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Abstract

Psoriasis is a complex inflammatory disease resulting from the activation of T helper (Th) 1 and Th17 cells. Recent
evidence suggests that abnormal activation of Toll-like receptors (TLRs) 7, 8 and 9 contributes to the initiation and
maintenance of psoriasis. We have evaluated the effects of TLR antagonists on the gene expression profile in an
IL-23-induced skin inflammation model in mice. Psoriasis-like skin lesions were induced in C57BL/6 mice by
intradermal injection of IL-23 in the dorsum. Two TLR antagonists were compared: IMO-3100, an antagonist of TLRs
7 and 9, and IMO-8400, an antagonist of TLRs 7, 8 and 9, both of which previously have been shown to reduce
epidermal hyperplasia in this model. Skin gene expression profiles of IL-23-induced inflammation were compared
with or without TLR antagonist treatment. IL-23 injection resulted in alteration of 5100 gene probes (fold change = 2,
FDR < 0.05) including IL-17 pathways that are up-regulated in psoriasis vulgaris. Targeting TLRs 7, 8 and 9 with
IMO-8400 resulted in modulation of more than 2300 mRNAs while targeting TLRs 7 and 9 with IMO-3100 resulted in
modulation of more than 1900 mRNAs. Both agents strongly decreased IL-17A expression (>12-fold reduction),
normalized IL-17 induced genes such as beta-defensin and CXCL1, and normalized aberrant expression of keratin
16 (indicating epidermal hyperplasia). These results suggest that IL-23-driven inflammation in mouse skin may be
dependent on signaling mediated by TLRs 7, 8, and 9 and that these receptors represent novel therapeutic targets in
psoriasis vulgaris and other diseases with similar pathophysiology.
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Introduction

Psoriasis is a chronic inflammatory disease of the skin,
characterized by keratinocyte hyperplasia, dermal leukocyte
infiltration and dermal vascular enhancement [1]. It affects
approximately 2% of the population and almost 90% of
individuals suffer from the most common form known as plaque
psoriasis [2]. Immune cell infiltrates within psoriatic lesions
predominantly consist of CD3+ Th1, Th17 cells and CD11c+
dendritic cells (DCs) [3], [4], [5]. The cytokines produced by
these cells, such as tumor necrosis factor-a (TNFa), interferon-
y (IFNy), IL-17, IL-22, IL-23, IL-12 and IL-1B, create an
inflammatory cascade, contributing to the pathogenesis of
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psoriasis. This cytokine milieu further activates keratinocytes
and other resident cutaneous cells and induces abnormal
expression of antimicrobial peptides and other defensin genes
[6].

The critical role played by the IL23/Th17 axis in psoriasis has
been highlighted in recent studies [7],[8]. IL-23 is produced by
antigen presenting cells such as DCs, and in addition to driving
differentiation of naive CD4+ T cell precursors towards the
Th17 phenotype [9], IL-23 also stimulates survival and
expansion of Th17 populations [10]. In turn, IL-17 produced by
Th17 cells exerts direct regulatory control over the expression
of defensins, S100 family proteins, and LL-37 [11],[12], all of
which contribute to innate immune responses within skin.
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Lesional (LS) skin from humans exhibits higher expression of
IL-23 in keratinocytes and dermal tissue in comparison to non-
lesional

(NL) and normal skin [13],[14]. The high efficacy of
antibodies that target IL-23 and IL-17 further substantiates the
integral role these cytokines play in psoriasis [15]. Studies
performed in mice reveal IL-23-mediated inflammation to be
highly dependent upon production of IL-17 [16]. Cutaneous
IL-23 injections in mice result in epidermal hyperplasia and
parakeratosis, somewhat reminiscent of the human psoriasis
phenotype [17]. These observed changes make the IL-23
treated mouse a useful model for human skin inflammation.
Although morphological similarities are readily visible, the
extent to which there is genomic overlap between human
psoriasis and the IL-23 treated mouse model remains to be
elucidated.

