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Dolphins and whales use tonal whistles for communication, and it is known that frequency modula-

tion encodes contextual information. An automated mathematical algorithm could characterize the

frequency modulation of tonal calls for use with clustering and classification. Most automatic ceta-

cean whistle processing techniques are based on peak or edge detection or require analyst assistance

in verifying detections. An alternative paradigm is introduced using techniques of image process-

ing. Frequency information is extracted as ridges in whistle spectrograms. Spectral ridges are the

fundamental structure of tonal vocalizations, and ridge detection is a well-established image proc-

essing technique, easily applied to vocalization spectrograms. This paradigm is implemented as

freely available MATLAB scripts, coined IPRiT (image processing ridge tracker). Its fidelity in the

reconstruction of synthesized whistles is compared to another published whistle detection software

package, silbido. Both algorithms are also applied to real-world recordings of bottlenose dolphin

(Tursiops trunactus) signature whistles and tested for the ability to identify whistles belonging

to different individuals. IPRiT gave higher fidelity and lower false detection than silbido with

synthesized whistles, and reconstructed dolphin identity groups from signature whistles, whereas

silbido could not. IPRiT appears to be superior to silbido for the extraction of the precise frequency

variation of the whistle. VC 2013 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4828821]

PACS number(s): 43.66.Gf, 43.60.Lq [ZHM] Pages: 4435–4445

I. INTRODUCTION

The vocal communication of cetaceans has been the sub-

ject of wide ranging research over recent decades, and auto-

mated mathematical analysis of vocalizations has long been a

desired tool in the research repertoire. The ability to record

calls in the wild and then to computerize their processing (ei-

ther in real time or retrospectively in the laboratory) would

greatly reduce time and budgetary burdens as well as reduce

potential human observer bias and fatigue. However, existing

automatic algorithms have been only partially successful in

achieving these aims. Dolphins and whales produce a wide

range of tonal and broadband calls; this complicates the chal-

lenge of developing automated techniques. In addition, the

goals of the automated analysis of cetacean vocalizations

need to be clearly specified, as a number of distinct aims

exist, and each requires rather different characteristics for a

successful algorithm. Automatic analysis of recordings of

cetacean vocalizations can be intended to assess wild popula-

tion parameters such as species identity (Mellinger and Clark,

2000; Gillespie, 2004; Oswald et al., 2007; Roch et al.,
2007), population size and presence (Kandia and Stylianou,

2006; Marques et al., 2009), activity, movement, and local-

ization (Thode, 2004) or alternatively to analyze the commu-

nication modalities and link them to behavioral observations

(Johnson et al., 2009; Henderson et al., 2011).

When the goal of automatic analysis is population

assessment, an emphasis is placed on robust detection under

conditions of field recordings. The time of occurrence of

calls is generally unknown a priori, as is the identity of the

species making a particular call. In this case, the emphasis is

on high probability of detection of calls and an estimable

false positive rate, so that compensation for false detections

can be made. For other applications, such as those in which

human operators are involved, a low false detection rate is

important to prevent user fatigue and subsequent disregard-

ing of true detections. In contrast, when the goal is the char-

acterization of acoustic and other properties of the calls, a

greater emphasis is placed on the accuracy of the time-

frequency representation, often with recordings in which the

onset of the call has already been identified and the focal

species is not in doubt.

Many previous works have emphasized the goal of ro-

bust detection, but this work is concerned primarily with the

latter goal: An accurate trace of whistle vocalizations to fur-

ther the investigation of the nature and function of tonal vocal

communication. Many cetacean species produce stereotyped

vocalizations with certain acoustic elements that are repeated

at different times and by different individuals. When two or

more sub samples of a call are sufficiently similar, they are

often coined “syllables” (Kroodsma, 1977) with the implica-

tion that the ordering of these vocal elements may represent

some non-random process or “syntax.” To test such a hypoth-

esis, it is necessary to identify similar vocal elements

and arrive at a definition of the repertoire of syllables for a
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particular species, which is likely to be cognitively relevant

to the communicating animal. This can only be done if vocal-

izations can be quantified in a consistent and reliable way.

