
Integrating cognitive and peripheral factors in predicting
hearing-aid processing effectiveness

James M. Katesa) and Kathryn H. Arehart
Department of Speech Language and Hearing Sciences, University of Colorado, Boulder, Colorado 80309

Pamela E. Souza
Department of Communication Sciences and Disorders and Knowles Hearing Center,
Northwestern University, Evanston, Illinois 60201

(Received 28 February 2013; revised 16 September 2013; accepted 26 September 2013)

Individual factors beyond the audiogram, such as age and cognitive abilities, can influence speech

intelligibility and speech quality judgments. This paper develops a neural network framework for

combining multiple subject factors into a single model that predicts speech intelligibility and

quality for a nonlinear hearing-aid processing strategy. The nonlinear processing approach used in

the paper is frequency compression, which is intended to improve the audibility of high-frequency

speech sounds by shifting them to lower frequency regions where listeners with high-frequency

loss have better hearing thresholds. An ensemble averaging approach is used for the neural network

to avoid the problems associated with overfitting. Models are developed for two subject groups,

one having nearly normal hearing and the other mild-to-moderate sloping losses.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4824700]

PACS number(s): 43.66.Ts, 43.71.Ky, 43.71.Lz [JFC] Pages: 4458–4469

I. INTRODUCTION

Perceptual models are often used to predict speech intel-

ligibility and speech quality. In general, these models

involve a simplified representation of the auditory periphery

combined with the extraction of one or more psychoacoustic

or signal-processing features. For example, the speech intel-

ligibility index (SII) (ANSI, 1997) is based on the signal-

to-noise ratio (SNR) measured in auditory bands, and takes

into account auditory masking within each frequency band

and upward spread of masking across frequency bands.

Other auditory features have also been used as the bases of

speech quality indices. These features include the differences

in estimated signal excitation patterns (Thiede et al., 2000;

Beerends et al., 2002) and the signal cross-correlation

measured in auditory bands (Tan et al., 2004). Changes in

the signal envelope modulation measured within auditory

bands have also been used to predict speech quality (Huber

and Kollmeier, 2006), as well as changes in the time-

frequency modulation within and across auditory bands

(Kates and Arehart, 2010). Hearing loss, when included in a

model, is generally specified by the audiogram (ANSI 1997;

Kates and Arehart, 2010).

There is growing evidence, however, that the effect of

hearing-aid processing may depend on factors beyond the

audiogram (Akeroyd, 2008). Experiments involving linear

amplification (Humes, 2002), dynamic-range compression

(Lunner, 2003; Gatehouse et al., 2006; Rudner et al., 2009;

Cox and Xu, 2010), noise suppression (Lunner et al., 2009;

Sarampalis et al., 2009; Ng et al., 2013), and frequency

compression (Arehart et al., 2013) all indicate that individual

differences in cognitive processing can influence processing

benefit. Work in dynamic-range compression (Gatehouse

et al. 2006), for example, has shown that listeners with

poorer cognition performed better with slow-acting compres-

sion while listeners with better cognition performed better

with fast-acting compression.

Age has also been shown to be a factor in processing

effectiveness. The intelligibility results reported by Arehart

et al. (2013) for speech processed using frequency compres-

sion showed that both age and working memory were sig-

nificant factors in explaining listener performance. Age

may thus encompass changes in cognitive function beyond

working memory and changes in peripheral processing

beyond those measured by the audiogram. For example,

Schvartz et al. (2008) showed that the ability of older

listeners to process distorted speech was related to both

working memory and to speed of processing. In addition,

temporal processing deficits have been suggested as a factor

contributing to age-related problems in understanding noisy

speech (Pichora-Fuller et al., 2007; Hopkins and Moore,

2011), and older listeners have been shown to have diffi-

culty in processing temporal envelope information (Grose

et al., 2009).

This model presented in this paper describes how

peripheral and cognitive factors contribute to the understand-

ing of frequency compressed speech. Frequency compres-

sion (Aguilera Mu~noz et al., 1999; Simpson et al., 2005;

Glista et al., 2009; Alexander, 2013) is intended to improve

the audibility of high-frequency speech sounds by shifting

them to lower frequency regions where listeners with high-

frequency loss have better hearing thresholds. However,

frequency compression also introduces nonlinear distortion.

The processing modifies the signal spectrum, reduces the

spacing between harmonics, alters the signal intensity and
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envelope within auditory bands, and shifts the trajectories of

formant transitions.

Given the large changes to the signal caused by fre-

quency compression, it is possible that cognition may affect

the ability of a listener to benefit from the processing.

One aspect of cognitive processing is working memory

(Daneman and Carpenter, 1980), which involves processing

and storage functions. It is hypothesized (Wingfield et al.,
2005; McCoy et al., 2005; Francis, 2010; Amichetti et al.,
2013; Arehart et al., 2013; Ng et al., 2013) that listening to a

degraded speech signal requires a greater allocation of verbal

working memory to the recovery of the speech information,

leaving fewer resources available to extract the linguistic

content. Experimental results indicate that there is a signifi-

cant relationship between working memory and the intelligi-

bility of speech that has been degraded by peripheral hearing

loss (Cevera et al., 2009), additive noise (Pichora-Fuller

et al., 1995; Lunner, 2003), spectral modification (Schvartz

et al., 2008), dynamic-range compression (Lunner and

Sundewall-Thor�en, 2007; Foo et al., 2007), and frequency

compression (Arehart et al., 2013).

Souza et al. (2013) studied the effects of frequency com-

pression on speech intelligibility and quality for older adults

with mild to moderately-severe hearing loss and for a control

group of similarly aged adults with nearly normal hearing.