Other mouse models with phenotypes that appear somewhat
analogous to human psoriasis have been analyzed on a
genomic level. A recent study performed novel transcriptomics-
based comparisons between human psoriasis and five different
psoriasiform mouse models [18]. Four transgenic models, K14-
AREG, K5-STAT3C, K5-TGFB1 and K5-Tie2, were investigated
in addition to an imiquimod (IMQ)-induced model. The K14-
AREG and K&5-STAT3C both manifested inflammatory
phenotypes via disruption of keratinocyte homeostasis, in turn
causing increased cytokine release and a profound
inflammatory response. Overexpression of human growth
factor amphiregulin and a constitutive activation of a signaling
component, Stat3, are the inciting events responsible for the
K14-AREG and K5-STAT3C, respectively [19], [20]. The K5-
Tie2 model, a result of a tyrosine kinase overexpression within
basal keratinocytes, and the K5-TGFB1 model, caused by
overexpression of a latent form of transforming growth factor
beta 1, both initiate inflammation via keratinocyte
dysregulation, in conjunction with other mechanisms such as
perturbance of the basement membrane and angiogenesis
[21], [22]. IMQ, an agonist of TLRs 7 and 8, causes T cell
infiltration and keratinocyte and vascular hyperplasia upon
topical application [23]. For comparison, a human psoriasis
transcriptome was extrapolated from differences in gene
expression between psoriatic LS and normal skin using whole-
genome microarray analysis. Transcriptomes for each mouse
model were acquired in similar fashion, using naive mouse skin
as a control to compare against each inflammatory phenotype.
Global correspondence of gene expression between human
psoriasis and all five mouse models was deemed significant
[18]. Further determination of ‘genomic fidelity’ between mouse
inflammatory models and human psoriasis will aid in the
identification of representative models of clinical psoriasis.
Reliable animal models for the human psoriasis phenotype are
valuable as the genetic and immunological underpinnings of
the disease have not yet been fully delineated and the search
for novel and improved treatments continues.

Potential therapeutic value has recently been demonstrated
by a study showing that antagonism of TLRs 7, 8 and 9
reduced IL-23-induced epidermal hyperplasia and IL-17
expression [24]. Additionally, data collected from a Phase 2
clinical trial has shown a TLR 7 and 9 antagonist reduced PASI
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scores in psoriasis patients [25]. TLRs are transmembrane
receptors that recognize pathogen-associated molecular
patterns (PAMPs) and mediate innate immune defense against
pathogens. TLRs 3, 7, 8 and 9 are all located in the endosome,
however, TLR3, TLR7 and TLR8 bind RNA while TLR9 binds
DNA containing unmethylated CG dinucleotides [26]. The
expression and activity of TLRs 7, 8 and 9 is regulated by
interactions between these receptors. Although TLR8 has been
deemed nonfunctional in mice, recent evidence suggests it
exerts regulatory control over other TLRs [27]. TLRs are mainly
expressed on immune cells such as antigen presenting cells,
with TLR7 and 9 on plasmacytoid DCs (pDCs) and B cells, and
TLR8 on myeloid DCs (mDCs). A positive feedback loop of
inflammation is created when these pDCs and mDCs are
activated by immune complexes consisting of self-nucleic acids
and LL-37 (cathelicidin), an antimicrobial peptide
overexpressed in psoriatic lesions [28], [29]. Interactions
between TLRs on DCs and immune complexes induces
production of type | IFN and facilitates T cell autoreactivity,
ultimately contributing to lesional tissue changes [30]. It
appears that TLR7- and TLR9-signaling stimulates I[L-23
secretion by DCs [31], [32], consequently up-regulating IL-17
production [33]. A TLR7/8 agonist used to treat skin
abnormalities such as cancerous lesions, IMQ, has been
shown to exacerbate psoriasis in patients [34]. A significant
role for TLRs in psoriasis pathogenesis [35] is further
supported by the finding that IL-23/IL-17 dependent features of
clinical psoriasis were induced by topical application of IMQ
[23].

In this study, we used a genome wide expression profile
analysis to characterize the IL-23-induced model of skin
inflammation. Comparison of global gene expression patterns
as well as individual pathway analysis allowed us to determine
how closely the IL-23-induced mouse model resembled the
human psoriasis phenotype. For completeness, five previously
analyzed mouse models [18] were included in comparison with
the IL-23-induced mouse model and human psoriasis.
Furthermore, treatment responses to two different TLR
antagonists were evaluated in the IL-23-induced mouse model.

Results

Significant up-regulation of inflammatory cytokines in
IL-23-induced inflammatory mouse model

Genetic changes associated with the IL-23-induced mouse
phenotype were elucidated by comparison of full-thickness
IL-23 injected skin with naive mouse skin using mouse4302
Affymetrix gene array. As expected, IL-17A mRNA was up-
regulated by 13 fold in the diseased model, in addition to other
IL-17-regulated genes in keratinocytes such as CXCL1 by 120-
fold, lipocalin (LCN2) by 53-fold, S100A8 by 36-fold and both
defensin (Defb4) and S100A9 by 30-fold. Innate cytokines were
also highly induced in the inflammatory model including IL-6,
which was up-regulated by 95-fold, and members of the IL-1
family, namely, IL1-F5, F6, F8, F9 and IL183, which increased
by 55-fold. Keratin 16 mRNA increased by approximately 12-
fold, which may directly correlate with the observed epidermal
hyperplasia in the IL-23 mouse model. Surprisingly, interferon-y
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mRNA exhibited an increase of almost 20-fold in addition to
downstream interferon-response genes: CXCL11 by 29-fold;
CXCL9 by 21-fold; and STAT1 by 4.7-fold. Using predefined
cut-off values of fold-change (FCH)>2 and false-discovery rate
(FDR)<0.05, we identified a total of 2346 up and 2762 down-
regulated probe-sets, which encoded 1726 and 1775 unique
genes, respectively. This profile of differentially regulated
genes, which we will herein refer to as the IL-23-induced
mouse transcriptome, can be found in Table S1.