To date, the identification of distinct vocalizations has

been performed “by eye” with human observers surmising

which vocal elements constitute cognitively distinct groups

without any objective evidence that such elements are, in

fact, perceived as distinct by the animals in question (e.g.,

Sayigh et al., 2012). In the absence of indications from be-

havioral experiments, researchers have to rely on qualitative

measures of similarity between elements to arrive at a group-

ing scheme in which elements labeled as a single syllable

are at least similar in some acoustic sense (e.g., Slater and

Ince, 1979; Marler, 2004; Bohn et al., 2008; Shapiro et al.,
2011; Kershenbaum et al., 2012). A quantitative representa-

tion of vocalizations would enable researchers to draw up

objective mathematical metrics of similarity, identify acous-

tically distinct sounds, classify them into groups of presumed

behavioral relevance, and then analyze sequences of such

syllables for syntactic structure. That is the goal of this

work: To produce an automatic extraction algorithm that

faithfully encodes and quantifies cetacean vocalizations.

Over the years, many groups have developed automated

techniques for the extraction of cetacean whistles from

recordings. A variety of techniques have been used, but most

have relied on the processing of a three dimensional time-

frequency domain representation of the signal, almost always

a sequence of short-time discrete Fourier transforms (DFT) in

which the signal is represented along dimensions of time, fre-

quency, and power. The particular appeal of processing the

signal following a DFT is that it strongly represents the fre-

quency modulation (FM) and harmonic structure of the sig-

nal; two features that are considered to be the major

characteristics of cetacean tonal whistles (Janik et al., 2006).

DFT poorly represents any amplitude modulation (AM) pres-

ent, but AM appears to play a minor role if at all in encoding

information in dolphin whistles (Janik et al., 2006); possibly

because AM signals are more prone to degradation during

transmission (Van Valkenburg, 1993). AM encoding of infor-

mation in cetaceans is a relatively neglected field, although

some recent work (Ou et al., 2012) has attempted to address

this by examining vocalization waveforms before DFT. If we

presume that FM of tonal vocalizations is the primary encod-

ing of information in cetacean communication, then accurate

tracing of the frequency variation of whistles is vital to repre-

sent the vocalizations reliably for further processing.

On a terminological note, it has been common in the lit-

erature to refer to a digital representation of the time-

frequency variation of a whistle as a “contour.” A more

appropriate term is “ridge,” which is a line joining points

that are local maxima (we further discuss the geometric na-

ture of ridges in the following text), and we make use of this

term in this work, together with the more general term,

“frequency profile.”

The first automated techniques for the extraction of fre-

quency profiles from recordings used template matching to a

library of known tonal whistle shapes (Mellinger and Clark,

2000). Recently a large number of techniques have been pre-

sented (e.g., Madhusudhana et al., 2009; Mellinger et al.,

2011; Roch et al., 2011) that extract whistle frequency infor-

mation by searching for local maxima in the DFT representa-

tion and then joining successive maxima in the time domain,

such that the connection of two maxima in some way repre-

sents a likely causal relationship. In other words, two joined

maxima should form sequential points in a true whistle, rather

than being arbitrary noise that is coincidentally correlated in

time and frequency. Various techniques have been proposed

for this including Kalman filtering (Mallawaarachchi, 2008a),

heuristic rules (Mellinger et al., 2011), phase tracking (Ioana

et al., 2010; Johannson and White 2011), particle filters

(Roch et al., 2011; White and Hadley, 2008), and graph-

based techniques (Roch et al., 2011). Some of these algo-

rithms produce good detection rates that may be useful in the

ecological assessment of cetacean populations (e.g., Marques

et al., 2009). However, by taking as their fundamental ele-

ment the peaks of the DFT spectrum at discrete times, all of

these algorithms do not exploit gross shape-based features of

the spectrogram. Rather, the information is reconstructed in

retrospect connecting temporally adjacent peaks using func-

tions of neighboring peaks that take into account the coher-

ence of the peak patterns but ignore surrounding information

that is relevant to a coherent trajectory along a ridge. In fact,

the problem of extracting whistle ridges is fundamentally a

shape-based application and can be accomplished in a single

step using image processing techniques. Images are three

dimensional representations (two spatial dimensions and one

intensity dimension) just like DFT representations, and tools

developed in the fields of artificial vision, pattern recognition,

and automatic target recognition can be adapted for the

extraction of frequency ridges in cetacean vocalizations.

