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Small-angle X-ray scattering (SAXS) is an experimental technique that allows

structural information on biomolecules in solution to be gathered. High-quality

SAXS profiles have typically been obtained by manual merging of scattering

profiles from different concentrations and exposure times. This procedure is

very subjective and results vary from user to user. Up to now, no robust

automatic procedure has been published to perform this step, preventing the

application of SAXS to high-throughput projects. Here, SAXS Merge, a fully

automated statistical method for merging SAXS profiles using Gaussian

processes, is presented. This method requires only the buffer-subtracted SAXS

profiles in a specific order. At the heart of its formulation is non-linear

interpolation using Gaussian processes, which provides a statement of the

problem that accounts for correlation in the data.
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1. Introduction

Small-angle X-ray scattering (SAXS) is a popular experiment

that allows low-resolution structural information on bio-

molecules in solution to be gathered (Jacques & Trewhella,

2010; Rambo & Tainer, 2010; Svergun, 2010). The SAXS

experiment allows for a wide variety of solution conditions

and a wide range of molecular sizes. Data collection usually

takes between seconds and minutes in a synchrotron facility,

or up to a few hours in an in-house X-ray source (Hura et al.,

2009).

The SAXS profile of a biomolecule is the subtraction of the

SAXS profile of the biomolecule in solution minus the SAXS

profile of the matching buffer. SAXS can be used to study a

wide variety of biomolecules, such as proteins, RNA or DNA,

and their complexes (Lipfert et al., 2009; Rambo & Tainer,

2010), under a variety of experimental conditions. Once this

profile is obtained, it can be used for a variety of modeling

tasks (Jacques & Trewhella, 2010; Rambo & Tainer, 2010;

Svergun, 2010; Schneidman-Duhovny et al., 2012). It is

essential to perform the radial averaging and buffer subtrac-

tion steps with high accuracy, as an error at that stage would

propagate later on.

The SAXS profile consists of a collection of momentum

transfer values (scattering vector) q, mean intensities IðqÞ and

standard deviations sðqÞ. Data collection for a given sample is

often repeated a number of times N to reduce the noise (or

standard deviation) in the SAXS profile by averaging. We

consider N as the number of points entering the calculation of

I and s, because the variation between repetitions is much

greater than that due to radial averaging of a single experi-

ment. Additionally, we suppose that the SAXS profiles were

collected at several sample concentrations and X-ray exposure

times. Both higher concentration and longer X-ray exposure

times can provide more information at higher scattering

angles. However, both conditions influence the resulting

SAXS profile. At higher concentrations, particle–particle

interactions can affect the slope of the very low angle part of

the SAXS profile (Glatter & Kratky, 1982). At longer expo-

sures, radiation damage can perturb any region of the SAXS

profile (Kuwamoto et al., 2004). To remove these unwanted

effects it is thus necessary to merge datasets from different

experimental conditions. It is the purpose of this method to

show that it is possible to do so automatically with minimal

user manipulation.

In this article we present the method behind the SAXS

Merge webserver, a tool presented by Spill et al. (2014) which

merges SAXS profiles in a robust, completely automated and

statistically principled way. While the method was tested on

SAXS datasets, it can also be applied for merging small-angle

neutron scattering (SANS) datasets, because the basic equa-

tions and methods are similar for the two techniques (Svergun,
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2010). SAXS Merge consists of five steps: data clean-up, profile

fitting using Gaussian processes, rescaling of each profile to a

common reference, classification and detection of incompa-

tible regions, and merging of the remaining data points.

The resulting object is a probability distribution function

describing the merged SAXS profile. Resulting data consist of

the experimental points that are compatible with the distri-

bution, a maximum posterior estimate of the SAXS profile

across all experiments along with a credible interval, and

estimates of a number of parameters such as the radius of

gyration and the Porod exponent.

2. Five steps for SAXS merging

SAXS Merge consists of five sequential steps: (i) data clean-up,

(ii) profile fitting using Gaussian processes, (iii) rescaling of

each profile to a common reference, (iv) classification and

detection of incompatible regions, and (v) merging of the

remaining data points. The first three steps are performed

separately on all input SAXS profiles. We now go through

each of these five steps sequentially.

