ,âaM
boba that was

used to estimate �XX boba and sboba of the thermodynamic

parameters. Here, we determined the relative occurrence of each

state, as well as the equilibrium constant Keq or, in the special case

of an intermolecular association of the type A+B « AB, the

binding constant Ka (Eqs. (S1) and (S2)). Considerations regarding

method 2 are summarized in Figure 3.

Bootstrapping and Integration (Method 3)
Finally, we applied bootstrapping on normalized cumulated

FRET histograms �hh(FRET) in conjunction with thresholding.

Here, each bootstrap sample �hh(FRET)boba yielded a threshold

value (FRETboba, A+FRETboba, B)/2 which was used to quantify the

relative occurrence of each FRET state as explained before. In an

analogous manner, applying this procedure on M independent

bootstrap samples allowed us to estimate �XX boba and sboba of the

relative occurrence of the FRET states. These values were later

used for analysis of variance (ANOVA) [66]. Considerations

regarding method 3 are summarized in Figure 3.

Resampling and fitting was done with the software package

BOBA FRET that is freely available via http://www.aci.uzh.ch/

rna/. Please refer to the Supplementary Information (Figures S5

and S6) for an outline of the BOBA FRET user interface and the

built-in routines for the analysis of thermodynamic and kinetic

data.

Results and Discussion

Robustness of the Software and Simulated Data
The robustness of the algorithm and its compatibility with

common approaches used for thermodynamic and kinetic analysis

was assessed using a simple intramolecular two-state system.

Normally distributed noise was added to simulated time traces that

were varied in length, separation of the FRET populations, ratio of

the rate constants associated with conformational interconversion,

and SNR (Figure S4).

Thermodynamic characterization of simulated smFRET

data. The relative population of FRET states was quantified

using four commonly used approaches: Gaussian fitting of

normalized cumulated FRET histograms (method 1), the ratio

of dwell times obtained by either thresholding or HMM (both

method 2) [25], and fractional integration after thresholding of

normalized cumulated FRET histograms (method 3), respective-

ly.

Figure 4A demonstrates that the estimation of the docked

fraction becomes more accurate at longer observation times. At

the same time, the bootstrap-estimated error scales inversely to the

length of time traces. This is expected, as longer time traces yield

more data points. Dwell-time-based methods perform poorly at

short observation times, because the data before the first transition

and preceding the last one are discarded. Importantly, the

bootstrapped variability faithfully covers the theoretical values.

Figure 4B shows the influence of FRET spacing (DFRET) on
�XX boba and sboba. In general, threshold-based approaches lead to a

systematic downward shift of the estimated mean and estimations

of cross-sample variability that do not cover the predicted values at

low DFRET values. Similarly, HMM does not reliably distinguish

the docked from the undocked state at DFRET ,0.1. In turn,

Gaussian fitting provides good estimations of the docked fraction,

albeit sboba is considerably more pronounced than for other

methods at low DFRET values. The same trend is observed with

decreasing SNR (Figure 4C). As DFRET and SNR diminish, the

two FRET distributions get closer, becoming indistinguishable in

extreme cases (Figure S4), explaining the bad performance of

thresholding and why this approach should not be employed

under these circumstances (Figure 1). HMM sets somewhat lower

standards to the separation of the FRET distributions, though, it

erroneously suggests equal population of both FRET states once it

breaks down. Finally, even though the results of the Gaussian fits

are biased by large error bars when the Rayleigh criterion is not

fulfilled, the means are in excellent agreement with the theoretical

values.

Figure 4D illustrates how the mean docked fraction and the

cross-sample variability depend on the ratio of rate constants.

Here, only the docking constant kdocking is increased, while

kundocking is kept constant at 0.005 s–1, leading to a decreased

average number of FRET transitions per time trace. As Gaussian

fitting does not rely on faithful determination of dwell times, it

provides an excellent estimation of the mean docked fraction and

low cross-sample variability. In turn, threshold-based histogram

analysis, HMM, and in particular threshold-based dwell time

analysis underestimate the docked fraction when the thermody-

namic equilibrium favors one conformation. Careful analysis of

the FRET distributions from simulated smFRET time traces

revealed that at SNR 3.5, the noise exceeds the threshold at times,

explaining issues associated with thresholding. This is particularly

problematic in the case of threshold-based dwell time analysis, as

the ratio of false and true transitions then becomes highly

unfavorable. In turn, when a conformational state is very scarcely

populated, the mean dwell time becomes shorter than the time

resolution and HMM fails to identify two FRET populations.