Gillespie (2004) used image processing techniques to analyze

right whale calls with an edge detection algorithm. Edge

detectors (e.g., Canny, 1986) are two dimensional filters

designed to provide high outputs when moving across regions

that change from one intensity to another. Ridges in contrast

are local maxima separating two regions. Consequently, one

might expect algorithms designed to detect ridges to outper-

form edge detection techniques on cetacean whistles. Similar

geometric techniques have been used with some success,

such as “active contours” (Lampert and O’Keefe, 2013) or

hybrid systems combining image processing and other techni-

ques (e.g., Thode et al., 2012), but they too search for two-

dimensional object boundaries and do not necessarily make

use of the information available in ridge structures.

In this work, we develop and describe IPRiT, an image

processing-based algorithm for the extraction of cetacean

whistle ridges, and compare it to an existing automatic

extraction algorithm used for whistle detection, silbido
(Spanish for whistle), the graph algorithm detector in Roch

et al. (2011). We compare the performance of the two algo-

rithms using both synthetic sounds generated by computer

and also real-world recordings of dolphin vocalizations.

II. ALGORITHM

A. Preprocessing

We performed all the analyses following a DFT. The

parameters of the Fourier analysis varied depending on the
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nature of the recordings; particularly the typical length of the

call and the frequency bandwidth. Application of image

processing algorithms is likely to be most effective where

the resulting DFT representation is “image-like.” The analy-

sis window length and advance/overlap must be set so that

the temporal and spectral changes in the whistle allow a rep-

resentation where relevant fluctuations in the frequency

modulation of the whistle are apparent in both the time and

frequency domains. This means that the image processing

approach would be less able to track fine-grain ridge dynam-

ics for calls with a frequency variation smaller than the DFT

bandwidth or very short calls with a large bandwidth (where

temporal features may be smaller than one pixel). Although

the length and bandwidth of delphinid vocalizations vary

widely (e.g., Esch et al., 2009), we restricted ourselves to

calls 0.5–3 s long with a fundamental frequency ranging

between 2 and 16 kHz. We used a DFT of length 256 with a

Hamming window of 3.2 ms and 50% overlap, which, for a

1 s recording at sampling rate 32 000, leads to a spectrogram

with 128 pixels on the frequency axis and 640 pixels on the

time axis. Following DFT, we took the logarithm of the

spectral power, and scaled the spectrogram between 0 and 1.

After generating the spectrogram, we optionally applied

a click filter to remove impulsive noise in recordings

where the background noise contained echolocation clicks

and artifacts. We used a technique based on that of

Mallawaarachchi (2008b) by convoluting the spectral image

with four 15� 15 pixel Gaussian kernels with different

alignments: Horizontal, vertical, top-left to bottom-right, and

bottom-left to top-right. The filtered image is then con-

structed as

I0 ¼ I þmax½Ih; Id1
; Id2
� � Iv

2
; (1)

where I is the original image, and subscripts h, v, d1, and d2

each represent the original image convolved by the horizon-

tal, vertical, and two diagonal kernels, respectively. The sil-
bido approach uses a different click suppression algorithm,

which we retained when comparing the two implementations.

Rather than applying the subsequent processing to all

pixels in the spectrogram, we applied a threshold filter so

that processing proceeded only on those regions of the spec-

trogram with relatively high signal to noise ratio, i.e., where

there was high spectral power in the local region. This

“interest operator” is commonly used in image processing to

remove those regions of an image where a signal is unlikely

to exist (Davies, 2004). First, we performed a morphological

dilation operation (Dougherty and Lotufo, 2003) on the gray-

scale image with a flat 4� 4 pixel structuring element to

enlarge those regions of the image with a strong signal. Then

we generated a mask to exclude all pixels of the dilated

image with a value less than Q standard deviations (r) above

the mean (l) of the dilated image. Q is a threshold variable

that we varied in our analysis of the algorithm performance.