Significant correspondence between IL-23-induced
mouse model of inflammation and human psoriasis

In order to compare how well the IL-23-induced model
represented human psoriasis, analysis was performed using
two previously published human psoriasis transcriptomes. One
of the transcriptomes, MAD3, is meta-analysis-derived and
based on differences in gene expression between LS and NL
skin across three independent profiling studies in humans [36].
The other human transcriptome, which will herein be referred to
as Gudjonsson(LSvsNormal), is based on differences in gene
expression between psoriasis lesions and normal healthy
control skin [37], and served as the representative human
psoriasis transcriptome in a previous comparative analyses
with five mouse models [18]. Analysis of concordance between
human and the IL-23-induced mouse model revealed 25% of
differentially expressed genes (DEGs) in the IL-23
transcriptome were present in MAD-3, compared to 15% in the
Gudjonsson(LSvsNormal) (Figure 1A). As choice of cut-offs
can influence the intersections between studies’ DEGs [38], we
used previously described methods [18] to compare human
and mouse transcriptomes using ranked gene lists. The 5000
most strongly up-regulated and 5000 most strongly down-
regulated genes were identified in the IL-23-induced mouse
transcriptome, and then ranked by estimated FCH between LS
and normal. For each rank k, the top k murine genes were
identified and the overlap between them and the murine
orthologs of the human transcriptomes was determined. There
was statistically significant overlap of top k up- and down-
regulated transcripts for the IL-23 mouse and both human
transcriptomes (Figure 1B, 1C). Comparison between the
human transcriptomes themselves showed high degree of
overlap, with psoriasis-increased ranked gene lists exhibiting
greater overlap than psoriasis-decreased (Figure 1D). Global
similarity between the IL-23-induced mouse model and human
psoriasis was further demonstrated with gene-set enrichment
analysis (GSEA). Using a previously described method [38],
ten previously published human psoriasis transcriptomes were
treated like individual gene sets in order to quantify the extent
to which up- and down-regulated genes correlated with ordered
DEGs from the IL-23-induced mouse (Table 1). Excluding the
methylation in psoriasis transcriptome, normalized enrichment
scores (NES) spanned 2.04 - 2.41 for up and -2.77 to -1.88 for
down-regulated DEGs in the IL-23-induced LS skin, indicating
significant enrichment of human psoriasis gene sets in the
IL-23-induced phenotype.
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Comparative analysis of 6 inflammatory mouse models
reveals differential expression of inflammatory
pathways

We applied the previously described method of gene rank
overlap analysis to five additional mouse models to evaluate
their correspondence with the human psoriasis phenotype as
represented by MAD3. In agreement with previously described
results [18], we found the K5-Tie2, IMQ, K14-AREG, K5-Stat3C
and K5-TGFbetal mouse models all shared expression
patterns with human psoriasis. Although the K14-AREG mouse
was the closest of the transgenic models to the human
phenotype, side by side comparison revealed the IL-23 mouse
resembled the expression patterns in human psoriasis with
greatest fidelity overall (Figure S1). Various core inflammatory
pathways that are represented in the overall gene set were
analyzed using GSEA (Figure 2). The
Gudjonsson(LSvsNormal) showed  slightly exaggerated
expression of IL-17 driven pathways in comparison to the
MAD3, which had overall greater correlation with the
expression profiles of all mouse models. The IL-23 mouse
model best matched the attenuated Th2 profile seen in human
psoriasis, whereas the amphiregulin model showed a slightly
more robust expression of Th2 pathways. Interestingly, the
IL-17 and TNF axes were well-represented in the IL-23 and
amphiregulin models, however, the IL-23 model displayed
stronger representation of IFNa induced genes, in better
accord with human phenotype. Additionally, genes regulated by
IL-22 in keratinocytes were also more correctly represented
within the IL-23 model. Overall, the IL-23 model best reflected
the cytokine-mediated processes found in human psoriasis,
although it clearly does not encompass the full psoriasis
genotype.