They found that listeners with the greatest hearing loss

showed the most benefit for the processing, but they also

found noticeable variability in the results for listeners with

similar degrees of hearing loss. Arehart et al. (2013) further

studied these data for the hearing-loss group, looking at the

interaction of cognitive ability, age, and hearing loss. Arehart

et al. (2013) found that working memory was a significant

factor in predicting speech intelligibility, accounting for 29%

of the variance in the subject intelligibility scores. The cogni-

tive factor of working memory was measured using the

Reading Span Test (RST) (Daneman and Carpenter, 1980;

R€onnberg et al., 2008). Combining working memory with

age and hearing loss accounted for 47.5% of the variability

in the intelligibility scores. However, the interaction of RST

and frequency compression benefit may occur only for

hearing-impaired listeners; Ellis and Munro (2013) found no

significant correlation between RST and speech recognition

in a frequency-compression study involving normal-hearing

listeners.

There is a challenge in extending perceptual models

to include cognitive factors. The traditional models are

parametric in nature. The Hearing-Aid Speech Quality Index

(HASQI) (Kates and Arehart, 2010) is a good example.

The auditory model comprises a filter bank followed by

dynamic-range compression, the auditory threshold, extrac-

tion of the signal envelope in each band, and conversion to a

logarithmic amplitude scale. Changes in the envelope modu-

lation and spectrum are then measured and combined using

regression equations. The structure of the model is assumed

in advance, and the only free parameters are the regression

weights used to combine the different numerical outputs.

But it is not clear what model structure should be used

when combining peripheral with cognitive measures since

the interactions between the different factors may well be

nonlinear. Stenfelt and R€onnberg (2009), for example,

propose using the output of an auditory model as the input to

a cognitive model. They acknowledge, however, that some

form of feature extraction is needed to link the two stages of

their model, but that the details of the feature extraction are

not known.

An alternative to using a parametric modeling approach

is to use a statistical model. Such a model makes no assump-

tions about the underlying model structure and can accom-

modate nonlinear interactions. The modeling approach

investigated in this paper is a neural network (Wasserman,

1989; Beale et al., 2012). The neural network comprises an

input layer, one or more hidden layers, and an output layer.

The input to each neuron in the hidden and output layers is a

weighted sum of the outputs from the previous layer, with

the output sum undergoing a nonlinear transformation,

termed the activation function. The activation function

allows the neural network to produce a complex nonlinear

relationship between the input data and the subject

responses, thus modeling patterns in the data that a simple

linear regression would miss. For example, when predicting

the preferred linear amplification from the listener audio-

gram, a neural network (Kates, 1995) was found to produce

a more accurate model than the published NAL-R fitting rule

(Byrne and Dillon, 1986) derived from the same data. The

goal of the study reported in this paper is to build a neural

network model that combines multiple subject factors, and

to use the model to predict the effect of frequency compres-

sion on intelligibility and quality on an individual basis.

The work presented in this paper tests two hypotheses.

The first hypothesis is that intelligibility and quality for

speech modified using frequency compression will exhibit a

relationship between age, cognitive function, and processing

effectiveness and that a neural network model can show

these effects. The second hypothesis is that a model of proc-

essing effectiveness that incorporates age and measures of

cognitive performance will be more accurate than a model

that is based exclusively on the auditory periphery.

The remainder of the paper begins with a description of

the subjects and the peripheral and cognitive measurements.

The potential benefit of incorporating cognitive information

into intelligibility and quality models is then explored using

mutual information. Mutual information (Kates, 2008b) can

measure more complex relationships between a pair of varia-

bles than is possible using correlation or linear regression,

and an explanation of mutual information is provided. A set

of models is constructed using neural networks, and the

accuracy and limitations of these models in predicting intel-

ligibility and quality is explored. The paper concludes with a

discussion of the potential benefits of using the new models

to predict the effects of hearing-aid processing.

II. DATASET

The models developed in this paper are based on percep-

tual measures from forty older adults. The measures include

the intelligibility scores and quality ratings for frequency-

compressed speech reported by Souza et al. (2013) and the

working memory data reported by Arehart et al. (2013). In
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addition, the present analysis includes measures of spectral

resolution and speech-in-noise perception.

A. Listeners

A total of 40 adults took part in the experiments, divided

into two groups. The high-loss group consisted of 26 individ-

uals with mild-to-moderate high-frequency loss. The mean

age of the individuals in the high-loss group was 74.9 yr,

with a range of 62–92 yr. The low-loss group comprised 14

individuals with pure-tone thresholds of 35 dB hearing level

(HL) or better through 4 kHz; the average loss in the low-

loss group was 12 dB through 3 kHz. The mean age of the

individuals in the low-loss group was 66.4 yr, with a range

of 60–78 yr. Audiograms for both groups are presented in

Souza et al. (2013). Stimuli were presented to one ear, with

that ear chosen randomly from subject to subject. All listen-

ers had symmetric losses, spoke English as their first or

primary language, and passed the mini-mental status exam

(MMSE) (Folstein et al., 1975) with a score of 26 or better.