Using this technique, the minimum pixel value Pmin

¼ lþQr can be considered an adaptive threshold as the

value of Pmin varies with the signal content of the spectro-

gram, ensuring that sufficient faint pixels are included to

allow calculation of the grayscale gradients. Finally, we per-

formed a morphological erosion operation on the mask image

using the same structuring element as the previous opening,

to return it to its original configuration. Further analysis only

made use of those pixels indicated as “interesting” by the

mask image.

B. Ridge extraction

Intuitively, a “ridge” is defined as a watershed between

two basins of attraction, but in an intensity image, it can be

defined more rigorously as a series of points that comprise

local maxima in the direction of the main principal curvature

(Lindeberg, 1998). To find these points, we generate first

and second derivative maps of the spectral image, using first

and second order derivatives of a Gaussian distribution.

These maps, @T, @F, @TT, @FF, and @TF (where T indicates

the time axis and F the frequency axis) are constructed using

smoothing kernels that reflect the scale of the features we are

searching for. Preliminary investigation showed that a

smoothing kernel with a standard deviation of one pixel was

sufficient for the extraction of whistles because these tend to

be rather narrowband signals.

The gradient of the spectrogram intensity shows the

direction in which the intensity values increase most quickly.

This is not a sufficient condition to define a ridge. On either

side of the point, the intensity must be falling (Fig. 1). To

determine whether or not points are atop a ridge, one must

examine the rate of change. For each pixel falling in an

“interesting” region, we calculate the largest magnitude

eigenvector E of the Hessian matrix of second derivatives H,

Ht;f ¼
@ttt;f @tft;f
@ftt;f @fft;f

� �
; (2)

where t and f are the indices of the time and frequency pix-

els, respectively. The vector E points in the direction of

FIG. 1. (Color online) Relationship between gradient vectors and a ridge.

Notice that the direction of the gradient vectors (arrows) relative to the ridge

(heavy line) reverses on either side of the ridge. We use this property to

identify the ridge location. Axes are arbitrary, and could represent vertical/-

horizontal pixels, time/frequency, latitude/longitude, etc.
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greatest curvature, and the eigenvector’s dot product with

the gradient is proportional to the cosine between the inten-

sity gradient and the curvature. If the dot product is com-

puted for two points on either side of a ridge, the direction

(sign) of the angle changes, and hence at the ridge, the angle

will be equal to zero,

Et;f �
@t
@f

� �
t;f

¼ 0: (3)

This is equivalent to saying that a ridge point occurs for any

pixel (t,f) where the major eigenvector Et,f of the Hessian

matrix Ht,f is perpendicular to the intensity gradient vector.

Calculating the dot product between Et,f and (@T @F)t,f

for every pixel in the interest mask, we then track the

zero-crossing of this functional by searching the 3� 3 pixel

neighborhood (t 6 1, f 6 1) for a sign change, and interpolat-

ing to find the zero-crossing (t*,f*). In the case of multiple

zero crossings, the pixel closest to the current pixel is chosen.

Tracking ceases when no further zero-crossings exist or when

all the zero-crossing pixels in the neighborhood have been

flagged as already processed. Tracking then re-commences

from the next pixel in the interest mask until all interesting

pixels have been exhausted.

C. Ridge joining

Noise of various forms (ambient, thermal/instrument,

aliasing) can cause ridges to become discontinuous in the

spectrogram image. The next stage of processing selectively

joins ridge tracks where appropriate to form longer continu-

ous ridges. Various algorithms are available for this process.

However, to simplify the comparison of our image process-

ing approach with existing techniques, we implemented

ridge joining using a heuristic based on that employed in the

silbido software, full details of which are given in Roch

et al. (2011). Briefly, each ridge is compared with a set of

candidate ridges for joining, i.e., those that begin within a

time-frequency window of the end of the primary ridge. We

used a window of 16 ms and 15 Hz, based on preliminary

work with similar data. Each candidate ridge is combined

pairwise with the primary ridge and fitted to a family of pol-

ynomials of order 1–5. To avoid overfitting, polynomials of

order n are rejected for data sets of N points, when N< 3n.