2.1. Data clean-up

In this step, we remove from input SAXS profiles data

values for which the expected value is not significantly

different from zero. Let H0 be the null hypothesis of a data

point being purely noise-induced. Let H1 be the alternative

that it contains some signal. Then with a type-I error of �, we

can perform a one-sample one-sided t-test. Let IðqiÞ be a mean

intensity at momentum transfer qi, sðqiÞ the standard deviation

and N the number of repetitions of the experiment. Then the t

statistic is

t ¼
IðqiÞ

sðqiÞ=N1=2
; ð1Þ

and it has a Student t distribution with � = N � 1 degrees of

freedom. Since we are performing a large number of tests, we

apply the Bonferroni correction by defining �� ~��=M (M is the

total number of points in the SAXS profile) and choose ~�� =

0.05 by default. Normality of the noise is assumed, which is

reasonable if no parameter varies across the N replicates of an

experiment.

Points with no or zero standard deviation are discarded.

Optionally, points with much larger variances than average are

discarded as well. This option is proposed because SAXS

profiles have almost constant sðqiÞ values, except at extreme

values for qi in which case sðqiÞ diverges. This behaviour is an

experimental artefact, and it is reasonable to remove such

points. We therefore calculate the median �ss and discard points

which have sðqiÞ > 20�ss.

2.2. Profile fitting using Gaussian processes

We have a number of measurements for a SAXS profile,

summarized by three sufficient statistics: intensity IðqiÞ, stan-

dard deviation sðqiÞ and number of repetitions N independent

of i. The SAXS profile is modelled as the noisy measurement

of an unknown smooth function q 7! IðqÞ at M different data

points. A pointwise treatment of SAXS profiles fails because

of the high noise and correlation encountered in the

measurements. This pointwise treatment would lead to an

inconsistent classification [step (iv), data not shown]. It is

crucial to account for the correlation between successive

points to be able to detect outlier data points in a robust

manner. Thus, we first estimate the most probable SAXS

profile, which was measured with noise in a given SAXS

experiment.

This functional estimation is achieved with the help of the

theory of Gaussian processes. Gaussian process interpolation

(GPI) is a form of non-parametric fitting which has a

straightforward probabilistic interpretation and provides

confidence intervals on the functional estimate. Given some

data and an automatically adjusting smoothness penalty, GPI

provides the most probable function that fits the data. For

more information on Gaussian processes, see p. 535 of

MacKay (2003), x13.43 of O’Hagan & Forster (2004),

Rasmussen & Williams (2006) and http://gaussianprocess.org.

2.2.1. Likelihood. Define

I ¼

Iðq1Þ

..

.

IðqMÞ

0
B@

1
CA; S ¼ diag

s2ðq1Þ

..

.

s2ðqMÞ

0
B@

1
CA; I ¼

Iðq1Þ

..

.

IðqMÞ

0
B@

1
CA:

ð2Þ

S is the sample covariance matrix, assumed to be diagonal

given I . We treat I as a measurement with noise of the

function I at positions fqigi¼ 1;...;M so that I = I þ """ where """ is

a vector distributed as a multivariate normal distribution with

zero mean and covariance matrix R. We make the assumption

that R� �2S, where � is a proportionality constant that will be

estimated in the process. The assumption of a diagonal S

matrix is not entirely correct, as shown by Breidt et al. (2012).

However, correlations are expected to be non-zero only

between neighbouring annuli (i.e. q values), and the covar-

iance model we introduce next spans much further than that.

This assumption leads to the following likelihood,

pðIjI ; S;NÞ �
1

ð2�ÞM=2 �2S=N
�� ��1=2

� exp �ð1=2ÞðI� IÞ> �2S=N
� ��1

ðI� IÞ
h i

: ð3Þ

2.2.2. Prior. The likelihood alone does not constrain the

vector I , which is still free to vary. However, we believe that

the function I is smooth. This belief is modelled by assuming

that the vector I follows a multivariate normal distribution

with mean vector m and covariance matrix W which have been

carefully chosen (see below),

pðIjm;WÞ �
1

2�ð ÞM=2 Wj j1=2

� exp �ð1=2ÞðI �mÞ>W�1ðI �mÞ
� �

: ð4Þ
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Equivalently, one can say that the function I has a Gaussian

process prior distribution with prior covariance function w and

prior mean function m.