Figure 4E depicts the variation of �XX boba and sboba depending on

the width of a SNR distribution, i.e. assuming intermolecular

heterogeneity with regard to SNR within one dataset. For this

purpose, SNR was assumed to be normally distributed around 3.5

and the width of the Gaussian distribution was varied between 0

(no heterogeneity) and 4 (strong heterogeneity). Analysis of FRET

histograms and threshold-based dwell time analysis systematically

under-estimate the mean bound fraction by 3–5%, which is due to

the overlap between the two FRET states (vide supra). In turn,

HMM-based dwell time analysis yields mean values and cross-

sample variabilities that closely approach/cover the theoretical

value in the case of narrow SNR distributions. However, as more

low SNR time traces are included in the analysis, HMM perform

increasingly poorly (vide supra). Interestingly, regardless of the

method chosen for analysis, the estimation of the cross-sample

variability remains mostly unaffected by a change in the width of

the SNR distribution.

Kinetic characterization of simulated smFRET

data. When smFRET time traces display ‘‘discrete hops’’, i.e.

consist of piecewise constant signal, rate constants can be extracted

from dwell time histograms (Figure 1) [21,26]. Here, bootstrapping

is applied to dwell times obtained by thresholding and HMM,

followed by fitting the experimental data to a single-exponential

decay model (both method 1, Eq. (3), O = 1) [25].

Figure 5A demonstrates that cross-sample variability strongly

decreases when the observation time is increased from 50 s to

5000 s. Again, this is not surprising, as the average number of

dwell times per time trace is expected to be proportional to the

observation time, which leads to a more homogeneous behavior

Bootstrap-Based Single-Molecule FRET Analysis
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Figure 4. Robustness of different approaches for thermodynamic analysis of smFRET data performed in conjunction with
bootstrapping (method 1, 2 and 3, thermodynamics). Simulated data for a two-state system with standard parameters as defined in the
methods section. (A) Performance in response to trace length. As the number of data points increases from the left to the right, the mean docked
fraction is estimated more precisely, while cross-sample variability decreases. (B–C) Performance in response to FRET spacing and SNR. A systematic
downward bias is observed for threshold- and HMM-based approaches as the two FRET distributions show increasing overlap. Gaussian fitting
performs well as long as the Rayleigh criterion is fulfilled (DFRET .0.144). (D) Performance in response to the ratio of rate constants. Threshold-based
dwell time analysis easily breaks down, as noise in the docked state is mistaken for FRET transitions. At high kdocking/kundocking, Gaussian fitting and
thresholding of FRET histograms underestimate the docked fraction because of slight overlap between the two FRET distributions. HMM yields the
best results. (E) Performance in response to heterogeneously distributed SNR values. The results of the threshold-based analysis and Gaussian fitting
are mostly unaffected by changes in the SNR distribution width, while HMM breaks down at s(SNR) .2. All theoretical values were determined from
the input parameters used of the simulations. Error bars (red and green swaths) were estimated by bootstrapping and cover 99.7% of the
experimental variability (3sboba). Please refer to Figure S4 for representative simulated time traces and the text for further details.
doi:10.1371/journal.pone.0084157.g004
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between individual time traces. However, thresholding systemat-

ically underestimates the mean decay constant associated with

docking and undocking, an issue that noise is frequently mistaken

as a FRET transition at SNR = 3.5 (vide supra). This problem

persists in HMM-based analysis, though, the algorithm proves

more robust than thresholding.

Figure 5. Robustness of thresholding and HMM approaches to analyze smFRET data performed in conjunction with bootstrapping
(method 1, kinetics). Simulated data for a two-state system as defined in the methods section. (A) Performance in response to trace length. Cross-
sample variability decreases at long observation times, since the number of dwell times increases. (B) Performance in response to the ratio of rate
constants. Two problems bias threshold- and HMM-based analysis: (i) false FRET transitions stemming from noise and (ii) irresolvable FRET transitions.
(C–D) Performance in response to FRET spacing and SNR. A systematic downward bias is observed for threshold-based analysis as the two FRET
distributions show increasing overlap. The result of the HMM-based analysis depends on the ratio of false and true dwell times. (E) Performance in
response to heterogeneously distributed SNRs. The results of the threshold-based analysis and Gaussian fitting are mostly unaffected by changes in
the SNR distribution width. All theoretical values were determined from the input parameters used of the simulations. Error bars (red and green
swaths) correspond to the standard deviation estimated by bootstrapping (3sboba). Please refer to Figure S4 for representative simulated time traces
and the text for further details.
doi:10.1371/journal.pone.0084157.g005

Bootstrap-Based Single-Molecule FRET Analysis

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e84157



The dependence of �XX boba and sboba on the number of dwell

times is also depicted in Figure 5B, which shows the influence of

the ratio of rate constants on the outcome of the dwell time

analysis and the value of the bootstrapped error. Here, two effects

lead to an underestimation of the decay constants: (i) Due to the

(slight) overlap between the two FRET distributions at SNR = 3.5

there are short false dwell times stemming from noise (vide supra).