If multiple polynomial fits meet this criterion, the one with

the lowest residual error is chosen, and the ridges combined

to a single ridge. Finally, the ridges are smoothed using two-

dimensional Kalman filtering (Mallawaarachchi, 2008a).

III. METHODS

We compared the existing silbido algorithm to IPRiT

using both a synthesized data set and a real-world data set of

dolphin signature whistles. We used a synthesized data set as

this allowed us to measure the accuracy of the detection pre-

cisely because the true frequency profile was known a priori.
The real-world data set allowed us to test the performance of

the algorithms under more realistic conditions, using a proxy

measure of accuracy because the true frequency profile is

not known.

Both the silbido algorithm and IPRiT use a form of

thresholding to define the region of the spectrogram to be

processed. For IPRiT, we varied the interest threshold Q, as

described in the preceding text, between 0 and 2. For the

silbido algorithm, we varied the “whistle_dB” parameter,

which selects peaks based on a signal to noise ratio thresh-

old, between 5 and 9. Although the thresholds for the two

algorithms are not directly comparable, the ranges examined

represented in both cases very low to very high thresholds.

The levels were selected experimentally to show perform-

ance at conservative and aggressive detection levels for both

algorithms. For both algorithms, we also excluded detections

less than 0.1 s in length. Silbido usually defaults to 0.15 s,

but this was adjusted to keep both algorithms comparable

and to highlight that IPrIT is less likely to string together

extraneous peaks on short time scales.

A. Synthetic data set

We constructed a synthesized set of whistles having var-

ious frequency profiles (Fig. 2): Inverted parabolic, triangu-

lar, and complex. Each whistle was 1 s in length and varied

in frequency between 2 and 16 kHz. We added noise to the

synthesized signals in varying intensities. Noise in under-

water recordings is rarely Gaussian white noise (Urick,

1983), and so we introduced into our synthesized whistles

noise taken from real-world recordings. We took the first

10 s of silence (i.e., ambient noise without cetacean whistles)

FIG. 2. (Color online) Example spectrograms of the three synthetic whistle types, with added noise from real-world recordings.
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from file CVJ.wav, one of the towed-array evaluation files

for the 2011 Detection, Classification, and Localization of

Marine Mammals Using Passive Acoustic Monitoring work-

shop from the MobySound database (Mellinger and Clark,

2006) and divided it into ten 1-s samples, which we could

add to our synthesized whistles to produce 10 replicates of

noisy signal. We repeated this using different noise intensity,

by multiplying the noise signal by a factor of 1–100 before

addition. This gave us 10 replicates at each noise intensity,

for each of three signal types.

We then measured ridge extraction fidelity by compar-

ing the contours extracted by each algorithm to the known

frequency profile of the synthesized whistle. We defined the

following performance metrics: Coverage, false alarm rate,

and distance. Coverage is the proportion of the true fre-

quency profile for which a detected ridge is within 4 pixels

or 438 Hz. False alarm rate is the proportion of detected

ridges that are not within 4 pixels or 438 Hz of the true fre-

quency profile. Distance is the root mean square distance of

those detected ridges that are within 4 pixels or 438 Hz of

the true frequency profile.

B. Real-world data set

We used a set of 400 bottlenose dolphin (Tursiops tru-
nactus) signature whistles, 20 recordings of each of 20 ani-

mals, as described in Sayigh et al. (2007). These recordings

were made during capture-release events in the Sarasota Bay

area of Florida, using suction-cup hydrophones, and were

between 1.5 and 3.0 s long (mean 2.1 s). Rather than compare

the results of the algorithms directly to a “known” true whis-

tle profile, we measured the accuracy of the algorithms indi-

rectly, via their ability to predict biologically relevant

findings. Because the frequency modulation in dolphin signa-

ture whistles is known to encode individual identity (Sayigh

et al., 2007), we used a test of identity reconstruction to quan-

tify the ridge extraction fidelity. An algorithm that accurately

extracted the ridges in the signature whistle would be

expected to produce a good clustering of whistles into sepa-

rate groups representing the individual animals that produced

them (Kershenbaum et al., 2013). This way, we test extrac-

tion fidelity rather than detection. We applied both algorithms

to this data set and extracted the longest ridge. We then meas-

ured the dissimilarity between each of these 400 ridges (one

for each recording) using dynamic time warping (Buck and

Tyack, 1993) to produce a 400� 400 distance matrix.