2.2.3. Choice of w. The covariance function determines the

smoothness of the Gaussian process. We choose the commonly

used squared exponential form, which yields continuous and

infinitely differentiable functions. Therefore, this approach is

in principle only usable on smooth SAXS profiles,

wðq; q 0Þ � �2 exp �
ðq� q 0Þ2

2�2

� �
: ð5Þ

The covariance function has two parameters: �2 is the variance

that the Gaussian process assigns in regions far from any data

point; � is the persistence length of the profile, in units of q.

With this covariance function, we define

wðqÞ �

wðq1; qÞ

..

.

wðqM; qÞ

0
BB@

1
CCA;

W �

wðq1; q1Þ � � � wðq1; qMÞ

..

. . .
. ..

.

wðqM; q1Þ � � � wðqM; qMÞ

0
BB@

1
CCA:

ð6Þ

2.2.4. Choice of m. Gaussian process interpolation is a non-

parametric approach. However, it is possible to incorporate

some prior knowledge in the form of a parametric mean

function, making the approach semi-parametric. In our case,

this way of proceeding has the advantage of providing an

estimate of the radius of gyration and other constants. At the

same time, the Gaussian process fits the signal in the data that

is unexplained by the parametric mean function so that even

high deviations from the prior mean function will be followed

by the Gaussian process.

At very low angle, the Guinier plot allows for an estimation

of the radius of gyration,

IðqÞ / exp �
R 2

G

3
q2

	 

: ð7Þ

For the higher-angle portion of the profile, Porod’s law is

IðqÞ / q�4: ð8Þ

Hammouda (2010) constructed a smooth function encom-

passing both behaviours, which we use as a starting point for m,

mðqÞ � Aþ
ðG=q sÞ exp �q2R 2

G=ð3� sÞ
� �

if q � q1;
D=q d if q > q1;

�
ð9Þ

q1 � ð1=RGÞ ðd� sÞð3� sÞ=2½ �
1=2; ð10Þ

D � Gq d�s
1 exp �q2

1R 2
G=ð3� sÞ

� �
: ð11Þ

This function has five parameters: A, G, RG, d and s. Some of

them can be fixed to certain values, generating a nested family

of parametric functions. For example, setting G = 0 reduces m

to a constant function. Setting d such that q1 is larger than any

input q-value reduces m to the Guinier model with a constant

offset. Finally, setting s = 0 reduces m to the simpler Guinier–

Porod model described in the first section of Hammouda

(2010) (up to a constant offset). Define

m � mðq1Þ � � �mðqMÞ
� �>

: ð12Þ

2.2.5. Hyperprior. The parameters arising in the prior mean

or covariance functions as well as � are collectively called

hyperparameters. In this hierarchical approach we can in turn

assign a prior to these hyperparameters. Since our knowledge

of their plausible values is rather vague, we give a Jeffreys

prior to �2 and a uniform prior to the other parameters.

However, for the sake of model comparison, parameters are

bounded within a finite interval to allow for a normalized

prior,

pð�2
Þ ¼

1

logð�max=�minÞ

1

�2
;

pðPiÞ ¼
1

P max
i � P min

i

Pi 2 fG;RG; d; s;A; �; �g:

ð13Þ

2.2.6. Fitting the SAXS profile. In order to find the best fit of

the SAXS profile, it is required to optimize the hyperpara-

meters. Defining H � ðG;RG; d; s;A; �; �; �Þ> and D �

ðI; S;NÞ, this optimization can be achieved by maximizing

pðHjDÞ with respect to H. With the help of Bayes’ rule, we

obtain

pðHjDÞ / pðIjS;N;HÞ pðHÞ; ð14Þ

where pðHÞ is given in equation (13) and pðIjH; S;NÞ is called

the marginal likelihood,

pðIjS;N;HÞ �
R

p IjI ; S;Nð ÞpðIjHÞ dI : ð15Þ

Since both the likelihood [equation (3)] and the prior [equa-

tion (4)] appearing in this integral are multivariate Gaussian

distributions, it is possible to give an analytical expression of

the marginal likelihood,

pðIjS;N;HÞ ¼
1

2�ð ÞM=2 Xj j1=2
exp �

1

2
""">X�1"""

	 

; ð16Þ

with """ � I�m and X � �2S=N þW.