Treatment with TLR antagonists regulates IL-23-
induced gene expression

Immunological pathway modifications by two different TLR
antagonists were measured in the IL-23-induced mouse model,
which was chosen for its histological [24] and molecular
resemblance to human psoriasis. Skin lesions were induced in
mice by intradermal injection of IL-23 into the dorsum, later
followed by subcutaneous injections of either IMO-3100
(TLR7/9 antagonist) or IMO-8400 (TLR7/8/9 antagonist), distal
to the IL-23 injection site. Principal component analysis based
on the acquired microarray data illustrates that both TLR
antagonists exert significant effects on gene expression
patterns exhibited by the IL-23-induced mouse model.
Expression patterns exhibited by the IMO-3100 and the
IMO-8400 treated mice exhibited a shift towards the expression
profile of naive mice, with slightly more profound effect seen in
the IMO-8400 treated cohort (Figure 3A). Analysis of gene
overlap was accomplished by comparison of the naive mouse
gene expression profile with that of the IL-23-induced
phenotype both pre- and post-treatment with both TLR
antagonists. Using a cut-off level of FDR<0.05 and FCH>2, it
was found that IMO-3100 modulated 26% of the IL-23-
regulated genes, while the additive effect of TLR8 antagonism
in IMO-8400 was associated with 36% alteration of IL-23 genes
(Figure 3B). Ingenuity pathway analysis revealed that the
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Figure 1. Murine IL-23 induced model of inflammation corresponds to the human psoriasis phenotype: Statistically
significant overlap of DEGs and ranked gene lists. A. Venn diagrams illustrate relative overlap of orthologous DEGs between
human psoriasis and the IL-23-induced mouse model. There are 10% more common DEGs between the IL-23 mouse model and
MAD3 compared to that with Gudjonsson(LSvsNormal). B, C. Overlap between top k up- (red lines) and k down-regulated (dark
blues lines) genes in the IL-23 transcriptome and the murine orthologs of the human MAD3 and Gudjonsson(LSvsNormal)
transcriptomes, respectively, was estimated for k=1,...5000.. D. As a reference, the overlap between both human transcriptomes
was analyzed in similar fashion. Statistically significant overlap is seen for all three depictions of ranked gene overlap, as the light
blue regions represent degree of overlap expected under the null hypothesis of random overlap.

doi: 10.1371/journal.pone.0084634.g001
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Table 1. GSEA analysis for the IL23-induced phenotype in
mice versus psoriasis transcriptomes in human.

Psoriasis
Reference
Nes cs’

Transcriptomes Up Down
NES® Size ES

Gudjonsson 09
(LSvsNL)
Gudjonsson '10
(LSvsNormal)

425 071 241 214 -0.58 -2.43 0.65 [52]

482 0.70 243 336 -0.59 -2.54 0.64 [37]

MAD5 579 0.68 237 390 -0.58 -2.57 0.63 [36]
MAD3 899 0.66 2.33 608 -0.59 -2.70 0.63 [36]
Yao'08 820 0.68 240 730 -0.55 -2.59 0.62 [40]

Suérez-Farifias 10 500 0.67 2.34 633 -0.52 -243 0.60 [38]

NGS (Jabbari/
895 0.62 215 748 -0.58 -2.77 0.60 [53]

SF’12)

Suérez-Farifias + 1362 0.58 2.04 949 -0.53 -2.54 0.55 [39]
Zhou ‘03 220 0.68 227 344 -042 -1.88 0.55 [54]
Methylation in

Psoriasis 379 -0.65 -2.22 457 0.34 1.55 -0.49 [55]

(LSvsNormal)

Size indicates the number of genes in each transcriptome

1 ES = enrichment score

2 NES = normalized enrichment score

3 CS = connectivity core, calculated as %2(ES(Up)-ES(Down))
doi: 10.1371/journal.pone.0084634.t001

additional antagonism of TLR8 with IMO-8400 was linked to
several canonical pathways including immune cell trafficking,
inflammatory response and antimicrobial response pathways.
Upstream regulators were largely inflammatory in nature,
including gene networks involved in both innate and adaptive
immune responses as well as IFNy signaling and components
of the IL-17 pathway such as IL-21. A nearly inverse pattern of
gene expression for IL-23-injected mice and naive mice is
portrayed by the heatmap in Figure 3C. The disparity in gene
expression between disease and naive state is visibly
reconciled to some extent by treatment with TLR antagonists,
evidenced by post-treatment expression profiles bearing
greater resemblance to the naive rather than the inflammatory
state (Figure 3C). TLR antagonist treatment resulted in an
average FCH of 1.94 towards recovery for genes altered as a
result of IL-23-induced inflammation, with a 53.21%
improvement seen with administration of IMO-8400. Overall,
52% and 39% of genes in the IL-23-induced phenotype
decreased by >50% in the IMO-8400 and IMO-3100 groups,
respectively. Interestingly, genes shared between the IL-23-
mouse and the MAD3 human psoriasis transcriptomes
experienced 10 points higher improvement compared with
genes unique to the mouse model (62.26% vs. 51.6%) as seen
in Figure 3D, upper panel. A FCH towards recovery of 2.32
was observed for human and mouse orthologous genes vs.
1.89 for purely mouse genes (Figure 3D, lower panel).
Collectively, these results indicate TLR7, 8, and 9 antagonism
partially resolves IL-23-induced inflammation.
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Suppression of inflammatory pathways by TLR
antagonism