As the ratio of kdocking and kundocking increases the average number

of true dwell times per time trace decreases, while the average

number of noise-induced transitions is constant. Consequently,

dwell times determined from individual time traces become more

homogeneous as well, since false transitions are more and more

emphasized. (ii) When the thermodynamic equilibrium strongly

favors the docked state, brief excursions to the undocked state

become irresolvable (vide supra).

Figure 5C and Figure 5D show the influence of overlapping

FRET distributions on the outcome of the kinetic analysis. In

general, threshold-based analysis is strongly biased as the two

FRET distributions display increasing overlap. As DFRET and

SNR diminish, the two FRET distributions display increasing

overlap and the thresholding algorithm erroneously responds to

noise, explaining its bad performance. Furthermore, cross-sample

variability decreases, as each time trace (erroneously) yields a very

high number of dwell times. The behavior of the HMM algorithm

is not as easily explained: When the two FRET distributions

display very strong overlap, HMM-based analysis yields approx-

imately equal estimations for both for docking and undocking

decay constants. Under such sub-Rayleigh conditions, the FRET

distributions are essentially indistinguishable and the HMM

algorithm (which assumes Gaussian noise) will approximate each

time trace with two equally populated Gaussian distributions. As

the two FRET distributions become more distinct, HMM tends to

considerably overestimate the decay constants, which can be

explained by (i) less artefactual transitions, and (ii) more real

transitions. At the same time, however, not all transitions are

identified, generally yielding an overestimation of the time a

molecule dwells in the docked or undocked state. Further

improvement of the data quality finally leads to a correct

estimation at DFRET .0.3 and SNR .3.5 and at DFRET .0.4

and SNR .2.5. Importantly, throughout these simulations, the

bootstrapped standard deviation is not significantly affected. In

conclusion, HMM turns out to be more robust than thresholding

in response to increasing overlap, an observation that is in

excellent agreement with earlier reports [8].

Figure 5E shows how a variation of the SNR within the same

dataset affects the estimation of �XX boba and sboba. In general the

influence of a change in SNR distribution width on both

estimators is negligible. Threshold-based analysis consistently

under-estimates the values of the decay constants, which stems

from the fact that the default signal-to-noise ratio of 3.5 leads to a

considerable number of erroneously identified dwell times as

described above. In turn, the results of the HMM-based analysis

are in good agreements with the theoretical prediction.

Taken together, these simulations illustrate the importance of

selecting the correct method to analyze FRET time traces, as the

bootstrapping algorithm cannot make up for ill-defined input

values. However, when an appropriate approach is chosen, the

bootstrapped cross-sample variability generally covers the theo-

retically predicted mean. Future work is anticipated to develop

objective criteria to accept/reject a given model for thermody-

namic and kinetic analysis of time-binned smFRET data presented

herein.

Application of the Algorithm to Experimental Data
Time-binned smFRET data have been recorded and analyzed

from numerous biological systems varying in size and complexity.

Here, we studied an important element derived from the 5’ splice

site recognition complex of the yeast group II intron Sc.ai5c, the

sequence pair d3’EBS1*/IBS1* [51,53]. As depicted in Figure 2,

Cy3- d3’EBS1* strands were tethered to the surface of a quartz

slide passivated with biotinylated BSA, while Cy5-IBS1* molecules

were free in solution. Hence, docking/undocking dynamics could

be followed via FRET over several minutes and in the presence of

different divalent metal ions, as splice site formation has previously

been proposed to depend on the action of divalent metal ions [67].

FRET-typical anticorrelated changes in Cy3 and Cy5 emission

intensity were observed in all cases, followed by calculating the

FRET over time (Eq. (1)), which varied between zero (undocked)

and a high FRET value (docked) for all dynamic molecules

observed (Figure 6A). The fraction of statically undocked

molecules, i.e. molecules that displays only donor emission during

the time of observation, was 60% in the absence of M2+ and 20%

in the presence of Ni2+ or Co2+. This fraction of molecules either

displays a low association constant KA that cannot be correctly

resolved during the observation time and/or they correspond to a

photophysical artifact, for example a docked IBS1* molecule with

a non-emissive acceptor [42]. In fact, 15–55% of the total

population is usually ‘‘donor only’’ in smFRET studies using the

FRET pair Cy3 and Cy5, which has been attributed to Cy5 pre-

bleaching [68]. As a consequence, these molecules were excluded

from further analysis.