2.2.7. Obtaining functional deviates. To make predictions

of I at a new point q we average over all possible values for H,

weighted by their posterior probability,

p½IðqÞjD� ¼
R

p½IðqÞjH;D� pðHjDÞ dH: ð17Þ

Let us examine the two terms appearing in this last integral.

The posterior probability density of the hyperparameters

pðHjDÞ was already encountered in equation (14).

The remaining term, pðIðqÞjH;DÞ, is the posterior predic-

tive probability density of a new noise-free observation given

the hyperparameters. It is called posterior predictive because

it allows new values of the SAXS profile given the noisy

observations to be predicted. Since the function I has a

Gaussian process prior and a multivariate normal likelihood,
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the posterior distribution for I is also a Gaussian process, with

mean function ÎI and covariance function �̂� 2
I given by

8q ÎIðqÞ ¼ mðqÞ þ wðqÞ>X�1
ðI�mÞ; ð18Þ

8q; q 0 �̂� 2
I ðq; q 0Þ ¼ wðq; q 0Þ � wðqÞ>X�1wðq 0Þ: ð19Þ

These equations arise from the fact that the vector

½IðqÞ; Iðq1Þ; . . . ; IðqMÞ�
> has a multivariate normal distribu-

tion with mean vector ½mðqÞ;mðq1Þ; . . . ;mðqMÞ�
> and covar-

iance matrix

wðq; qÞ wðqÞ>

wðqÞ X

	 

: ð20Þ

The distribution for IðqÞ then results from the conditioning of

the multivariate normal distribution on the observed values,

p½I ðqÞjH;D� ¼
1

ð2�Þ1=2 �̂�I ðq; qÞ
exp �

IðqÞ � ÎIðqÞ
h i2

�̂� 2
I ðq; qÞ

8><
>:

9>=
>;: ð21Þ

Note that it is also possible to generate random functional

deviates from the posterior predictive distribution. If k points

are wanted for each functional estimate, one can draw them

from the multivariate normal distribution with mean vector

and covariance matrix built, respectively, from the posterior

mean function ÎI and the posterior covariance function �̂� 2
I at

the values q1; . . . ; qk.

Although we could in principle perform the interpolation

by numerically integrating equation (17) for every value of q

needed, this approach would be costly in terms of computation

power. In fact, two integrals would need to be computed

numerically, equation (17) and also the normalization constant

of equation (14),

pðIjS;NÞ ¼
R

pðIjH; S;NÞ pðHÞ dH: ð22Þ

Luckily, as Gibbs & MacKay (1997) have pointed out, a

Laplace approximation of this last integral is a very good

approximation because hyperparameters are usually quite

peaked around their most probable value. This approach is

known as a type-II maximum likelihood (ML-II),

pðIjS;NÞ ’ pðIjĤH; S;NÞ pðĤHÞ�ĤH; ð23Þ

�ĤH ¼ ð2�ÞNp
@ 2E

@H2 ðI; ĤHÞ

����
����
�1=2

; ð24Þ

EðI;HÞ ¼ � log pðIjH; S;NÞ � log pðHÞ: ð25Þ

Np � dimðHÞ is the number of parameters. �ĤH is the phase

space volume in which values of H are acceptable given D, and

is usually small (Rasmussen & Williams, 2006). This procedure

has a considerable practical advantage, since optimization of

the hyperparameters then does not need to be performed for

each new IðqÞ but only once for this dataset. The optimization

itself has been described in x2.2.6.

