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ABSTRACT

Transcription factors (TFs) combine with co-factors
to form transcriptional regulatory modules
(TRMs) that regulate gene expression programs
with spatiotemporal specificity. Here we present a
novel and generic method (rTRM) for the reconstruc-
tion of TRMs that integrates genomic information
from TF binding, cell type-specific gene expression
and protein–protein interactions. rTRM was applied
to reconstruct the TRMs specific for embryonic stem
cells (ESC) and hematopoietic stem cells (HSC),
neural progenitor cells, trophoblast stem cells and
distinct types of terminally differentiated CD4+ T
cells. The ESC and HSC TRM predictions were
highly precise, yielding 77 and 96 proteins, of which
�75% have been independently shown to be involved
in the regulation of these cell types. Furthermore,
rTRM successfully identified a large number of
bridging proteins with known roles in ESCs and
HSCs, which could not have been identified using
genomic approaches alone, as they lack the ability
to bind specific DNA sequences. This highlights the
advantage of rTRM over other methods that ignore
PPI information, as proteins need to interact with
other proteins to form complexes and perform
specific functions. The prediction and experimental
validation of the co-factors that endow master regu-
latory TFs with the capacity to select specific
genomic sites, modulate the local epigenetic profile
and integrate multiple signals will provide important
mechanistic insights not only into how such TFs
operate, but also into abnormal transcriptional
states leading to disease.

INTRODUCTION

The regulation of gene transcription is a fundamental
process whereby cells respond to a multitude of cues
that regulate their development and orchestrate specific
responses to external stimuli. Transcriptional outputs
result from integrating the information encoded by
several regulatory signals, including transcription factors
(TFs), epigenetics and global chromatin structure inside
the nucleus at specific genomic loci (1). Of these signals,
TFs are the best understood, as they specifically bind to
short DNA sequences, either in basal promoters (where
the general transcriptional machinery assembles), or in
distal elements, which are responsible for the temporal
and tissue-specific expression of genes. ChIP-chip, and,
more recently, ChIP-seq technologies, allow the determin-
ation of the genome-wide binding sites of specific TFs
in vivo, and as such have become central tools in the
study of transcriptional regulation. In an early example
of ChIP-seq done for the TF Tal1 (Scl), an essential regu-
lator of hematopoietic stem cells (HSCs), we found that
Tal1 regulates other TFs indispensable for HSC identity
and function (2). The computational analysis of the Tal1
binding sites implicated another 10 TFs, which were sub-
sequently validated by ChIP-seq to find that Tal1-bound
sites are co-occupied with other TFs, including Lyl1,
Gata2, Runx1, Erg, Fli1 and Lmo2 (3). Interestingly, the
lack of Runx1 binding sites in a large set of co-occupied
genomic sites led to the identification of previously unre-
ported protein–protein interactions (PPIs) between Runx1
and Gata2, Erg and Tal1 [reviewed in (4)]. This shows that
combinatorial TF binding is required for driving hemato-
poiesis, and also that specific PPIs are essential for the
assembly of TF complexes. Cooperative interactions
between TFs that constitute transcriptional regulatory
modules (TRMs) have also been identified in embryonic
stem cells (ESCs) (5) plus a number of other cell
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types through the ENCODE project. In the latter, the
conclusions from the analysis of ChIP-seq profiles for
109 TFs in various cell types further emphasized the
notion that TFs form TRMs that regulate the temporal
and tissue-specific expression of genes (6). TRMs generally
extend over short DNA regions and consist of several
distinct and interacting TFs that act in concert to
perform cell type-specific functions (3,5,7). It has been
recognized that a major difficulty in predicting TRMs
comes from a lack of understanding of the direct and
indirect interactions among TFs and co-factors (8). This
is a key aspect, as all proteins need to physically interact
with other proteins to perform their functions. Most
proteins oligomerize into homomers, and these
homomers typically assemble into higher-order structures
in specific cellular contexts (9).
The systematic identification of TRMs by ChIP-seq is