Divalent metal ions have a significant effect on the

thermodynamic equilibrium. Bootstrapping was performed

in conjunction with Gaussian fitting (method 1) and thresholding

(method 3) of normalized cumulated FRET histograms

(Figure 6B, C). The thermodynamic equilibrium was also

characterized using dwell times obtained by HMM (method 2)

[25]. Threshold-based analysis reveals weak inter-oligonucleotide

interaction in the absence of divalent metal ions (docked fraction:

7.862.6%, errors correspond to 3sboba unless specified differently,

Figure 6C and Table 1). Addition of 1 mM Ni2+ shifts the

equilibrium slightly (docked fraction: 16.363.3%), while an

average of 25.566.0% of all d3’EBS1* molecules are docked to

IBS1* at 1 mM Co2+. One-way analysis of variance (ANOVA)

using bootstrapped values was performed to test the hypothesis

that divalent metal ions affect or do not affect (null hypothesis) the

thermodynamic equilibrium [66]. As illustrated in Figure 7A, an

ANOVA makes the assumption that experimental values are

normally distributed around the sample mean and its outcome (P-

value) depends on the overlap integral between different distribu-

tions, which in turn depends on the separation of group means and

the widths of the sample distributions. P-values constitute a

strength of evidence against the null hypothesis and are typically

compared to arbitrary values (0.05, 0.01 and 0.001) according to

the conventions of the field [66]. The presence of divalent metal

ions not only significantly promotes the interaction of the two

oligonucleotides (P,0.001), the effect also differs significantly

between Ni2+ and Co2+ (P,0.001), the latter being much more

effective in increasing the docked fraction (Figure 7A). Similar

results were obtained by fitting the averaged 1D histograms to two

Gaussian distributions (Table 1), though the bootstrap-estimated

errors are generally higher (Figure 6C). However, this did not

strongly influence the significance of the effect (P,0.001, data not

shown). Thermodynamic analysis using dwell times (method 2)

leads to a systematic shift of the mean docked fraction towards

higher values and an increase of sboba (Table 1). Nevertheless, the

results of all methods are generally in good agreement (Table 1).
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Taken together, the results of histogram and dwell time analysis

are in good agreement and demonstrate the significant role of low

concentrations of divalent metal ions in shifting the thermody-

namic equilibrium of d3’EBS1* and IBS1*. However, a systematic

upward shift of the estimation of the docked fraction is observed

that is most pronounced in the absence of divalent metal ions.

These findings demonstrate that the dwell time approach has to be

employed with care, especially when the biomolecule is poorly

dynamic (60% of statically undocked molecules in the absence of

M2+, vide supra) and/or the number of dwell times is rather low,

two problems that are often linked. Indeed, the average number of

dwell times per time trace was less than 4, which contrast the

average value of the simulations carried out using standard

parameters (114, vide supra). As the first and the last dwell time were

not considered (vide supra), (i) much information was lost leading to

an increase in the bootstrapped error and (ii) the occurrence of the

more populated undocked state is underestimated translating into

higher values of the docked fraction. Bias of dwell-time based

approaches in the case of low numbers of dwell times can also be

seen in the simulations (Figure 5A).

Divalent metal ions significantly alter d3’EBS1*/IBS1*

interaction kinetics. d3’EBS1*/IBS1* dissociation has previ-

ously been shown to display considerable kinetic heterogeneity in

the presence of divalent metal ions [33,69,70]. As a consequence, a

stretched exponential decay (Eq. (4)) was fitted to dwell times in the

high FRET state, while a single-exponential decay (Eq. (3), O = 1)