Once the most probable H has been found, the Laplace

approximation gives the normalization constant of pðHjDÞ,

pðHjDÞ ’
pðIjH; S;NÞ pðHÞ

pðIjĤH; S;NÞ pðĤHÞ�ĤH
ð26Þ

With the additional hypothesis that p½IðqÞ;H;D� pðHjDÞ has

the same maximum for H as pðHjDÞ alone, equation (17)

becomes

p½IðqÞjD� ’ p½IðqÞjĤH;D� In þ AB�1
�� ���1=2

ð27Þ

A ¼ �
@ 2 log p½IðqÞjH;D�

@H2

� �
H¼ ĤH

ð28Þ

B ¼
@ 2EðI; ĤHÞ

@H2
: ð29Þ

It is also possible to compute the posterior mean and covar-

iance functions averaged over all values of H,

I
	

ðqÞ ’ ÎIðqÞ In þ A0B�1
�� ���1=2

ð30Þ

�
	

I
2
ðq; qÞ ’ �̂� 2

I ðq; qÞ In þ A00B�1
�� ���1=2

ð31Þ

A0 ¼ �
@ 2

@H2
log ÎIðqÞ

� �
H¼ ĤH

ð32Þ

A00 ¼ �
@ 2

@H2
log �̂� 2

I ðq; qÞ

� �
H¼ ĤH

ð33Þ

2.2.8. Choice between different mean functions via model
comparison. Sometimes, the information content of a SAXS

profile is so low that the number of parameters in the mean

function exceed the number of identifiable parameters of

the SAXS profile. In that case, overfitting occurs, and it is

preferrable to try a simpler mean function.

The previously presented mean function has five para-

meters. It has been noted that it generates a nested family of

parametric functions when some parameters are held fixed.

For globular proteins, s can be set to zero, reducing the

number of parameters to four. It is also possible to use simpler

functions. For example,

mGðqÞ ¼ AþG exp �
q2R 2

G

3

	 

ð34Þ

assumes the SAXS profile only contains the Guinier region;

it has three parameters. The flat function has one parameter:

mFðqÞ = A.

Fitting can be performed using a number of different mean

functions. The one that is the most plausible is then selected by

model comparison. Suppose M1 (M2) represents the model in

which the mean and covariance functions total N 1
p (N 2

p )

parameters, summarized in the parameter vector H1 (H2). The

best mean function is the one which has the highest Bayes

factor,
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pðM1jDÞ

pðM2jDÞ
¼

pðM1Þ

pðM2Þ

pðDjM1Þ

pðDjM2Þ
ð35Þ

¼ 1 �

R
pðDjH1;M1Þ pðH1jM1Þ dH1R
pðDjH2;M2Þ pðH2jM2Þ dH2

: ð36Þ

The Bayes factor is the ratio of the evidences if both models

have an equal a priori probability. As was just discussed, we

simplify this assumption further by performing a Laplace

approximation of the integral around the maximum posterior

set of parameters. This expansion yields

pðM1jDÞ

pðM2jDÞ
’

pðIjĤH1; S;N;M1Þ pðĤH1jM1Þ

pðIjĤH2; S;N;M2Þ pðĤH1jM2Þ
ð2�Þ1=2
� �N 1

p�N 2
p

�
@ 2E1

@H2
1

ðI; ĤH1Þ

����
����
�1=2. @ 2E2

@H2
2

ðI; ĤH2Þ

����
����
�1=2

: ð37Þ

Details of the calculation, along with gradient and hessian

of Hammouda’s Generalized Guinier Porod function

(Hammouda, 2010), are given in the supporting information.1

2.3. Rescaling

Suppose I 0 is given, and we want to find the scaling factor �
between I 0 and I 1, such that the distance between I 0 and �I 1

is minimized under some metric. We propose three similar

models to rescale the SAXS profiles: normal model, normal

model with constant offset, and lognormal model (using the

logs of the intensities rather than the intensities themselves).

In this section we assume I i are evaluated at M points, and

treat I i as a vector with M entries.