not presently viable even in those cases where the genome-
wide binding sites of a key regulatory TF are known. This
is because in the absence of additional information (such
as specific TFs previously known to be essential for a par-
ticular cell type), we cannot shortlist a priori the co-factors
whose co-localization should be assessed by ChIP-seq in a
specific cell type and context. To fill this gap, here we
present a computational framework (rTRM) for the re-
construction of TRMs that exploits information on
known PPIs. Given a set of experimentally determined
genomic coordinates (e.g. from the ChIP-seq peaks of a
target TF), we combine TF motif analysis on these
genomic coordinates and cell type-specific gene expression
to identify a list of candidate co-factors, and then use
rTRM to predict TRMs from PPI networks. We applied
rTRM to reconstruct the TRMs characteristic of several
embryonic and differentiated cell types, including ESCs,
HSCs, neural progenitor cells (NPCs), trophoblast stem
cells (TSCs) and several types of differentiated T cells.
The prediction of TRMs in ESCs and HSCs in particular
yielded dozens of co-factors of which �75% have been
independently reported to regulate the transcriptional
programs of these two cell types. The ability of rTRM
to identify key regulatory proteins in ESCs and HSCs
(two distinct albeit well-characterized systems) with a
high degree of precision suggests that it can be applied
to reconstruct TRMs in other cell types and transcrip-
tional contexts.

MATERIALS AND METHODS

Overview of rTRM

The goal of the rTRM method is to reconstruct TRMs
from a list of candidate TFs using PPI information. To
determine the list of candidate TFs, we integrate experi-
mental evidence of TF binding with TF binding site pre-
dictions and cell type-specific gene expression data.
Briefly, a set of experimentally determined genomic
regions are scanned for enriched TF binding motifs,
which are subsequently mapped to their corresponding
genes. Next, this list of TF genes is filtered to remove
non-expressed candidates. Finally, rTRM maps the list
of candidate TFs onto the organism’s PPI network, and

our own module-finding algorithm is applied to recon-
struct a TRM (Figure 1; Supplementary Figure S1
provides a detailed explanation of the computational
workflow).

Compilation of a TF position weight matrix library and
mapping to genes and orthologs

Position weight matrices (PWMs) representing the binding
specificities of a large number of TFs have been made
available in recent years using a diversity of experimental
approaches. We compiled a library of 1298 PWMs by
integrating the vertebrate entries from the JASPAR
database (2010 release, including 130 PWMs from
human, mouse, rat, chicken and Xenopus) (10), the
protein-binding microarray UniPROBE database
(299 matrices of human and mouse origin) (11) and the
recently published high-throughput SELEX (HT-SELEX)
datasets (including 869 PWMs of human and mouse
origin) (12,13) (Supplementary Table S1). All 1298
PWMs were uniformly mapped to Entrez Gene identifiers
using the original annotations provided in the respective
databases (comprising a mixture of Entrez Gene, Uniprot
and other protein database identifiers). Finally, all Entrez
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Figure 1. Overview of the rTRM method. Here we illustrate the recon-
struction of a TRM around a specific TF whose genomic binding sites
have been determined experimentally by ChIP-seq (Step 1). In Step 2,
the genomic regions are scanned for enriched motifs against a back-
ground. Next, these enriched motifs are mapped to their corresponding
TFs while filtering out those genes not expressed in the cellular type
under consideration (Step 3). The remaining TFs that putatively bind
the set of enriched motifs are mapped onto the species’ PPI network,
followed by the application of our own module finding algorithm to
identify the TRM.
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Gene identifiers were mapped to orthologous genes across
species with the Biomart tool as implemented in the
biomaRt Bioconductor package (14). The library of
1298 PWMs maps to 548 human TF genes, representing
35–39% of the entire human TF complement as defined by
Wingender et al. [1558 TF genes, (15)] or by Vaquerizas
et al. [1391 TF genes (16)].