B. Spectral ripple threshold

The frequency resolution of each subject was deter-

mined using a spectral-ripple detection test (Won et al.,
2007). The spectral ripple threshold (SRT) test stimulus

consisted of a weighted sum of 800 sinusoidal components

spanning the frequency range from 100 to 5000 Hz. The

amplitudes of the sinusoids were adjusted so that the result-

ant spectrum reproduced multiple periods of a full-wave rec-

tified sinusoid on a logarithmic frequency scale. The peak-

to-valley ratio of the ripples was fixed at 30 dB. The ripple

spectra were then filtered through a shaping filter to approxi-

mate the long-term spectrum of speech. To compensate for

the individual hearing loss, the filtered ripple stimuli were

input at 65 dB sound pressure level (SPL) to a digital filter

that provided the NAL-R linear frequency response (Byrne

and Dillon, 1986). The mean spectral resolution for the high-

loss group was 4.24 ripples/oct with a standard deviation of

1.7 ripples/oct. The mean spectral resolution for the low-loss

group was 6.03 ripples/oct with a standard deviation of

1.8 ripples/oct. The groups were significantly different

(between-group t38¼ 25.31, p< 0.005).

C. Speech in noise

The ability to understand speech in noise was measured

using the QuickSIN (Killion et al., 2004). The QuickSIN

uses sentences presented binaurally in a background of four-

talker babble. The speech level is held constant and the noise

level adjusted to vary the signal-to-noise ratio. Better per-

formance on the QuickSIN has been shown to be correlated

with better auditory temporal acuity and with higher working

memory ability (Parbery-Clark et al., 2011). The stimuli

were presented via insert earphones at a presentation level of

70 dB HL. The mean QuickSIN score for the high-loss group

was 4.97 dB, with a standard deviation of 3.44 dB. The mean

score for the low-loss group was 2.07 dB, with a standard

deviation of 1.45 dB. The QuickSIN scores were signifi-

cantly different across groups (t38¼ 2.81, p¼ 0.008).

D. Reading span test

The working memory capacity of the subjects was

measured using the RST (Daneman and Carpenter, 1980). In

the RST, a sequence of sentences was displayed on a com-

puter screen. Each participant was asked to recall in correct

serial order either the first or last words of the sentences. A

sample sentence is “The train sang a song.” The participant

did not know at the start of the test whether the first or last

words would be requested. The scores were based on the

total proportion of first or last words correctly recalled,

whether or not in correct serial order. The scores ranged

from 0.17 to 0.71.

E. Stimuli

The stimuli for the intelligibility tests consisted of

low-context IEEE sentences (Rosenthal, 1969) spoken by a

female talker. The stimuli for the quality ratings consisted of

two sentences (“Two cats played with yarn,” “She needs an

umbrella”) spoken by a female talker (Nilsson et al., 2005).

Since all of the results reported in this paper are for a female

talker there may be limitations in generalizing to male talk-

ers, although previous results for speech quality (Arehart

et al., 2010) did not find a significant effect of talker gender.

All of the stimuli were digitized at a 44.1 kHz sampling rate

and downsampled to 22.05 kHz to approximate the band-

width typically found in hearing aids (Kates, 2008a). The

sentences were input to the hearing-aid simulation at a level

of 65 dB SPL, representing conversational speech. In

Arehart et al. (2013) and Souza et al. (2013), the sentences

were presented in quiet and in babble noise at several signal-

to-noise ratios. The study reported in this paper used only

the quiet condition to explore the effects of frequency

compression without the confound of noise.

F. Frequency compression

Frequency compression was implemented using sinusoi-

dal modeling (McAulay and Quatieri, 1986). The signal was

divided into a low-frequency and a high-frequency band

using a complementary pair of recursive digital five-pole

Butterworth filters. Sinusoidal modeling was applied to the

high-frequency signal, while the low-frequency signal was

used without further modification.

The sinusoidal modeling applied to the high-frequency

signal used ten sinusoids. A fast Fourier transform (FFT)

analysis was performed on the signal in overlapping 6-ms

blocks. For each block, the ten FFT bins corresponding to

the highest peaks were selected. The amplitude and phase of

each selected peak were preserved while the frequencies

were reassigned to lower values. The frequency-compressed

output was produced by synthesizing ten sinusoids at the

shifted frequencies using the original amplitude and phase

values (Quatieri and McAulay, 1986; Aguilera Mu~noz et al.,
1999). The frequency-compressed high-frequency output

was then combined with the original low-frequency signal.

The frequency-compression parameters were chosen to

represent the range that might be available in wearable hearing

aids. Three frequency compression ratios (1.5:1, 2:1, and 3:1)
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and three frequency compression cutoff frequencies (1, 1.5,

and 2 kHz) were used. In addition, a control condition having

no frequency compression was included. The control condi-

tion comprised the low-pass and high-pass filters used for the

signal band separation; the two bands were recombined after

filtering but the sinusoidal modeling in the high-frequency

band was bypassed. The filtering of the control condition

ensured that all signals had the same group delay as a function

of frequency. There were thus a total of ten frequency com-

pression conditions (3 compression ratios� 3 cutoff frequen-

cies, plus the control condition). Following frequency

compression, the speech signals were amplified for the indi-

vidual hearing loss using the National Acoustics Laboratories-

Revised (NAL-R) linear prescriptive formula (Byrne and

Dillon, 1986).

G. Stimulus presentation and response tasks

The intelligibility scores and quality ratings presented in

this paper are based on the data reported by Souza et al.
(2013). A brief summary of the experimental methods is pre-

sented here. Testing took place in a double-walled sound

booth. The stimuli for each subject were generated on a com-

puter and stored in advance of the experiment. The stimulus

files were read out through a sound system comprising a

digital-to-analog converter (TDT RX6 or RX8), an attenua-

tor (TDT PA5), and a headphone buffer amplifier (TDT

HB7). The sentences were presented monaurally to the lis-

teners through Sennheiser HD 25-1 headphones. Responses

were collected using a monitor and computer mouse. The

stimulus level prior to NAL-R amplification was 65 dB SPL.