Fold changes in inflammatory genes highly implicated in
psoriasis pathogenesis determined by microarray are displayed
for the IL-23-induced mouse model as well as treatment groups
in Table 2. Treatment with each TLR antagonist significantly
suppressed many of the inflammatory genes, with substantial
reduction in IL-17A mRNA (>12-fold) as well as B-defensin,
CXCL1, CXCL2, CXCL3, LCN2, and other IL-17 pathway
molecules, including the IL-21 receptor and IL-12Rp1.
Additionally, IL-6, an up-stream regulator of Th17 development,
was reduced by 98-fold along with IFNy, which decreased by 8-
fold and 11.5-fold with IMO-3100 and IMO-8400, respectively.
IFNy pathway genes like CXCL9 and IL-12RB1 were also
reduced. IL1 decreased 6-fold with IMO-3100 and 12-fold with
IMO-8400 and decline in NFkB mRNA was observed. Several
cytokine receptors that signal though CD132 and JAK3 were
down-regulated. The results of GSEA analysis, which
evaluated global treatment effects for the entire set of genes,
yielded  similar  results. Down-regulation of genes
overexpressed in keratinocytes cultured with IL-17, IFNy and
IL1 as well as the JAK-Stat pathway and IL-23, IL-12 and IL-27
canonical pathways following IMO-8400 treatment (Table 3).
Interestingly, the type | diabetes pathway was found to be
down-regulated following treatment as well.

Discussion

While several different inflammatory models in mouse skin
have shown some features that are consistent with human
psoriasis, it is clear that not all features of disease are
represented within the available models. At present, psoriasis
is best defined by the array of genes that are dysregulated in
diseased tissue, identified by comparison of LS to NL tissue
across multiple studies and with a meta-analysis of different
studies consistently showing greater than 1000 genes,
collectively defining the psoriasis transcriptome [36]. The study
with the largest number of samples, Suarez-Farifas et al. [39],
has detected more than 4000 genes that are dysregulated by
criteria of greater than 2 FCH and a FDR <0.05. In this study,
we first sought to determine the extent by which the IL-23
model reflects molecular and inflammatory pathways
expressed in human psoriasis and secondly, to determine how
this model relates to other inflammatory models where
transcriptome profiles have been made available. Within this
context, the key inflammatory pathways in psoriasis, such as
IL-23 stimulated activation of IL-17 and downstream genes, are
well represented. Also, the IL-23 model produces the least
amount of Th2 activation, which in conjunction with Th17, Th22
and IFNy are the defining elements of inflammation in
psoriasis. High expression of IFNa related genes in LS skin has
further implicated an important role for Type | IFNs in
pathogenesis of psoriasis [40], [41].

TLR antagonism may represent a strategy for regulating the
complex inflammatory environment in skin caused by psoriasis.
A previously published study by Jiang et al., examined a TLRY7,
8, and 9 antagonist in the IL-23 mouse model, focusing on
psoriasis related cytokines as measured by RT-PCR [24]. The
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Figure 2. Pathways enriched in human psoriasis and inflammatory mouse model transcriptomes with GSEA. Degree of
enrichment of key inflammatory pathways implicated in psoriasis pathogenesis compared in human and murine transcriptomes is
portrayed by the bubbles representing normalized enrichment score (NES) and false discovery rate (FDR) values. Six inflammatory
mouse model transcriptomes; IL-23-induced (IL-23), K14-AREG (AREG for both ear and tail), K5-Stat3c (Stat3), K5Tie2 (Tie-2), K5-
TGFB1 (TGFB) and IMQ as well as two human psoriasis transcriptomes; MAD3 and Gudjonsson(LSvsNormal), were queried with
sets of cytokine-treated keratinocyte, monocyte, fibroblast, inflammatory DC and reconstituted human epidermis (RHE) pathways.
doi: 10.1371/journal.pone.0084634.g002
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Figure 3
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Figure 3. IL-23-induced gene expression profile shifts towards recovery with TLR antagonism. A. Differences in gene
expression in naive, IL-23, IL-23+IMO-3100 and IL-23+IMO-8400 treated mice were analyzed using principal component analysis.
Partial normalization of gene expression patterns in the IL-23-induced mouse model was seen following treatment with TLR
antagonists, with IMO-8400 exerting a slightly greater effect. B. IMO-8400 modulated 10% more of the IL-23 altered genes
compared to IMO-3100, indicating additive effects of TLR8 antagonism in addition to TLR7 and 9. C. Shifts in gene expression
profiles for IL-23 treated mice towards naive mice following treatment with TLR antagonists are displayed in heatmap. Of the genes
that shifted towards recovery with TLR antagonism, a greater proportion consisted of shared human and mouse genes rather than
those that were unique murine genes.

doi: 10.1371/journal.pone.0084634.g003
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Table 2. Selected list of murine genes orthologous to
inflammatory genes implicated in psoriasis pathogenesis
that are regulated by TLR antagonists.