The TFs mapped onto the PWM library were annotated
using the structural classification scheme defined in the
TFClass database (15), where human TFs are divided
into 9 superclasses, 40 classes and 111 families. Further
classification levels include the subclass (optional), gene
and ‘Factor species’ (for protein isoforms). Briefly, the
OBO-formatted ontology file containing the structural
classification of human TFs was downloaded and
parsed. ‘Factor species’ entries were removed, as the
gene level is the most basic unit used in our analysis
pipeline. The mouse TFs were assigned to the specific
structural classes of the TFClass database by means of
the Biomart-derived table of mouse–human orthology re-
lationships. A concentric graph representing the relation-
ship between the different levels of the TFClass hierarchy
and the mapping is shown in Supplementary Figure S2.
Finally, all datasets including PWMs, orthology mapping
and TFClass classification were organized into tables and
stored in an SQLite database. The rTRM package
provides an API for easy data query.

ChIP-seq datasets and de novo motif enrichment analysis

rTRM was used to reconstruct the TRMs of mouse ESCs,
HSCs, NPCs, TSCs and of several differentiated T cells.
As the starting point in the analysis pipeline is a set of
experimentally determined genomic coordinates, we relied
on publicly available TF-specific ChIP-seq datasets. For
ESCs, two distinct datasets were used: (i) the ChIP-seq
libraries from Chen et al. (5) included the following 13
factors: Ctcf, E2f1, Esrrb, Klf4, Myc, Mycn, Nanog,
Pou5f1 (Oct4), Smad1, Sox2, Stat3, Tfcp211 and Zfx;
(ii) the ESC ChIP-seq libraries from Lodato et al. (17)
included Sox2 and Pou5f1 (Oct4), as well as ChIP-seq
data for Sox2 and Brn2 (Pou3f2) performed in NPCs.
For HSCs, the 10 TFs profiled by Wilson et al. (3)
included Erg, Fli1, Gata2, Gfi1b, Lmo2, Lyl1, Meis1,
Sfpi1 (Pu.1), Runx1 and Tal1 (Scl). For TSCs, binding
information for Cdx2, Elf5 and Eomes was obtained
from Chuong et al. (18). For studying the distinct
populations of CD4+ T cells, the genome-wide Gata3
binding patterns described in Th1, Th2, Th17 and iTreg
cells were obtained from Wei et al. (19). For all the above
TF-specific ChIP-seq libraries, the summits of all peaks
were taken as originally reported and extended 200 bp
on either side to generate a collection of 400 bp regions.

De novo motif enrichment analysis was performed with
HOMER (7) for each ChIP-seq library using default par-
ameters on all 400-bp TF-binding regions. HOMER uses
sets of background sequences for enrichment analysis by
randomly selecting genomic sequences that possess
features similar to the sequences tested for enrichment,
including GC content and length. A consequence of this
is that every run of HOMER typically produces slightly

different enrichment results depending on the set of back-
ground sequences. To overcome this bias we performed 10
replicate HOMER runs for each TF and selected only
those motifs that were enriched (q< 0.05) in at least
80% of the replicates. The final list of enriched motifs
was matched against our PWM library using Tomtom
(q< 0.05) (20).