Dynamic time warping measures the minimum difference

between two time series when the time axis is allowed to

vary freely between samples, and this technique gives an

improved measure of similarity especially when salient fea-

tures may vary in phase or duration. We then used a k-means
algorithm to group these whistles into 20 clusters according

to similarity. The composition of each cluster could then be

compared to the true clustering of dolphin identity. We used

normalized mutual information (NMI) (Zhong and Ghosh,

2005) as a measure of cluster purity; producing values near

zero for random assignment to clusters and values of unity

when each cluster consists of a single individual’s signature

whistles. Normalized mutual information is defined as

NMI ¼

X
k;c

nk;c log
N � nk;c

nk � nc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k

nk log
nk

N

� � X
c

nc log
nc

N

� �s ; (4)

where nc is the number of whistles from dolphin c, nk is the

number of whistles in cluster k, nk,c is the number of whistles

from dolphin c in cluster k, and N is the total number of

whistles. In each case, we compared the algorithm results to

a null distribution generated by randomly assigning the 400

whistles to the 20 individual dolphins. We bootstrapped this

analysis, excluding a random 20% of whistles on each of

100 repetitions, to generate an error estimate for NMI.

IV. RESULTS

A. Synthetic data set

Although silbido gave much better detection than IPRiT

for all whistle types, the accuracy of silbido was far lower.

Even at high noise levels, silbido maintained detection rate-

s> 50% even at moderate threshold levels. In contrast, in

IPRiT, coverage fell sharply at moderate noise levels for all

threshold values (Fig. 3). However, silbido is known to pro-

duce short spurious detections and the high detection levels of

silbido come at the cost of extremely high false alarm rates

(Fig. 4). False detections for silbido averaged 10–60 per spec-

trogram and were high for all noise and threshold levels,

although at high thresholds, the number of false detections

was lower. The number of false detections in IPRiT was

extremely low under all conditions. This is illustrated in Fig.

5, which shows the spectrogram of an example synthetic whis-

tle with added noise and the silbido and IPRiT detections.

The fidelity of IPRiT was superior to the silbido algo-

rithm even when excluding false detections. Figure 6 shows

the mean distance from the true signal of those detections

that were within 438 Hz (approximately four frequency bins)

of the true signal. Silbido only gave higher fidelity than

IPRiT for the simplest whistle (type 2) and at very low noise

levels. At higher thresholds, the fidelity of silbido worsened

rapidly as the noise level rose. In the most complex whistle

(type 3), the fidelity of IPRiT was significantly better than

that of silbido for all parameters.

The relative performance of the two algorithms with

respect to detection misses (false negative) and false detec-

tion (false positive) is best illustrated with “detection error

tradeoff” (DET) curves similar to those proposed by Martin

et al. (1997) in which the two metrics are plotted against

each other for varying threshold. Figure 7 shows DET curves

for three noise levels, low, medium, and high. It can be seen

that although silbido continues to provide high detection at

noise levels when IPRiT detection falls near zero, silbido
never results in a level of false detections approaching that

of IPRiT for any threshold level.

B. Real-world data set

IPRiT gave significantly better results than silbido in

clustering the signature whistles according to the dolphin
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that produced them. For IPRiT, the overall mean normalized

mutual information (NMI) was 0.422 6 0.001 (SE) com-

pared to 0.263 6 0.001 for silbido, and 0.204 6 0.001 for the

randomized control [Fig. 8(a)]. The better performance of

IPRiT was consistent across all threshold levels [Fig. 8(b)].

Figure 9 gives a qualitative indication of the success in

grouping together ridges from the same individual, by

presenting a two-dimensional histogram of true identity vs

cluster assignment. NMI measures the unevenness of this

two-dimensional histogram, and in the case of perfect clus-

tering, each cluster would contain the whistles of a single

dolphin only.