Prior to the intelligibility test, the subjects were presented

with a set of practice stimuli. After the practice session, the

listeners were presented with 10 sentences for each process-

ing condition. Intelligibility scoring was based on keywords

correct (5 per sentence for 50 words per condition per

listener).

For the quality ratings, the subjects were presented with

the pair of quality sentences for all ten processing condi-

tions, in random order. The same pair of sentences was used

for all of the quality conditions to avoid any confounding

effects of potential differences in intelligibility. Listeners

were instructed to rate the overall sound quality using a

rating scale which ranged from 0 (poor sound quality) to 10

(excellent sound quality) (International Telecommunication

Union, 2003). The rating scale was implemented with a

slider bar that registered responses in 0.05 increments.

III. MUTUAL INFORMATION

Mutual information (Moddemeijer, 1999; Kates, 2008b)

gives the degree to which one variable is related to another.

The higher the mutual information, the greater the ability of

measurements of one variable to accurately predict the other.

Mutual information is a more general concept than correla-

tion. A high degree of correlation requires that the two varia-

bles have a linear relationship. A non-linear relationship

between two variables will always reduce the correlation

because the variables can no longer be represented as shifted

and scaled versions of one another. Mutual information,

however, only requires that knowledge of one waveform be

sufficient to reproduce the other waveform. Non-linear oper-

ations, such as taking the square root of a variable, do not

reduce the mutual information. Thus mutual information

can describe nonlinear dependencies between variables that

correlation may miss.

The higher the mutual information between a measured

listener characteristic and the subject results, the greater the

expected benefit of including the signal or subject character-

istic in a model of frequency compression effectiveness.

The subject data include the audiogram, the SRT, age, the

QuickSIN test, and the RST. The audiogram and SRT mea-

sure characteristics of the auditory periphery, age may

involve both the periphery and cognitive function, and the

QuickSIN, and RST emphasize cognitive characteristics.

The relative importance of these peripheral and cognitive

features can be determined by computing the mutual infor-

mation between each of these measurements and the subject

responses.

A. Definition

The mutual information I(x,y) between random variables

x and y is given by the entropies H(x), H(y), and H(x,y),

Iðx; yÞ ¼ HðxÞ þ HðyÞ � Hðx; yÞ: (1)

The entropy measures the uncertainty or randomness of a

random variable. The entropy in bits is given by

HðxÞ ¼ �
X

x

PðxÞ log2PðxÞ; (2)

where P(x) is the probability density function for x and the

summation is over all observed values of x. A variable that

has a wide range, with a large number of possible states and

a low probability of being in any one of them, will have a

large entropy. Conversely, a variable that never changes will

have an entropy of zero.

For Gaussian distributions, the mutual information is

related to the covariance (Moddemeijer, 1999). Assume that

random variables x and y are distributed according to a

bivariate normal distribution, and that both x and y are zero-

mean and have unit variance. The correlation between x and

y is given by q. The mutual information in bits is then given

by

Iðx; yÞ ¼ � 1

2
log2ð1� q2Þ; (3)

and the variance of the estimated mutual information Îðx; yÞ
in bits squared is approximately

Var½Îðx; yÞ� ¼ ½log2ðeÞ�
2 q2

N

� �
; (4)

where N is the number of samples and e is Euler’s constant.

The mutual information is zero for independent variables

(q¼ 0) and approaches infinity for variables that are linearly

related (q¼ 1). The variance is inversely proportional to the
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number of samples used for the estimate and proportional to

the square of the correlation.

B. Uncertainty coefficient

The uncertainty coefficient (Press et al., 2007) is analo-

gous to the correlation coefficient for a linear model. To

compute the uncertainty coefficient, the mutual information

for variables x and y is divided by the entropy of variable x.

An alternative is to divide the mutual information by the

average of the entropies of x and y. The uncertainty coeffi-

cient ranges from 0 to 1. An uncertainty coefficient value of

0 indicates that the variables are independent, while a value

of 1 indicates that knowledge of one variable is sufficient to

completely predict the value of the other. An uncertainty

coefficient of 0.5 would mean that half of the entropy in bits

of one variable can be predicted by measurements of the

other variable.

The relationship between the correlation coefficient and

the uncertainty coefficient for a pair of Gaussian random

variables in plotted in Fig. 1. The plotted values are from a

simulation in MATLAB using 100 000 samples taken from nor-

mal distributions for two independent random variables x(n)

and q(n). Sequence x(n) was considered to the desired signal

and q(n) the interfering noise. Both random variables had

zero mean and unit variance. The random variables were

combined at different signal-to-noise ratios (SNRs) to give

the output y(n), which was then scaled to also have unit

variance. The Pearson correlation coefficient r and the uncer-

tainty coefficient between x(n) and y(n) were computed

across the range of SNRs. At low values of r2 there is an

almost linear relationship between the uncertainty coefficient

and the correlation coefficient, while at high values of r2 the

uncertainty coefficient grows much more rapidly.

C. Subject scores

The mutual information was computed relating the sig-

nal and subject characteristics to the intelligibility scores and

quality ratings. The mutual information was calculated using

a two-dimensional histogram procedure (Tourassi et al.,
2001) with the histogram bin widths selected using Scott’s

(1979) rule. The calculations were performed separately for

the low-loss and high-loss subjects groups and for intelligi-

bility and quality in order to isolate the relative importance

of each characteristic for each subject group. The calcula-

tions for the low-loss group used 14 subjects � 10 no-noise

frequency-compression conditions¼ 140 data samples, and

those for the high-loss group used 26 subjects � 10 no-noise

frequency-compression conditions¼ 260 data samples.