Gene expression datasets

Microarray expression data were obtained from the NCBI
Gene Expression Omnibus for ESCs [GSE27708 (21) and
GSE38850 (17)], adult bone marrow HSCs [GSE37000
(22)] and NPCs [GSE38850 (17)]. The raw expression
data (Affymetrix MOE430 2.0 platform) were processed
using the custom chip description file (CDF) files from the
BrainArray project (23), and robust multi-array average
(RMA) was used for background correction, normaliza-
tion and summarization (24). For each dataset, we plotted
the distribution of expression values to determine the
specific cutoffs that allow distinguishing expressed from
non-expressed genes. The choice of cutoff values was
based on the distribution of background at low intensities
(Gaussian distribution) and the specific expression values
of key TFs with mutually exclusive biological functions
(Supplementary Figure S3). For instance, Pou5f1 (Oct4)
and Sox2 are expressed in ESCs but not HSCs, and these
were used to determine the expression cutoff in HSCs (log2
intensity cutoff value=5.5). On the other hand, Sfpi1
(Pu.1) and Gata2 are expressed in HSCs but not in
ESCs, and so these were used to determine the expression
cutoff in ESCs (log2 intensity cutoff value=7.0). For
TSCs and the CD4+ T cell subsets, paired RNA-seq
datasets were obtained from the original publications
(GSE42207 and GSE20898, respectively). Raw counts
were converted to counts per million (CPM) and a
CPM> 1 cutoff was used to determine the list of expressed
genes.

PPI datasets

Mouse PPI data were obtained from the BioGRID
database (version 3.2.98, release of March 2013) (25).
We removed the edges corresponding to non-physical
(genetic) interactions, as well as the ubiquitination and
sumoylation moieties Ubc, Sumo1, Sumo2 and Sumo3.
The final working PPI network was simplified to
maintain only a single edge per pair of proteins, and the
original number of edges was recorded as an edge attri-
bute to determine the significance of the interaction. For
the cell type-specific reconstruction of TRMs, the whole
PPI network was further simplified by removing those
proteins (nodes) whose corresponding genes were not ex-
pressed in the cell type under study.

Reconstruction and comparison of TRMs

A local search algorithm was developed to reconstruct
TRMs. Our algorithm works by finding proteins in PPI
networks separated by a maximum network distance to a
target protein, as detailed in Supplementary Figure S4.
The target protein is defined as the TF used in the
immunoprecipitation step of the ChIP-seq experiment.
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Briefly, in the first step, the proteins directly connected to
the target TF (closest neighbors), as well as the enriched
TFs, are retrieved. This is followed by the extraction of the
subnetwork of shared nodes, including all neighbors.
Finally, those nodes in the subnetwork that are separated
from the target TF by more than a maximum set distance
are removed. To account for all the equivalent paths con-
necting any two nodes in the network, all the shortest
paths were computed. The shortest path function returns
all the nodes connecting any two nodes in the network,
including the target nodes themselves. This means that for
directly connected nodes, the shortest path results in two
nodes, which corresponds to a distance of 1 in the network
(as measured by the number of edges connecting two
nodes). By default, a maximum of three nodes in the
shortest path (distance of 2) was used in this study to
allow for the presence of one bridge protein. In rTRM,
this parameter can be adjusted by specifying the maximum
number of bridge proteins (by default maximum
bridge=1).
The similarity between any two TRMs was determined

by calculating the number of common edges. The advan-
tage of using common edges over common nodes to assess
the similarity between two networks is illustrated in
Supplementary Figure S5. Venn diagrams were used
throughout to report the degree of similarity of any two
networks. However, to find groups of TRMs with similar
structures when comparing multiple networks, a matrix
was computed to record the pairwise network Jaccard
index of the common edges (see Supplementary
Methods), followed by hierarchical clustering using
Pearson distance and complete linkage (Pearson distance
d=1 – r, where r represents the Pearson correlation
coefficient).

Gene Ontology and phenotype analysis

Gene Ontology enrichment analysis was performed for the
Biological Process category using the GOstats
Bioconductor package (26). A conditional test by Alexa
et al. that considers the dependency structure of GO terms
was performed to avoid the enrichment of duplicated or
dependent terms (27). Results were deemed significant at
P< 0.05. Mouse genetic deletion phenotypes were
obtained from the Mouse Genome Database (28), and
the enrichment of phenotypes associated with the TRMs
was determined with a hypergeometric test using the R
function phyper.