was used to approximate the association kinetics. Dwell times were

determined from individual time traces using thresholding and

HMM, followed by clustering of transition density plots using a

weighted k-means algorithm (Figures 8A and S1) [5,25]. Then,

cumulative probability plots cumP were created from dwell times,

followed by fitting 1{normalized cumP plots to exponential

Figure 6. Representative time traces showing d3’EBS1*/IBS* interaction and thermodynamic analysis of FRET histograms (method
1). (A) Fluorophore emission over time reveals abrupt anticorrelated changes in intensity (upper graphs). Calculation of FRET time traces reveals
repetitive shuttling between a zero and a high FRET level (lower graphs). Based on the experimental design, these two states were assigned to the
undocked and the docked state (Figure 1). The red lines correspond to the discretization by the Hidden Markov Model (vbFRET [25]). (B) FRET
histograms built from the smFRET time traces shown in A. (C) Normalized cumulated FRET histograms built from individual time traces. The dashed
green line depicts the threshold between the two FRET states used to determine the docked/undocked fractions and the normalized results are
indicated. Solid green lines correspond to Gaussian approximation of the experimental data. The error (green swath) is the standard deviation
associated with amplitude and width of the Gaussian fit functions as estimated by bootstrapping (3sboba).
doi:10.1371/journal.pone.0084157.g006
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decay functions (Figure 8B–D). Dwell times were resampled via

bootstrapping (method 1) to estimate the variability of the decay

constants and the stretching parameter b.

HMM-based data on interstrand association is well described by

single-exponential fit in the absence of divalent metal ions (Eq. (4),

b = 0.99 data not shown) and the process was found to occur very

slowly (tdocking = 76.7622.2 s). Both the presence of Ni2+ and Co2+

accelerates this reaction, albeit to different extents (tdock-

ing = 28.466.1 s and 31.667.3 s). These metal-ion-specific effects

are highly significant as shown by one-way ANOVA (P,0.001,

Figure 7B). Importantly, the presence of divalent metal ions also

induces slight broadening of the distribution of observed associ-

ation rates (b(Ni2+) = 0.95, b(Co2+) = 0.95, data not shown), though

the experimental data could nonetheless be satisfactorily approx-

imated with the single-exponential fit (adjusted R2.0.98 in all

cases). d3’EBS1*/IBS1* dissociation is fast in the absence of

divalent cations (tundocking, 1/e = 7.061.9 s). Co2+ significantly

slows down the dissociation rate (tundocking, 1/e = 10.062.7 s,

P,0.001), while the presence of Ni2+ does not induce any

variation in the decay constant (tundocking, 1/e = 7.061.4 s,

Figure 7C). In agreement with previous observations, the

distributions of decay constants are severely broadened (b
,0.9 in all cases), underscoring the kinetic heterogeneity of the

undocking process. The results of the threshold-based analysis are

generally in excellent agreement with the values obtained from

fitting HMM-derived dwell times. However, the decay constant

associated with docking in the absence of divalent metal ions

display a difference of 70%. All results are summarized in Table 2.

These findings suggest that the presence of divalent metal ions

broadens the distribution of rate constants associated with

d3’EBS1*/IBS1* interaction. Based on the NMR structure and

metal ion titration studies of the d3’EBS1* hairpin in the absence

and presence of IBS1*, this effect has been assigned to

heterogeneous occupation of metal ion binding sites along the

Figure 7. Statistical hypothesis testing using thermodynamic and kinetic smFRET data. (A) Analysis of variance (ANOVA) of docked
fractions determined by thresholding of normalized cumulated FRET histograms (Figure 6C) reveals that Ni2+ and Co2+ shift the conformational
equilibrium significantly towards the docked state (*** P,0.001). The outcome of an ANOVA depends on the separation of the means (center values
of the Gaussians) and how far the values are spread out (variance, sboba

2, width of the Gaussians) and is given in form of a P-value, i.e. the probability
that the null hypothesis is true (here: divalent metal ions do not significantly affect the equilibrium). The stronger the overlap between different
groups, the greater the P-value. (B) Decay constants of the zero FRET state decrease in response to addition of Ni2+ or Co2+, leading to faster
association (P,0.001). Data obtained by HMM analysis and single-exponential fitting (Figure 8). (C) Decay constants of the high FRET state
significantly increase in the presence of Co2+ (P,0.001), which promotes stable association of d3’EBS1* and IBS1*. Data obtained by HMM analysis
and stretched exponential fitting (Figure 8). Error bars correspond to the bootstrapped standard deviation (3sboba).
doi:10.1371/journal.pone.0084157.g007

Table 1. Thermodynamic analysis of the d3’EBS1*/IBS1* equilibrium by different methods.