In the normal model we use the squared error loss

L � ðI 0 � �I 1Þ
>AðI 0 � �I 1Þ; ð38Þ

where A is a symmetric positive definite matrix. The risk is

R � EI1
EI0
ðI 0 � �I 1Þ

>AðI 0 � �I 1Þ
� � �

: ð39Þ

It can be put in the form

R ¼ ÎI 0 � �ÎI 1

� �>
A ÎI 0 � �ÎI 1

� �
þ tr A R0 þ �

2R1

� �� �
; ð40Þ

where Ri is the covariance matrix of I i . We would like to

choose � and A so that the risk is minimal,

@R

@�
¼ �2 ÎI 0 � �ÎI 1

� �>
A ÎI 1 þ 2� tr AR1ð Þ; ð41Þ

@R

@A
¼ ÎI 0 � �ÎI 1

� �
ÎI 0 � �ÎI 1

� �>
þ R0 þ �

2R1: ð42Þ

The second equation is a sum of positive matrices, and cannot

be zero. Therefore there is no choice of A that minimizes the

risk. We choose A � R�1
1 . Minimizing the first equation gives

the target value for �,

�̂� �
ÎI
>
1 R�1

1 ÎI 0

ÎI
>
1 R�1

1 ÎI 1 þM
: ð43Þ

The mean vectors are computed from equation (18) or (30);

the covariance matrices from equation (19) or (31).

The normal model with offset has loss function

L � I 0 � �ðI 1 þ cJÞ
� �>

R�1
1 I 0 � �ðI 1 þ cJÞ
� �

; ð44Þ

where J is a vector of ones. This model leads to the estimates

ĉc �
M ÎI>0 R�1

1 Jþ ÎI>1 R�1
1 ÎI 1ÎI

>
0 � Î 0I 0ÎI

>
1

� �
R�1

1 J

ÎI
>
1 R�1

1 ÎI 0J> � JÎI>0

� �
R�1

1 J
; ð45Þ

�̂� �
ÎI
>
1 R�1

1 ÎI 0

ÎI
>
1 R�1

1 ðÎI 1 þ ĉc JÞ þM
: ð46Þ

Finally the lognormal model has loss function

L � J log � � log
I 0

I 1

	 
� �>
R�1

1 J log � � log
I 0

I 1

	 
� �
; ð47Þ

which is defined because the intensities are expected to be

positive. The estimate for � is then

log �̂� �
log ÎI 0=ÎI 1

� �h i>
R�1

1 J

J>R�1
1 J

: ð48Þ

By default, all profiles are rescaled to the last profile, which

has usually the widest range.

2.4. Classification

To classify the SAXS profiles, it is necessary to rank them.

SAXS profiles are ranked as follows. For each profile i, we

compute Iið0Þ by fitting the Guinier region, and the median �ssi

of the errors. We use the median instead of the mean because

it is more robust to outliers. The profiles are then ranked by

ascending Iið0Þ=�ssi. This quantity is expected to increase with

either concentration or X-ray dose.

The first profile has the reference status on all intervals that

have not been discarded by the first step (i.e. as long as its

signal-to-noise ratio is sufficiently high). Let I be the candi-

date profile, and I ref the reference profile, for which we have

just derived a distribution in the fitting step. Because corre-

lation has been accounted for in the profile fitting step (x2.2.6),

pointwise statistical treatment is sufficient. The SAXS profiles

are then compared by using a two-sample two-sided t test and

regions of disagreement are determined.

We would like to know which measurements of IðqÞ and

I refðqÞ are compatible. We simply assume that each new

observation at scattering angle q is drawn from a normal

distribution with mean 	ðqÞ and standard deviation �expðqÞ,

where

	ðqÞ ¼ �̂�I
	

ðqÞ; ð49Þ

�2
expðqÞ ¼ �̂�

2�
	

I
2
ðqÞ: ð50Þ

I
	

ðqÞ and �
	

I ðqÞ are given by equations (30) and (31) and �̂� by

equations (48), (46) or (43). If no parameter averaging was

research papers

J. Synchrotron Rad. (2014). 21, 203–208 Yannick G. Spill et al. � SAXS Merge 207

1 Supporting information for this paper is available from the IUCr electronic
archives (Reference: CO5036).



performed, one can use I and �I instead of I
	

and �
	

I given by

equations (18) and (19), respectively.

We then perform Welch’s two-sample two-sided t-test at

confidence level � (Welch, 1947). Similar to x2.1, we compute

the t statistic

t ¼
j	ðqÞ � 	refðqÞj

� 2
expðqÞ=N þ � 2

exp;refðqÞ=Nref

h i1=2
ð51Þ

with N and Nref the number of repetitions of each experiment.