Availability of rTRM

The rTRM method is licensed under GPL-3 terms and
freely available as a package in the R programming
language (29). The rTRM version used to produce the
results presented in this manuscript (rTRM v. 0.9.4) is
available at https://sourceforge.net/projects/rtrm. rTRM
is also available in Bioconductor (currently in the devel-
opment version) and future updates to the package will be
made available through the Bioconductor Web site (http://
www.bioconductor.org). Specific details on rTRM instal-
lation and software dependencies are available in the
Supplementary Material.

RESULTS

A novel method for the reconstruction of TRMs

We have developed a novel method (rTRM) for the
reconstruction of TRMs from PPI networks that takes
advantage of experimentally determined genomic
binding sites for a specific TF (the ‘target TF’). We inte-
grate motif enrichment analysis on the experimentally
characterized binding regions and gene expression data
to determine a set of candidate TFs. The mapping of TF
gene identifiers to a common organism (ortholog
mapping) allows TFs to be filtered by expression, and to
be mapped onto PPI networks. Then, we use a specific
module-finding algorithm to identify TRMs from the list
of candidate TFs and the PPI network (Figure 1).

TRMs controlling mouse ESC identity

As proof of principle, we tested the ability of rTRM to
reconstruct the TRM of mouse ESCs. The TFs essential
for ESC identity have been extensively characterized
(5,30–32), and ChIP-seq libraries are available for 13
distinct TFs [the ‘target TFs’: Ctcf, E2f1, Esrrb, Klf4,
Myc, Mycn, Nanog, Pou5f1, Smad1, Sox2, Stat3,
Tfcp2l1 and Zfx (5)], all of which regulate distinct
aspects of ESC identity. For instance, Pou5f1 (Oct4),
Sox2 and Klf4/Esrrb are sufficient to induce the
reprogramming of fibroblasts into pluripotent stem cells
(33,34), whereas Smad1 and Stat3 are involved in the regu-
lation of the signaling pathways mediated by BMP and
LIF, respectively [both pathways being essential for ESC
self-renewal (35)]. Moreover, Esrrb and Zfx are involved
in the maintenance of ESCs (36,37); E2f1 plays a major
role in cell cycle regulation (38); and Ctcf is known to
regulate the 3D architecture of chromatin (39).

The peaks reported for all target TFs were analyzed
with HOMER to identify enriched DNA-binding motifs.
The de novo enriched motifs were subsequently matched
against our library of PWMs, and then mapped onto
mouse Entrez Gene identifiers. TF genes were filtered
out by expression using the ESC microarray expression
data published by Ho et al. (21), and then mapped onto
the mouse PPI network to compute TRMs. The only
exception was Zfx, which was not found in the PPI
network and therefore a TRM could not be built.
Moreover, because the rTRM analysis on Ctcf binding
sites did not return a TRM (even when applying a
maximum distance of 2), we ended up with 11 distinct
TF-specific TRMs (Supplementary Figure S6).
Supplementary Tables S2 and S3 include specific details
on the enriched motifs and genes constituting the final TF-
specific TRMs. The predicted TRMs (Supplementary
Figure S6) displayed a diversity of TF structural classes,
including homeodomain, nuclear receptor, basic helix-
loop-helix (bHLH), Rel (RHR), Stat and basic leucine
zipper. In general, the TRMs harbor a large number of
highly connected TFs (especially those of Stat3 and
Mycn). Importantly, all the 11 reconstructed TRMs re-
covered a high percentage of the target TFs. For
instance, the Klf4, Pou5f1, Smad1, Stat3 and Tfcp2l1
TRMs included 6 of the 11 target TFs (54%), whereas
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the E2f1, Myc, Nanog and Sox2 TRMs included 5 of 11
target TFs (45%). The TRMs recovering the smallest
number of target TFs were those of Esrrb (4/11 or 36%)
and Myc (3/11 or 27%). This result shows that rTRM is
capable of identifying TFs critical for ESC biology
starting from a single ChIP-seq library of a target TF.