The calculations are summarized in Table I in terms of

the uncertainty coefficient. The uncertainty coefficient was

computed by taking the mutual information in bits between

the measured subject or signal characteristic and the subject

test results and then dividing by the entropy of the subject

results. The average standard deviation of the estimated

mutual information (Moddemeijer, 1999), normalized by the

entropy of the subject results, is 0.028 for the low-loss group

and 0.017 for the high-loss group.

In Table I, the frequency compression cutoff frequency

(Fcut) and the frequency compression ratio (FCR) describe

the stimulus processing. The subject audiograms are sum-

marized in the table by the average loss in dB over the fre-

quencies of 1–4 kHz and slope in dB/oct over 1–4 kHz. It is

apparent that both peripheral and cognitive features convey

information about the speech intelligibility and quality. The

greatest uncertainty coefficient is 0.176 for Fcut and FCR,

low-loss intelligibility, while the smallest coefficient is

0.065 for RST, low-loss quality. The processing parameters

thus convey the most information about intelligibility for

the low-loss group, although SRT, age, and QuickSIN, also

make important contributions. For the high-loss group, the

QuickSIN conveys the most information about intelligibility,

followed by the slope, cutoff frequency, SRT, RST, and

average loss. FCR conveys the most information about

quality for the high-loss group, followed by age, slope,

QuickSIN, cutoff frequency, and average loss.

Looking at the table in terms of the signal characteris-

tics, peripheral loss, and cognitive abilities rather than

FIG. 1. Uncertainty coefficient plotted as a function of the square of the

Pearson correlation coefficient (r2) for a pair of correlated Gaussian random

variables.

TABLE I. Uncertainty coefficients between the signal or subject characteristics and the subject scores. The coefficient was computed by taking the mutual in-

formation in bits between the subject or signal feature and the subject test results and dividing by the entropy of the subject results. Fcut is the cutoff fre-

quency, FCR is the compression ratio for the frequency compression, ripple is the spectral ripple threshold test (SRT), and RST is the reading span test.

Subject group Test Fcut FCR Ave. loss Slope Ripple Age QuickSIN RST

Low loss Intel 0.176 0.176 0.091 0.089 0.123 0.135 0.099 0.119

High loss Intel 0.106 0.065 0.090 0.113 0.102 0.078 0.145 0.093

Low loss Quality 0.136 0.133 0.078 0.125 0.161 0.142 0.137 0.065

High loss Quality 0.092 0.121 0.090 0.108 0.071 0.112 0.093 0.070
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subject groups, it appears that the processing parameters are

relatively more important for the low-loss group than for the

high-loss group. The SRT also appears to convey more rela-

tive information for the low-loss group than for the high-loss

group. The RST appears to convey more information about

intelligibility than for quality. Thus the relative importance

of the signal, peripheral, and cognitive characteristics varies

with the subject group and task.

D. Relationships among characteristics

In addition to determining the relationship of the signal

and subject characteristics to the intelligibility scores

and quality ratings, mutual information can also be used to

determine the dependency of each characteristic upon the

others. The uncertainty coefficient between each pair of

features was computed by taking the mutual information in

bits between the two features and then dividing by the aver-

age of their entropies. The uncertainty coefficients can be

interpreted much like correlation coefficients, but are more

general since they reflect any functional dependency and not

just a linear relationship.

The uncertainty coefficient matrix for the low-loss

group is presented in Table II. The diagonal elements are all

ones, as would be the case for a correlation matrix. The

smallest off-diagonal entry is 0.403 which relates age to

the RST, and the largest entry is 0.678 which relates age to

the QuickSIN. Thus knowing the subject’s age is less useful

in predicting the RST than in predicting the QuickSIN. Most

of the uncertainty coefficients are about 0.5, which indicates

a moderate amount of interdependence and which suggests

that adding additional variables to the intelligibility and

quality models for the low-loss group would not be expected

to improve the prediction accuracy.

The uncertainty coefficient matrix for the high-loss

group is presented in Table III. The smallest off-diagonal

entry is 0.240 which relates the RST to the average loss, and

the largest entry is 0.489 which relates the audiogram slope

to the spectral ripple detection. The uncertainty coefficient

between age and RST is 0.315 for the high-loss group, which

is lower than the 0.403 for the low-loss group. Overall, the

entries for the high-loss group are uniformly lower than for

the low-loss group, which indicates more independence

between the measured quantities. In particular, the entries in

the columns for age and RST are smaller in Table III than in

Table II, which suggests that these features would add more

information to the intelligibility and quality models for

the high-loss group than they would add to the models for

the low-loss group.

IV. NEURAL NETWORK MODEL

The results from the mutual information analysis sug-

gest that an accurate model of the effects of frequency com-

pression should include cognitive as well as peripheral

factors. A neural network (Wasserman, 1989; Beale et al.,
2012) was used in the study reported in this paper to build a

model to predict the subject intelligibility and quality scores.

The neural network model used in this paper comprised an

input layer, one hidden layer, and a single neuron as the out-

put layer. The log-sigmoid activation function was used. The

number of neurons in the input layer corresponded to the

number of input features, and the number of neurons used

for the hidden layer increased as the number of input features

increased. The neural network was trained to reproduce the

either the intelligibility scores or quality ratings. A total of

four separate networks were created: low-loss group intelli-

gibility, low-loss group quality, high-loss group intelligibil-

ity, and high-loss group quality.