Fold Fold Fold
ChangelL-23 ChangelL-23 Changell-23

Symbol Description +Saline +IMO-3100 +IMO-8400

Defb3  defensin beta 3 1012.96 -20.76 -16.62
chemokine (C-X-C

Cxcl1 120.8 -18.62 -7.54
motif) ligand 1
chemokine (C-X-C

Cxcl1 109.08 -15.37 -6.50
motif) ligand 1

16 interleukin 6 94.80 -98.77 -98.23

l11b interleukin 1 beta 55.03 -5.94 -12.11

Lcn2 lipocalin 2 53.35 -5.83 -3.87
chemokine (C-X-C

Cxcl1 e 47.74 -13.51 -7.05
motif) ligand 1
S$100 calcium binding

S$100a8 protein A8 (calgranulin  36.88 -3.33 -2.11
A)

Defb4  defensin beta 4 30.65 -20.58 -29.92
S$100 calcium binding

$100a9 protein A9 (calgranulin  30.44 -2.18! -1.502
B)
chemokine (C-X-C

Cxcl11 e 29.81 -29.61 -28.68
motif) ligand 11

1124 interleukin 24 27.08 -27.08 -27.08
interleukin 1 family,

11fé 23.85 -1.102 =22
member 6
chemokine (C-X-C

Cxcl9 . 21.68 -16.00 -20.66
motif) ligand 9

Ifng interferon gamma 19.77 -8.45 -11.57

Tbx21  T-box 21 (T-bet) 13.66 -2.45 -1.76"
chemokine (C-X-C

Cxcl10 e 13.08 -2.50 -2.98
motif) ligand 10

l17a interleukin 17A 12.89 -12.84 -12.55

Krt16 keratin 16 11.92 -3.23 -2.07
tumor necrosis factor

Tnfsf10 (ligand) superfamily, 8.69 -5.44 -7.95
member 10
chemokine (C-X-C

Cxcl2 8.05 -5.10 -7.44
motif) ligand 2
chemokine (C-C motif)

Ccr2 7.26 -13.83 -13.84
receptor 2
interleukin 1 family,

11f8 6.97 1.042 -1.042
member 8
chemokine (C-C motif)

Ccr2 6.41 -4.97 -6.35
receptor 2
signal transducer and

Stat1 activator of 4.69 -1.872 -3.60
transcription 1
interleukin 1 family,

11f9 y 3.81 -1.362 -1.212
member 9
interleukin 1 family,

11f5 3.53 -1.062 1.022
member 5 (delta)

121r interleukin 21 receptor  3.06 -2.47 -2.85
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Table 2 (continued).

Fold Fold Fold
ChangelL-23 ChangelL-23 ChangellL-23
Symbol Description +Saline +IMO-3100 +IMO-8400
chemokine (C-X-C 5 5
Cxcr3 . 3.04 -1.80 -1.77
motif) receptor 3
interleukin 1 family,
11f5 Y 2.46 1.012 1.082

member 5 (delta)

1 FDR is not statistically significant
2 FCH does not reach significance threshold
doi: 10.1371/journal.pone.0084634.t002

Table 3. GSEA analysis for the effect of IMO-8400 over
canonical pathways (C2 collection) and psoriasis related
pathways (a selection of the significant pathways is

presented).

MolSigDb C2 collection N ES NES FDR
IL-23 Pathway (PID) 31 -0.84 -257 <10
Cytokine Receptor Interaction (KEGG) 191 -0.61 -2.54 <104
Cell Cycle (Reactome) 344 -0.55 -2.46 <104
IL-12 Pathway (PID) 56 -0.68 -2.35 <10
Graft Versus Host Disease (KEGG) 23 -0.80 -2.24 4.94E-05
IL-27 Pathway (PID) 23 -0.77 -2.23 4.09E-05
Type | Diabetes Mellitus (KEGG) 24 -0.75 -2.17 1.01E-04
Natural Killer Cell Mediated Cytotoxicity (KEGG) 93 -0.58 -2.15 3.23E-04
Allograft Rejection (KEGG) 22 -0.76 -2.12 5.30E-04
Chemokine Signaling Pathway (KEGG) 161 -0.50 -2.04 0.0017
JAK-STAT Signaling Pathway (KEGG) 113 -0.52 -2.02 0.0019
Interferon Signaling (Reactome) 117 -0.51 -2.00 0.0023
Toll Endogenous Pathway (PID) 23 -0.70 -1.99 0.0029
Toll-Like Receptor Signaling Pathway (KEGG) 81 -0.53 -1.96 0.0046
STAT3 Pathway (ST) 11 -0.81 -1.90 0.0076
IL-6 Pathway (PID) 44 -0.53 -1.76 0.0293
Psoriasis-related gene sets