Imaging condition Fraction of docked d3’EBS1* (%) Ka (L mmol21)

Gaussian fitting (method 1) no M(II)(NO3)2 8.263.0 3.661.3

1 mM Ni(NO3)2 18.566.1 9.163.7

1 mM Co(NO3)2 28.665.9 16.164.6

Dwell time analysis (HMM, method 2) no M(II)(NO3)2 15.666.4 7.463.6

1 mM Ni(NO3)2 24.666.3 13.164.5

1 mM Co(NO3)2 33.368.4 20.167.5

Histogram thresholding (method 3) no M(II)(NO3)2 7.862.6 3.461.2

1 mM Ni(NO3)2 16.365.4 7.863.1

1 mM Co(NO3)2 25.566.0 13.764.5

The experimental error was estimated by bootstrapping and accounts for 99.7% of the variability observed (3sboba, ‘‘68–95–99.7 rule’’ [66]). Association constants Ka

were calculated from normalized cumulated FRET histograms or dwell times under the assumption that [IBS] = [IBS1*]tot as described in the Supplementary Information
S1 (Eqs. S1 and S2).
doi:10.1371/journal.pone.0084157.t001
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RNA [70]. Such kinetic heterogeneity is beyond the scope of

conventional kinetics and has frequently been observed in single-

molecule experiments [33,43]. In the context of this paper, kinetic

heterogeneity contrasts the basic assumption made in first-order

HMM, i.e. that state-to-state transitions are governed by single-

exponential kinetics. The ability to assign one FRET level to

multiple Markov transition rates is therefore important, an

important feature that is implemented in some HMM software

packages (vbFRET, CSSR) but not others (HaMMy) [8,25,27].

Fitting exponential decay models to bootstrapped dwell time

histograms also permitted to show that changes in both association

and dissociation kinetics are highly significant. Taken together,

Figure 8. Kinetic analysis of smFRET data (method 1). Docking is defined as the state transition from the undocked to the docked state, the
undocking process is defined as the inverse reaction. (A) Transition density plots of HMM data show two clusters corresponding to the docking and
the undocking reaction, respectively. According to the maximum evidence approach employed in vbFRET [25], a two-state system is therefore most
likely to produce the experimental data, which is in agreement with the experimental design. Raw data were grouped via the weighted k-means
clustering algorithm. Color code: occurrence in counts. (B–D) Dwell time histograms created from the normalized cumulative occurrence of dwell
times in the docked and the undocked state as determined by HMM. The green lines correspond to a single-exponential fit to the experimental data,
while the red lines represent a stretched exponential decay. Errors are indicated as a swath and correspond to 3sboba associated with the decay
constants.
doi:10.1371/journal.pone.0084157.g008

Table 2. Kinetic analysis of d3’EBS1*/IBS1* association and dissociation using different methods to extract dwell times.

Imaging condition
tdocking

a

(s)
kdocking

(s21 mM21)
t1/e,undocking

b

(s) b kundocking (s21)

Thresholding (method 1) no M(II)(NO3)2 44.9626.8 0.9360.60 7.663.0 0.7960.08 0.15660.090

1 mM Ni(NO3)2 31.767.3 1.2760.29 6.261.3 0.7960.04 0.17560.045

1 mM Co(NO3)2 31.767.9 1.2760.31 10.962.6 0.7560.04 0.11060.033

Hidden Markov modeling (method 1) no M(II)(NO3)2 76.7622.2 0.5360.15 7.062.0 0.7760.05 0.16860.057

1 mM Ni(NO3)2 28.466.1 1.4160.31 7.061.4 0.8860.05 0.15460.042

1 mM Co(NO3)2 33.267.2 1.2160.26 11.162.5 0.7860.04 0.10560.027

The experimental error was estimated by bootstrapping and accounts for 99.7% of the variability observed (1sboba for b, 3sboba in all other cases). Rate constants were
calculated as described in the Supplementary Information S1 (Eqs. (S3) and (S4)).
aSingle-exponential fit, bStretched exponential fit.
doi:10.1371/journal.pone.0084157.t002
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Ni2+ shifts the thermodynamic equilibrium chiefly by promoting

the association rate, while Co2+ plays a two-fold role as an

accelerator of docking and as an inhibitor of dissociation, probably

by mediating specific contacts between the two RNA fragments.

This difference is surprising, as both metal ions share very similar

ionic radii (Ni2+: 0.83 Å, Co2+: 0.79 Å) and have the same

preferred coordination geometry (octahedral, 6 ligands) [71]. Fits

of threshold- and HMM-based dwell time data were generally in

good agreement, except for docking in the absence of divalent

cations. Careful analysis of HMM data revealed that brief

excursions to the docked state were not always identified as such,

especially when very few and short binding event occurred in the

time trace (data not shown). Instead, the zero FRET distribution

was erroneously identified as two distinct states. This observation

contradicts the simulations and is most likely due to the fact that

noise in experimental time traces does not always follow a

stochastic Gaussian model (Figure S3). These findings suggests that

HMM approaches are not always the best choice for analyzing

smFRET data, in particular when one conformation largely

dominates the structural equilibrium and the occurrence of other

structures may be erroneously deemed statistically insignificant by

the HMM algorithm and non-Gaussian noise is fitted instead. As

binding events became more frequent and/or long-lasting, HMM

and thresholding were found to be in very good agreement.