One problem with neural networks is overfitting, in

which the network has enough degrees of freedom that it

will encode the details of the specific training set rather than

generate a general solution (Beale et al., 2012). To avoid the

overfitting problem, the ensemble averaging approach of

bootstrap aggregation (“Bagging”) was used to average the

outputs of several neural networks. A bootstrap is a statisti-

cal procedure where multiple partial estimates of a probabil-

ity distribution are used to estimate the total distribution.

Each neural network was trained using a subset comprising

63.2% of the data, randomly selected with replacement

(Breiman, 1996); the fraction 0.632¼ (1� e�1) is the statis-

tically optimal bootstrap size (Efron and Tibshirani, 1993).

This approach has been shown to give reduced estimator

error variance (Kittler, 1998) and provide relative immunity

to overfitting (Krogh and Sollich, 1997; Maclin and Opitz,

1997; Domingos, 2000). Any remaining overfitting for a

model in the ensemble is in general an advantage and can

lead to improved performance of the ensemble taken as a

whole (Krogh and Sollich, 1997). Averaging ten neural net-

works is generally sufficient to get the full benefits in reduc-

ing the probability of overfitting (Hansen and Salamon,

1990; Breiman, 1996; Opitz and Maclin, 1999), so ten

TABLE II. Uncertainty coefficient matrix for the signal or subject character-

istics for the low-loss group. Each coefficient was computed by taking the

mutual information in bits between each pair of features and dividing by the

average of their entropies.

Ave. loss Slope Ripple Age QuickSIN RST

Ave. loss 1.000 0.447 0.471 0.438 0.580 0.521

Slope 0.447 1.000 0.483 0.632 0.586 0.471

Ripple 0.471 0.483 1.000 0.474 0.465 0.555

Age 0.438 0.632 0.474 1.000 0.678 0.403

QuickSIN 0.580 0.586 0.465 0.678 1.000 0.514

RST 0.521 0.471 0.555 0.403 0.514 1.000

TABLE III. Uncertainty coefficient matrix for the signal or subject charac-

teristics for the high-loss group. Each coefficient was computed by taking

the mutual information in bits between each pair of features and dividing by

the average of their entropies.

Ave. Loss Slope Ripple Age QuickSIN RST

Ave. Loss 1.000 0.329 0.356 0.417 0.343 0.240

Slope 0.329 1.000 0.489 0.421 0.416 0.454

Ripple 0.356 0.489 1.000 0.284 0.404 0.378

Age 0.417 0.421 0.284 1.000 0.361 0.315

QuickSIN 0.343 0.416 0.404 0.361 1.000 0.397

RST 0.240 0.454 0.378 0.315 0.397 1.000
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networks were created and the predictions averaged to

produce the final model output.

The simplest neural network model started with the sig-

nal features of compression cutoff frequency and frequency

compression ratio along with the subject’s audiogram. The

audiogram was specified as the loss in dB at 0.250, 0.500, 1,

2, 3, 4, 6, and 8 kHz. Five neurons were used in the hidden

layer and one neuron in the output layer. Subject characteris-

tics were then added, starting with additional information

about the periphery followed by age and then the cognitive

information.

The next neural network added the SRT, and the number

of neurons in the hidden layer was increased to six. The SRT

is an individual bandwidth measure that goes beyond the

audiogram but is still peripheral. Subject age was then

added. If age was strongly related with working memory,

then adding age would provide an improvement in model

accuracy but adding the RST score after age would not pro-

vide any improvement. Age was followed by the QuickSIN

score, which combines peripheral coding of noisy speech

with central processing of the signal. The last feature was

the RST score, which is purely cognitive since it has no audi-

tory component. As each feature was added, the number of

neurons in the hidden layer was increased by 1.

The neural network results are plotted in Figs. 2 and 3.

The results are averaged across the subjects in each group.

The root-mean-squared (RMS) errors between the predicted

values and the subject intelligibility or quality results are

plotted in Fig. 2. The low-loss group errors are plotted using

the open symbols and dashed lines, and the high-loss group

errors are plotted using the filled symbols and solid lines. The

model results are plotted in Fig. 3 in terms of the Pearson cor-

relation coefficient computed between the predicted values

and the subject scores. Improved performance in Fig. 2 is

indicated by a reduction in the RMS error, while in Fig. 3 it

is shown by an increase in the correlation coefficient.

The intelligibility predictions for the low-loss group in

Fig. 2 show the lowest error, and the performance remains

constant even as additional subject data are added. The con-

stant performance indicates that the cognitive measures do

not add any useful information about the subjects beyond

what is related to the audiogram. A similar effect is observed

for the quality predictions for the low-loss group, which also

fail to improve as more subject information is incorporated

into the neural network. The intelligibility predictions for the

high-loss group have a greater error than found for the low-

loss group. In contrast to the low-loss group, the error for the

intelligibility predictions for the high-loss group decreases

as more features are added. The SRT score and subject age

each make a small reduction in error when they are added,

while including the QuickSIN and RST scores make a more

substantial reduction in error. For the high-loss group qual-

ity, adding the SRT does not reduce the error, while adding

age makes a noticeable improvement. The QuickSIN adds

little to what is already conveyed by age, but the RST score

reduces the error even further.

In interpreting Figs. 2 and 3, it is important to note that

the curves show the improvement as a new feature is added.

That is, the curves show how much information is added

by the feature beyond what the model already has from the

previous features. The curves thus show the incremental

information added by a feature and not the absolute amount

of information that was presented in Table I. The incremen-

tal increase depends on what has already been incorporated

into the model from the previous features. Tables II and III

give the uncertainty coefficients between features; adding a

feature that has a high uncertainty coefficient with a feature

already incorporated into the model would result in only a

small incremental improvement in the model accuracy.