The degrees of freedom are given by the Satterthwaite

approximation,

� ¼
� 2

expðqÞ=N þ � 2
exp;refðqÞ=Nref

� �2

� 2
expðqÞ=N

� �2
=ðN � 1Þ þ � 2

exp;refðqiÞ=Nref

h i2

=ðNref � 1Þ

:

ð52Þ

If the p-value of this test is smaller than � then the functions

are locally different and IðqiÞ is discarded.

Usually, the second profile spans a wider q range, so that

comparison with the reference profile cannot be carried out at

higher angles. In such a case the remaining portion of the

second profile is marked as valid, and becomes the reference.

Next, the third profile is compared with the low-angle part of

the first profile and with the high-angle part of the second

profile. If the third profile spans a wider q range than the

second profile, its tail becomes the reference for the remaining

q values, and so on until all SAXS profiles have been

compared.

2.5. Merging

The merging step simply consists of pooling all compatible

data points, keeping track of their origins. Gaussian process

interpolation is then performed on this merged dataset. It can

then happen that some datasets overlap, leading to multiple

intensities for the same q values. In that case we discard the

points which have the largest standard deviations. This beha-

viour can be disabled.

3. Conclusion

In this article we have developed SAXS Merge, a fully auto-

mated method for merging SAXS profiles in a robust and

statistically principled way. It has been released as both a

software package and a webserver, as described by Spill et

al. (2014). The required input consists only of the buffer-

subtracted profile files in a three-column format (q, intensity,

standard deviation).

YGS thanks Riccardo Pellarin for discussion about Baye-

sian scoring. MN acknowledges funding from the European

Union (FP7-IDEAS-ERC 294809).

References

Breidt, F. J., Erciulescu, A. & van der Woerd, M. (2012). J. Time Ser.
Anal. 33, 704–717.

Gibbs, M. & MacKay, D. J. (1997). Efficient Implementation of
Gaussian Processes. Technical Report. Cavendish Laboratory,
Department of Physics, Cambridge University, UK.

Glatter, O. & Kratky, O. (1982). Small Angle X-ray Scattering. New
York: Academic Press.

Hammouda, B. (2010). J. Appl. Cryst. 43, 716–719.
Hura, G., Menon, A., Hammel, M., Rambo, R., Poole II, F.,

Tsutakawa, S., Jenney Jr, F., Classen, S., Frankel, K., Hopkins, R.,
Yang, S., Scott, J., Dillard, B., Adams, M. & Tainer, J. (2009). Nat.
Methods, 6, 606–612.

Jacques, D. A. & Trewhella, J. (2010). Protein Sci. 19, 642–657.
Kuwamoto, S., Akiyama, S. & Fujisawa, T. (2004). J. Synchrotron Rad.

11, 462–468.
Lipfert, J., Herschlag, D. & Doniach, S. (2009). Riboswitches, edited

by A. Serganov, Methods in Molecular Biology, Vol. 540, pp. 141–
159. Totowa: Humana Press.

MacKay, D. J. C. (2003). Information Theory, Inference and Learning
Algorithms, 1st ed. Cambridge University Press.

O’Hagan, A. & Forster, J. (2004). Bayesian Inference. London:
Arnold.

Rambo, R. P. & Tainer, J. A. (2010). Curr. Opin. Struct. Biol. 20, 128–
137.

Rasmussen, C. & Williams, C. (2006). Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning).
Cambridge: MIT Press.

Schneidman-Duhovny, D., Kim, S. & Sali, A. (2012). BMC Struct.
Biol. 12, 17.

Spill, Y. G., Kim, S. J., Schneidman-Duhovny, D., Russel, D., Webb, B.,
Sali, A. & Nilges, M. (2014). Submitted.

Svergun, D. I. (2010). Biol. Chem. 391, 737–743.
Welch, B. L. (1947). Biometrika, 34, 28–35.

research papers

208 Yannick G. Spill et al. � SAXS Merge J. Synchrotron Rad. (2014). 21, 203–208

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=co5036&bbid=BB16