Summary

Single-molecule FRET has led to valuable work on mechanistic

and structural aspects of numerous biological processes and has

blossomed in recent years. However, the observation time of single

fluorophore emission is rather limited, as dyes typically photo-

bleach upon emission of 106–107 photons (unpublished data

involving Cy3 and Cy5 emission in the presence of an enzymatic

oxygen scavenging system and 1 mM Trolox) [72]. Furthermore,

the detected signal, intrinsically weak in intensity, is further

broadened by various sources of additive noise and technical

issues. As a consequence, single molecules typically display

considerable cross-sample variability and can then not be treated

as biological replicates in thermodynamic and kinetic analyses, i.e.

rate and association constants cannot be inferred from individual

smFRET time traces. In such cases, smFRET relies on the

principle of ergodicity, according to which the properties of

ensembles involving billions of molecules be described by

combining a number of single molecules that is lower by several

orders of magnitude [73]. Analogously, bootstrapping computes

the distribution of the whole population, including measures of

variance, from a sample distribution of the size n [51].

Herschlag and co-workers have recently recognized the need for

statistical rigor in smFRET experiments and implemented an

HMM algorithm that assigned confidence intervals to rate

constants inferred from individual time traces [26,74]. Thus, one

can investigate whether kinetically distinct subspecies exist within

the sample, a long-standing topic of debate in the field of single-

molecule spectroscopy [33,43]. However, this approach sets very

high standards to the data, as the confidence interval scales

inversely to the number of transitions in the FRET time trace, and

simulated time traces in the original article were composed of up

to 5’000 dwell times [26]. Given the technical constraints outlined

above, these values may be difficult to reach experimentally. Here,

we have combined bootstrapping with different approaches

commonly used in thermodynamic and kinetic analysis of

smFRET data in order to estimate the variability associated with

the mean values. By performing statistical hypothesis testing using

generalized analysis of variance (ANOVA), we could show that

divalent metal ions have a statistically significant effect on both

thermodynamics and kinetics of d3’EBS1*/IBS1* interaction, a

pair of RNA sequences involved in group II intron splice site

recognition. Importantly, the fact that time traces were on average

composed of only 4–6 dwell times was not problematic, since the

overall data was treated as an ensemble according to the principle

of ergodicity. We therefore believe that this approach is widely

applicable and it is expected to make biological interpretations in

smFRET experiments more robust when it is combined with

statistical testing. Finally, it should be mentioned that the method

described herein is not limited to time-binned smFRET data. We

anticipate its implementation to analyze time traces stemming

from single photon detection. A further potential application is the

characterization of conformation and orientation dependent

fluorophore photophysics (blinking, spectral and spatial diffusion)

[75–77].

BOBA FRET was developed under Matlab version 8.20.701,

license 49040 (Mathworks, Nattick, MA) and is available at

http://www.aci.uzh.ch/rna/. Some of the data presented herein

are provided for download as well.

Supporting Information

Figure S1 k-means clustering to assign dwell times to
consistent FRET values for further processing steps. (A)

Transition density plot (TDP) built from a set of HMM-discretized

FRET time traces. The data points are iteratively assigned to one

of the two centers according to their distance. The center

coordinates are then recalculated according to the distances and

occurrences (weights) of the clustered data point. The weighted k-

mean centers are assumed to be definitive when the set of clustered

transition does not change after an additional round of iteration.

(B) Dwell time analysis of one simulated FRET time trace for a

two state system: DFRET = 0.04, FRETA = 0.48 (undocked state),

FRETB = 0.52 (docked state); SNR = 6.0 (width s = 0.143); obser-

vation time = 4000 s (magnified to highlight transitions); kdock-

ing = 0.04 s–1 (intramolecular reaction) kundocking = 0.1 s–1. Each of

the two FRET states detected in the trace are assigned to the

center of one of the two clusters and the corresponding dwell times

are subsequently used for thermodynamic or kinetic analysis.