V. DISCUSSION

While the silbido algorithm gave good results for detec-

tion in the artificial data set, and IPRiT failed to detect whis-

tles at high noise levels, the number of false detections by

silbido was very high. The low correlation between noise

and false alarm rate is probably due to the detection of a

strong impulsive component even at low noise levels, and

this may or may not be a problem for detection applications,

where further filtering steps may reduce the number of false

alarms to a level suitable for human analysis. However, for

applications requiring the characterization of whistle shapes,

false detections are a serious problem. The poor detection

performance of IPRiT is likely not relevant in those commu-

nication research applications where recordings are high

quality with low noise, such as those taken from suction-cup

hydrophones or in an aquarium environment. The overall fi-

delity of IPRiT was far higher than that of silbido and was

maintained at higher noise levels, as long as the algorithm

succeeded in detecting the whistle. Examination of the DET

curves (Fig. 7) indicates that IPRiT is superior to silbido for

applications where accuracy is important. Visual inspection

of the ridges extracted by the two algorithms (e.g., Fig. 5)

would seem to indicate that the performance of silbido suf-

fers where it joins a number of shorter extractions into a sin-

gle curve, whereas IPRiT appears to detect longer segments

of whistle ridges. This is characteristic of the greater stability

of the shape-based approach (IPRiT) compared to the peak-

joining approach (silbido).

FIG. 3. Coverage (y axis) expressed as a proportion detected of the true signal, for varying noise levels (x axis). Rows indicate whistle types 1–3, and columns

indicate increasing threshold left to right. Silbido results are indicated by the triangles and broken lines, IPRiT by the circles and solid lines. Error bars indicate

standard error.
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This is illustrated particularly in the results of the real-

world data set, which tests the overall accuracy of the algo-

rithms by applying them to a behavioral test. The results of

each algorithm were passed to a clustering process, which

grouped the whistles into natural clusters. IPRiT was fairly

accurate in allowing the whistles to be clustered into correct

groupings according to the dolphin that produced them,

whereas the silbido algorithm did not produce results much

better than chance (Fig. 8). This result is despite the fact that

we selected only the longest ridge from each recording,

so that the large number of false detections by silbido cannot

by itself explain the poorer clustering result. This strongly

FIG. 4. Number of false detections per spectrogram (y axis), for varying noise levels (x axis). Rows indicate whistle types 1–3, and columns indicate increasing

threshold left to right. silbido results are indicated by the triangles and broken lines, IPRiT by the circles and solid lines. Error bars indicate standard error.

FIG. 5. (Color online) Example detections for silbido and IPRiT, using low thresholds. (a) A sample synthesized whistle with low noise. (b) The detections of

IPRiT and (c) the detections of silbido. In (b) and (c), the solid line shows the true signal, and the dashed lines indicate the threshold for “true” detection.

Notice that both silbido and IPRiT detect the true signal well, but silbido also makes a large number of short false detections.
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indicates that IPRiT is preferable for the detailed analysis of

vocalization structure.

Numerous algorithms have been proposed for the auto-

matic analysis of cetacean whistles, and many of them have

been used with notable success for the assessment of popula-

tions (Kandia and Stylianou, 2006; Marques et al., 2009),

and species identification (Oswald et al., 2007; Roch et al.,
2007). However, the performance of automated systems is in

FIG. 6. Fidelity error (y axis) expressed as the mean distance in hertz of near detections from the true signal for varying noise levels (x axis). Rows indicate

whistle types 1–3, and columns indicate increasing threshold left to right. Silbido results are indicated by the triangles and broken lines, IPRiT by the circles

and solid lines. Error bars indicate standard error.

FIG. 7. Detection error tradeoff curves for synthetic whistles with injected real-world noise, showing false detections against misses, for varying threshold lev-

els. Left panel shows results for low noise (scale factor of an in situ ocean noise source), middle panel for moderate noise, right panel for high noise. Silbido is

indicated by the triangles and IPRiT by the circles. Error bars represent standard error.
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general limited by a large number of false detections. There

is a natural tendency for researchers to develop algorithms

based on the analysis of Fourier transformed recordings, i.e.,

spectrograms, because this analysis presents the frequency

modulation information in a very accessible form (visually).