Changing the order in which the features are added to the

model would therefore change the shape of the curve and the

incremental improvement associated with each feature, but

the ultimate model accuracy for all features included would

not change. The order used here was chosen to compare

predominantly cognitive to predominantly peripheral effects;

the peripheral features were included in the model first and

then the cognitive features were added.

The individual subject intelligibility scores are pre-

sented in the scatter plot of Fig. 4 as a function of the neural

network prediction for each of the subjects in the high-loss

group. Each point represents one subject’s observed vs

FIG. 2. RMS error between the neural network prediction and the subject

fraction words correct and quality ratings as features are added to the net-

work, computed over the individual subjects and processing conditions.

FIG. 3. Pearson correlation coefficient between the neural network predic-

tion and the subject fraction words correct and quality ratings as features are

added to the network, computed over the individual subjects and processing

conditions.
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predicted intelligibility for one frequency-compression con-

dition. The Pearson correlation coefficient is 0.931, which

on the surface is quite good. However, the points in the

figure are clustered in the upper right-hand corner, so the

high correlation is really determined by the tail of the distri-

bution for the low intelligibility scores.

The individual subject quality ratings are presented in

the scatter plot of Fig. 5 as a function of the neural network

prediction for each of the subjects in the high-loss group.

The Pearson correlation coefficient of 0.926 between

the observed and predicted values is again quite good. But

the quality model results, like the intelligibility results, are

clustered in the upper right-hand corner of the plot, so again

the high correlation really shows the success in modeling the

low ratings.

V. DISCUSSION

A. Model results

The results presented in Figs. 2 and 3 show different

trends for the low-loss as opposed to the high-loss group. In

Fig. 3, for example, the correlation coefficient between the

low-loss subject intelligibility scores and the model predic-

tions remains essentially constant as more information is

added to the model. The correlation coefficient for the high-

loss group, on the other hand, increases with additional

information, starting at 0.89 and increasing to 0.93. The dif-

ferent trends are consistent with recent studies. The results

of Ellis and Munro (2013) showed no relationship between

frequency compression and working memory for their group

of normal-hearing subjects, while the results of Arehart et al.
(2013) showed significant correlations between frequency

compression and working memory for their group of

hearing-impaired subjects.

The difference in the trends is also consistent with mod-

els of cognitive processing that postulate a fixed working

memory capacity that is divided among the different tasks

being performed (Wingfield et al., 2005; McCoy et al.,
2005; Francis, 2010; Amichetti et al., 2013; Arehart et al.,
2013; Ng et al., 2013). Francis (2010), for example, used

target speech coming from in front of the normal-hearing

listeners and interfering speech coming from either in front

or to the side, along with a competing visual digit identifica-

tion task. He found that the proportion of words correctly

identified went down and the reaction time went up when the

competing visual task was present. Amichetti et al. (2013)

had normal-hearing subjects listen to word lists at 25 or

10 dB above auditory threshold. They found that the number

of words correctly recalled was reduced for the more diffi-

cult listening condition given by the lower presentation

level. McCoy et al. (2005) compared older adults with good

hearing to an age-matched group that had mild-to-moderate

hearing loss. They had the subjects recall the final three

words in a running memory task. Both groups had nearly

perfect recall of the final word of the three-word sets, but the

group with the greater hearing loss could recall fewer of the

nonfinal words. Furthermore, brain imaging studies using

dual-task paradigms also present evidence for a limited

amount of working memory (Bunge et al., 2000) and limited

cognitive capacity (Just et al., 2001).

For the low-loss group, it is postulated that adequate

working memory is available to process both the distorted

speech in the periphery and to allow the extraction of the lin-

guistic content (Stenfelt and R€onnberg, 2009). The high-loss

group, on the other hand, is postulated to use more of the

available working memory when processing the distorted

speech sounds coming from the impaired periphery, leaving

fewer resources available to process the linguistic content.

The RST measurements add information useful for modeling

the high-loss group since the test indicates whether enough

working memory is available to process the speech after

the cognitive load of processing sounds from the impaired

periphery is taken into account. The low-loss group, on the

other hand, appears to have enough processing resources

available that the limits detected with the RST are not

reached in the speech intelligibility task.

The correlation plots for intelligibility also show that the

RST adds useful information for the high-loss group beyond

that added by age. Including age in the model makes a small

improvement over using just the frequency compression

FIG. 4. Scatter plot showing the high-loss group subject intelligibility scores

plotted as a function of the score predicted by an ensemble of ten neural net-

works. All features were used in the model.

FIG. 5. Scatter plot showing the high-loss group subject quality ratings plot-

ted as a function of the score predicted by an ensemble of ten neural net-

works. All features were used in the model.
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parameters and hearing loss, which indicates that age pro-

vides some information beyond the audiogram, as found by

Schvartz et al. (2008). However, the improvement in the

correlation coefficient when the RST is added to a model that

already contains age indicates that age does not duplicate the

information provided by the RST. This result is also consist-

ent with the data in Table III, where the uncertainty coeffi-

cient between the RST and age was 0.315.

Additional measurements of peripheral or cognitive

performance would be expected to lead to improved correla-

tion between the model predictions and the subject results.