(TIF)

Figure S2 Dependence of the bootstrapped estimated
cross-sample variability on the number of bootstrap
samples. (A) Gaussian fitting was performed in conjunction with

bootstrapping to analyze 100 simulated smFRET time traces

(N = 100, Eq. (8)). The number of bootstrap samples was varied

between 5 and 1000 (M, Eq. (9)). The histogram corresponds to

the normalized cumulated histogram built from all time traces (Eq.

(3)), solid lines depict Gaussian fit functions, dashed lines the

variability associated with the amplitude and the width (3sboba).

(B) Fraction of docked molecules and cross-sample variability,

data from panel (A). Error bars correspond to 3*sboba. (C)
Dependence of Dsboba on the number of bootstrap samples. Data

point correspond to the difference in 3*sboba of adjacent data

points and demonstrate that fluctuations become negligible when

more than 100 bootstrap samples are used. Parameters of the

simulation: FRETA = 0.3 (undocked state), FRETB = 0.7 (docked

state); SNR = 3.5; observation time = 100 s; kdocking = 0.1 s–1,

kundocking = 0.04 s–1.

(TIF)

Figure S3 Statistical nature of noise in smFRET data. (A)

Cy3 emission time trace, representative data. Surface-tethered

Cy3-tagged d3’EBS1* fluctuates around zero FRET in the
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absence of IBS1*. (B) FRET(t) versus FRET(t +100 ms) scatter plot

of the data shown in (A) develops as a two-dimensional Gaussian

distribution. Time-dependent noise would be expected to

accumulate on a diagonal. (C) The autocorrelation function of

the data in (A) clearly demonstrates that the noise of the time trace

shown in (A) is time-independent.

(TIF)

Figure S4 Representative data of simulated smFRET
time traces and normalized histograms, representative
data. Standard parameters of the simulation: FRETA = 0.3

(undocked state), FRETB = 0.7 (docked state); SNR = 3.5; observa-

tion time = 4000 s; kdocking = 0.1 s–1, kundocking = 0.04 s–1. (A) The

observation time is varied between 50 s and 4000 s (1 frame per

second). (B) The ratio of rate constants associated with ‘‘docking’’

and ‘‘undocking’’ is changed from 1 to 5000 (kundocking = 0.005 s–

1 = constant; 0.005 s–1# kdocking #25 s–1). (C) The spacing of the

centers of the FRET distributions is varied from 0.5 to 0.02. (D)
The signal-to-noise ratio is varied from 7 to 1.

(TIF)

Figure S5 Boba FRET user interface for thermodynam-
ic analysis. (A) Data import from ASCII files. Both smFRET

histogram files (first column: FRET, second column: occurrence

(counts); further columns are ignored) and dwell time files are

supported (first column: duration, second column: FRET before

transition, third column: FRET after transition). (B) Optional

determination of the optimal number of Gaussians by distribution

analysis [79,80]. (C) Setting the parameters for bootstrapping (N

and M, Eqs. (7) and (8) in the main text). (D) Setting the starting

guesses and boundaries of the Gaussian fits (Eq. (13) in the main

text). Alternatively, thresholding can be performed. (E) Original

normalized data and fitting results. Solid lines correspond to the fit

to the original data, dashed lines to the bootstrapped estimated

variability (highest and lowest values of the amplitude and the

width). (F) Goodness of fit to all bootstrapped histograms. All

fitting parameters (in the case of Gaussian fitting) and the relative

occurrences are automatically exported to text files for further

analysis.

(TIF)

Figure S6 Boba FRET user interface for dwell time
analysis. (A) Data import from ASCII files. File format: first

column, duration; second column, FRET before transition; third

column, FRET after transition. (B) Setting the parameters for

bootstrapping (N and M, Eqs. (7) and (8) in the main text). (C)

Setting the starting values and boundaries of the exponential decay

function to be used for fitting. Mono-, bi-, tri-, and tetraexponen-

tial decays functions are implemented, as well as stretched

exponential decays (Eqs. (3) and (4) in the main text). (D) Original

normalized data and fitting results. Solid lines correspond to the fit

to the original data, dashed lines to the bootstrapped estimated

variability (highest and lowest values for the decay constant). All

fitting parameters are automatically exported to text files for

further analysis.

(TIF)

Information S1 Supplementary Methods.
(DOC)

Acknowledgments

S.L.B.K. thanks Benjamin Schuler, University of Zurich, for helpful

suggestions regarding the manuscript, Susann Paulus, University of Zurich,

for proofreading the manuscript, and Dylan Muir, ETH Zurich, for

advising the implementation of fitting functions in Matlab. R.B. thanks

Christian G. Hübner, University of Lübeck, for helpful discussions
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