Genes down-regulated after 2 weeks of IL-17 4
antagonist Ixekinumab 675 057 270 <10
Up-regulated by IFNyin Normal Skin (JID, 2012) 722 -0.53 -2.54 <10
KC IL-17 Up 41 -0.72 -2.36 <10
RHE IFNy Up 178 -0.56 -2.33 <104
Fibroblasts IL-17 Up 37 -0.73 -2.29 <104
Additive IL-17 & IL-22 KC 19 -0.74 -2.02 3.51x104
Synergistic IL-17 & IL-22 KC 26 -0.67 -2.00 4.05x10%
KC IFNa Up 24 069 -1.98 6.19x104
Additive IL-17 & TNFa in KC 165 -0.43 -1.76 0.0062
Synergistic IL-17 & TNFa in KC 128 -0.38 -1.51 0.0386
KC TNF Up 460 -0.31 -1.42 0.0633
KC IFNyUp 872 -0.28 -1.33 0.0957

N = number of genes detected in each pathway
doi: 10.1371/journal.pone.0084634.t003

transcripts identified in that paper confirmed many of the
cytokines that were detected in this study using gene array

analysis and thus additional

confirmation was

rendered
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unnecessary. The data presented here extends the analysis
initiated by Jiang et al., by measuring the entire IL-23 mouse
transcriptome, including the regulation of many genes under
cytokine-driven pathways. Use of gene arrays has permitted a
deeper analysis of the inflammatory pathways that may be
regulated by TLRs. An earlier study that indicated that TLR7
may be involved in psoriasis pathogenesis made the
observation that application of IMQ could induce psoriatic
lesions at sites of inflammation. The mechanism of this was
suggested to be through activation of TLR7 on pDCs, leading
to increased production of IFNs, with downstream effects on
several inflammatory pathways regulated by IFN-induced
genes [42]. pDCs also express TLR9, which although differs in
which ligands it binds, shares a similar mode of endosomal
transport and signaling pathway with TLR7 [43]. Hence, if
activated, TLR9 might play a similar pathogenic role in psoriatic
inflammation. In contrast, TLR8 is expressed mainly by mDCs
[44], which are the dominant cell population in psoriasis lesions
[45], and where activation of this TLR would be predicted to
activate NFkB responsive pathways [46], which may include
IL-23 production from DCs. Evidence that TLR7, 8 and 9 may
participate in psoriasis pathogenesis is also suggested by the
ability of LL-37-RNA and DNA complexes to activate pDCs and
mDCs. Normally, the interaction between TLRs with
endocytosed viral nucleic acids results in activation of mDCs
and pDCs. In psoriasis, self-DNA and -RNA may be bound by
LL-37, conferring protection against extracellular degradation
and consequently allowing access to endosomal TLRs.
Complexed DNA and LL-37 activates pDCs via TLR9, resulting
in IFNa secretion [29]. Alternatively, self-RNA and cathelicidin
complexes are also able to directly stimulate pDCs by binding
to TLRY7 and can also trigger mDCs through activation of TLR8
[28].

Another consideration is that of the role of TLRs in
keratinocytes. In addition to producing elevated levels of
cathelicidin, keratinocytes in psoriatic LS skin have been found
to express significantly higher levels of TLR9 mRNA in
comparison to NL psoriatic skin or that of atopic dermatitis.
Additionally, when cultured with LL-37, keratinocytes further
increased expression of TLR9 mRNA in vitro [47]. Activation of
TLRS3, 4, 5, and 9 in keratinocytes with various PAMPs has led
to nuclear translocation of subunit p65 of NFkB in vitro [46].
The observed TLR activation in keratinocytes and subsequent
triggering of NFkB, offers a potential mechanism by which
keratinocytes may participate in IL-17 and TNF regulated
inflammatory pathways. Keratinocytes respond to IL-17 with an
up-regulation of neutrophil-attracting chemokines as well as
CCL20, which interacts with CCR6+ cells including mDCs and
Th17 cells that subsequently may become part of the lesional
environ [48]. Although the exact role of TLRs in keratinocytes is
not yet fully understood, further study is clearly warranted.
Recently, the TLR7 and 9 antagonist used in this study,
IMO-3100, was tested in a Phase 2 psoriasis treatment trial
[25]. Although prior examination of a TLR7, 8, and 9 antagonist
has been conducted in the IL-23 mouse model [24], no study
prior to this has allowed for characterization of how gene
circuits may be differentially affected by TLR7 and 9 vs. TLR7,
8, and 9 antagonism. Results presented herein suggest
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targeting TLR7, 8, and 9 impacts a broader array of IL-23-
induced inflammation pathways than does targeting TLR7 and
9. This may also translate into future trials where targeting
TLR7, 8, and 9 may be more efficacious in treating psoriasis.
Additionally, although results of the clinical trial of the TLR7/9
antagonist are still being analyzed, transcriptomic data from the
IL-23 model herein provides biomarker pathways that may be
analyzed in psoriasis patients undergoing trials with TLR
antagonists.