Hearing-impaired listeners often have reduced temporal

processing abilities (Hopkins and Moore, 2007), and this

reduction in temporal processing appears not to be correlated

with the audiogram (Hopkins and Moore, 2011). Thus a

measure of temporal processing abilities could add informa-

tion not included in the other peripheral measures presented

in this paper. Sarampalis et al. (2009) found a significant

relationship between the intelligibility of noisy speech and

reaction time for a dual task measuring speech intelligibility

in conjunction with a competing visual digit identification

task, so reaction time measurements may also contribute use-

ful information to a more comprehensive model. McCoy

et al. (2005) found that hearing-impaired listeners had more

difficulty in recalling words in a running memory task, so a

test of short-term memory capacity could be beneficial.

Shinn-Cunningham and Best (2008) show that hearing-

impaired listeners have more difficulty in directing attention

to the sound source of interest in the presence of competing

spatially separated sources, so a test of selective attention

might also contribute useful information to the model.

The results from the quality model are consistent with

the intelligibility results. Adding additional information to

the model for the low-loss group does not improve the model

accuracy, while adding information to the model for the

high-loss group results in a trend in the model accuracy simi-

lar to that found for intelligibility. This similarity between

quality and intelligibility suggests that quality judgments

also depend on the amount of available working memory.

One possible explanation is the relationship between intelli-

gibility and quality; when intelligibility is poor, speech qual-

ity is related to intelligibility (Preminger and van Tasell,

1995). Thus, for sufficiently degraded speech the quality

rating will be reduced due to the reduction in intelligibility,

which in turn depends on working memory. A second possi-

bility is that a greater working memory capacity allows the

listener to retain more of the sentence in memory while mak-

ing a quality judgment, thus allowing the listener to react to

more regions of the signal that contain distortion.

One would expect to see similar results applying the

neural network approach to other forms of signal processing.

The neural network combines the selected features to pro-

duce a minimum mean-squared error estimate of the subject

intelligibility scores or quality ratings. For example, several

studies have found a significant relationship between work-

ing memory and success in using dynamic-range compres-

sion (Lunner, 2003; Gatehouse et al., 2006; Rudner et al.,
2009; Cox and Xu, 2010). The statistical significance

indicates that a measure of working memory conveys

information about the perception of the processed speech, so

a model that incorporates a measure of working memory

would be expected to be more accurate than a model that

leaves it out.

B. Clinical implications

The neural network models show a high degree of corre-

lation between the model outputs and the average subject

intelligibility scores and quality ratings. However, the ulti-

mate objective is predicting the individual reaction to the

signal processing and not the group average. The frequency

compression conditions that gave the highest intelligibility

for the high-loss group are listed in Table IV, along with the

best processing conditions predicted by the neural network.

The unprocessed reference condition is indicated by a cutoff

frequency of Fcut¼ 3 kHz and the frequency compression

ratio of FCR¼ 1. The unprocessed condition gave the high-

est intelligibility for 9 out of the 26 subjects (subjects 1, 2, 4,

6, 7, 9, 13, 14, and 23). The model predicts the best process-

ing condition for only 6 out of the 26 subjects (subjects 4,

11, 15, 18, 20, and 23). If the model were being used for

hearing-aid fittings, it would be better at removing inappro-

priate settings than finding the best setting.

The frequency compression conditions that gave the

highest quality ratings for the high-loss group are also listed

in Table IV, along with the best processing conditions pre-

dicted by the neural network. The unprocessed condition

received the highest quality rating from 20 out of the 26 sub-

jects. The model predicts that the unprocessed condition will

give the highest quality for all of the subjects, and thus

agrees with these 20 subjects. The prediction, however, con-

veys no information since it is the same for everyone and it

can thus be dispensed with. As was the case for intelligibil-

ity, the model is better at identifying the conditions that will

be liked least as opposed to those that will receive the high-

est preference.

The data presented in Table IV also show that for many

listeners the condition that gave the highest intelligibility

differed from the one that gave the highest quality rating.

Fewer than half (10 out of 26) of the subjects indicated that

the highest intelligibility condition was also the one that

gave the best quality. This finding is similar to results for

amplification in hearing aids, where the response that gives

the highest intelligibility is not necessarily the response that

yields the highest listener preference (Punch and Beck,

1980; Souza, 2002).

The most appropriate clinical application of the current

modeling approach would be in the initial settings of a

frequency-compression hearing aid to improve speech intel-

ligibility. The intelligibility model prediction would provide

the recommended starting point for the hearing-aid settings,

to be followed by fine-tuning of the processing parameters in

the clinic. Even though the intelligibility predictions are

imperfect, they would still be better than procedures that

ignore the individual variability not described by the audio-

gram. Additional measurements of listener performance, as

outlined in Sec. V A, would be expected to improve the

model accuracy and thus enhance its clinical usefulness.
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VI. CONCLUSIONS

This paper has presented a neural network model

for predicting the effects of nonlinear signal hearing-aid

processing on speech intelligibility and quality. Frequency

compression was used as the nonlinear processing example.

An ensemble averaging approach was used to avoid the

problems associated with overfitting. The model combines

peripheral measures of hearing loss with additional subject

information and a measure of cognitive ability, and appears

to be more accurate than a model that is based on the periph-

ery alone.

The neural network model results show a low RMS

error and a high degree of correlation with the subject intel-

ligibility scores and quality ratings when averaged over the

low-loss and high-loss subject groups. However, an analy-

sis of the individual high-loss subject data showed that the

model was not accurate enough to select the best processing

parameters for each subject. The model appears to be better

at rejecting inappropriate parameter choices than it is at

finding the best fit for each listener. This result is due, in

part, to the small differences observed in intelligibility and

quality for a large number of the subjects and processing

conditions. The neural network modeling framework

appears to be effective, however, so an improvement in

accuracy would be expected given additional subject

information.
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