This allows developers to use cycles of intuitive trial and

error, examining where algorithms pick out useful features

and where they fail to perform correctly. However, it is not

clear that the spectrographic representation is the optimum

one for signal detection. Possibly because of this, most

detection algorithms still fall short of the performance

required for routine usage. Some researchers have moved

away from the spectrographic paradigm for detection (e.g.,

Ioana et al., 2010; Johansson and White, 2011; Ou et al.,
2012), but spectrographic representation undoubtedly

provides a parsimonious encoding of the detailed frequency

variation. Therefore when the goal is the accurate characteri-

zation of the frequency modulation of tonal signals rather

than signal detection, there is a clear benefit to extract that

information from the Fourier transformed signal. It has been

shown (Sayigh et al., 2007) that humans are very accurate in

identifying similarities between spectrograms “by eye” and

that the results of such manual comparisons are biologically

relevant, i.e., humans can correctly assign whistles to the

originating individual dolphin. Concluding from this that the

visual representation encodes important whistle information

reliably and accessibly, we have attempted to access that in-

formation through the paradigm of image processing, and

our results show that such an algorithm does represent the

detailed whistle shape accurately.

We intentionally used recordings of dolphin signature

whistles taken during capture-release events and with high sig-

nal to noise ratio, rather than open-sea recordings of free-

ranging dolphin vocalizations. This is because our goal was to

optimize fidelity rather than detection. Our results indicate

that the image processing-based approach will not be superior

to existing techniques for the detection of calls within large

and noisy databases, where robustness and sensitivity are

more important than fidelity. Low signal to noise ratio is likely

to harm image processing-based detection more than peak

finding-based detection (such as silbido), and this is reflected

in our results. Similarly, our use of synthesized whistles, while

unrealistic for real-world applications, allowed us to provide

clear accuracy measures using well-defined truth comparison.

Our eventual goal is to use such image processing algorithms

to provide statistical descriptions of the different types of

FIG. 8. (Color online) Results of using the two algorithms to cluster dolphin signature whistles. Clustering success is measured as normalized mutual informa-

tion (y axis), which indicates how well signature whistles analyzed by the two algorithms were assigned to the dolphins that produced them with a value of

one indicating perfect clustering. (a) Box plots for the normalized mutual information for the two algorithms and the random control at the lowest threshold.

(b) Variation in normalized mutual information with algorithm threshold (silbido varying from 5–9 and IPRiT from 0–2). Silbido is shown as triangles with a

broken line, IPRiT as circles with a solid line, and the random control as stars with a dotted line.

FIG. 9. Results of the clustering algo-

rithm, presented as a two-dimensional

histogram. The two horizontal axes

indicate the true dolphin identity

(1–20), vs the cluster number (1–20),

and the height of each bar indicates the

number of whistles from a particular

dolphin assigned to a particular cluster

(log scale). If the clustering was per-

fectly successful, all the whistles would

be placed along the diagonal of the ma-

trix. This figure gives a qualitative indi-

cation that the clustering of the IPRiT

analysis in (a), gives more concentra-

tion of the bars along the diagonal than

the clustering of the silbido analysis in

panel (b). Normalized mutual informa-

tion (shown above each plot) is a quan-

tification of this distinction.
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vocalizations, or putative syllables, and in many cases, these

are recorded under more controlled environments, which

more closely approximate the synthetic sounds that we used.

We have made our algorithm publicly available

(http://sourceforge.net/projects/iprit/) under the Creative

Commons Attribution-ShareAlike (CC BY-SA) license, to

allow researchers to assess its utility in their own work. We

believe that researchers in the field of animal vocal commu-

nication should be aware of the utility of the image process-

ing paradigm, which appears to be highly useful for the

accurate automated processing of tonal vocalizations. We

are currently applying this technique to applications not just

in marine biology but also in the characterization of bird

calls and those of terrestrial mammals. We believe that in

applications where a visual inspection of a spectrographic

representation of a recording provides the best interpretation

of the problem at hand, an image processing-based approach

to automatic analysis is likely to lead to better results simply

because it replicates to an extent the process occurring in the

researcher’s eye and brain.
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