The shift in disease-associated gene expression of IL-17 and
IL-23 towards normal levels in the IL-23 mouse following
treatment with TLR antagonists suggests a potential role for
TLRs in the psoriatic inflammatory cascade. It appears that
TLR-regulated innate immune pathways may be an important
facet of the cutaneous immune system in normal individuals
[35]. Additionally, the involvement of various immune cell types
in TLR signaling and the potential utility of TLR antagonists in
cutaneous inflammatory diseases further necessitates that
greater efforts be made in understanding the roles that these
endosomic receptors fulfill within skin.

Materials and Methods

Animals

All protocols were approved by the Idera Institutional Animal
Care and Use Committee. Female C57BL/6 mice, age of 6
weeks, were purchased from The Jackson Laboratory (Bar
Harbor, ME). Mice were housed at the Idera Pharmaceuticals,
Inc. animal facility for 1 week before initiating the study. All
protocols were approved by the Idera Institutional Animal Care
and Use Committee (n=5 per group).

Induction of disease

Induction of lesions on dorsal skin was achieved by daily
intradermal injection of recombinant murine IL-23 (3 pg,
eBioscience, San Diego, CA) from day 1 to 4 in 100ul PBS.
IL-23-treated mice were injected subcutaneously at a distal site
with 15 mg/kg of each antagonist in 100ul PBS or, with 100ul
PBS on day 4, 5 and 6 (n=5 per group). All mice were
euthanized on day 7 and skin samples at the IL-23 injection
site were collected for evaluation.

Synthesis and purification of TLR antagonists

The antagonist oligonucleotides IMO-3100 and IMO-8400
were synthesized and purified as described earlier [49], [50]
and contained < 0.075 EU/mg of endotoxin measured by the
Limulus assay (Bio-Whittaker, Walkersville, MD).

Microarray Hybridization

Skin biopsies were stored in RNA Later at —20°C until used.
Skin total RNA was isolated using RNeasy Mini kit (Qiagen,
Valencia, CA) by a modified protocol. Briefly, 20mg of skin
samples were homogenized in 700ul QIAzol Lysis reagent
(Qiagen), followed by 140ul chloroform (Sigma, St. Louis, MO)
and aqueous phase was collected after centrifugation at 12000
xg for 15 minutes at 4°C. Absolute ethanol was added to the
aqueous phase at 1.5 volume, mixed and loaded on to RNeasy
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Mini spin columns. Total RNA was purified according to the
manufacture’s suggestion and later hybridized to GeneChip
mouse4302 (Affymetrix, Santa Clara, CA). Raw data have
been deposited in NCBI's Gene Expression Omnibus and are
accessible through accession number GSE50400.

Statistical analysis

Affymetrix (Santa Clara, CA) CEL files were scanned using
software packages Harshlight [51] and arrayQualityMetrics
from R/Bioconductor (www.bioconductor.org). Expression
values (in log,-scale) were obtained using the GCRMA
algorithm. Genes with expression higher than 2 in at least 3
samples and standard deviation of 0.1 were included in the
statistical analysis. To identify DEGs moderated t-tests were
used in the limma package framework. Resultant P-values
were adjusted for multiple hypotheses using the Benjamini—
Hochberg procedure, which controls the FDR. The cutoffs used
to determine DEGs were FDR<0.05 and FCH>2. Annotation,
including orthologs between human and mouse, were retrieved
using R’s package biomart.

The overlap between the top k genes in the murine
transcriptome and their orthologs on the published human
transcriptome was determined for k=1,...,5000. For each rank
k, the top k murine genes were identified and the overlap
between them and the mouse orthologs of the human
transcriptomes was determined. Confidence Interval for the null
hypothesis of random overlap between human and mouse was
estimated via simulations. For each rank k (k=1,...K) , k genes
in the murine transcriptome were randomly selected without
replacement, and the overlap with the murine orthologs of the
humans transcriptome was calculated. The empirical
distribution of the overlap under randomness was estimated by
repeating this procedure 5000 times.
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(TIF)

Table S1. The IL-23-induced mouse model transcriptome.
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