To assess the reproducibility of the TRMs predicted in
ESCs, we predicted TRMs for Sox2 and Pou5f1 (Oct4)
also done in ESCs but in a different laboratory. Besides
the ChIP-seq studies for Sox2 and Oct4, Lodato et al. (17)
also produced paired RNA-seq expression data, which
were used to determine the expression level cutoff
(CPM> 1 for all samples). Supplementary Figure S7A
shows a comparison of the Sox2 TRMs built from the
data of Chen et al. and Lodato et al.: the Lodato Sox2
TRM is larger than the Chen TRM, but most of the
proteins and interactions are found in both networks.
Moreover, �75% of the nodes (proteins) and edges (inter-
actions) in the Chen TRM are found in the Lodato TRM
(Supplementary Figure S7B). The larger number of

proteins and interactions found in the Lodato TRM can
be explained by the greater sequencing depth of the
Lodato ChIP-seq experiment, which resulted in nearly
three times more peaks than the Chen dataset
(Supplementary Figure S7B). A consequence of this is
the identification of a larger number of enriched TFs
(Supplementary Figure S7B). For Pou5f1 (Oct4), we
found almost identical results (Supplementary Figure
S7C), suggesting that rTRM is capable of predicting com-
parable TRMs for the same TF profiled by different
laboratories.
The relevance of the 11 reconstructed TRMs to ESC

biology was determined using a variety of strategies.
First, we calculated the similarity among the 11 TRMs
as the Jaccard index of shared interactions (edges)
(Figure 2A; Supplementary Methods and Supplementary
Figure S5) and identified two distinct clusters: one con-
taining Mycn, Myc and E2f1, and a second cluster
including the other eight TRMs. Within the larger
cluster, the Pou5f1 and Klf4 TRMs share the highest
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degree of similarity (85%), followed by Smad1, Nanog
and Tcfcp2l1 (68%), and Esrrb and Stat3 (58%). The
TRMs constituting the first cluster (Mycn, Myc and
E2f1) displayed a smaller degree of similarity (42%).
These results support the existence of two independent
TRMs in ESCs: a larger one composed by Esrrb, Klf4,
Nanog, Pou5f1, Sox2, Stat3, Smad1 and Tfcp2l1, and a
smaller one composed by E2f1, Myc and Mycn. This ob-
servation is in agreement with the cluster membership pre-
viously identified in the analysis of the genome-wide
binding site profiles where ESC TFs were found to be
wired into two separate clusters: one containing Nanog,
Oct4, Sox2, Smad1 and Stat3, and a second cluster con-
taining E2f1, Myc, Mycn and Zfx (5). Second, the func-
tional relevance of the Esrrb and Sox2 TRMs was
determined by mapping the constituent genes to expres-
sion data obtained from Esrrb, Sox2 and Esrrb/Sox2
double knockdowns (37). We found that most of the
genes were downregulated in the knockdowns compared
with the GFP control, suggesting that these regulatory
networks are functional and interdependent, as they
support each other’s gene expression patterns
(Supplementary Figure S8). Next, we compared the pre-
dicted TRMs with the ESC PPI network published by
Wang et al. (31), who combined affinity purification
with mass-spectrometry to determine the interacting
partners of Nanog and other proteins crucial for ESC
biology (Pou5f1/Oct4, Nr0b1/Dax1, Nacc1/Nac1,
Zfp281 and Zfp42/Rex1). To do this, the 11 distinct
TRMs were combined into a single unified TRM (the
‘ESC-combined TRM’) consisting of 77 proteins and 170
interactions (Figure 2B; Supplementary Table S4). The
ESC-combined TRM was plotted using the same concen-
tric layout as before. To highlight the importance of each
of the identified proteins/interactions in the ESC tran-
scriptional regulatory network, the sizes of the nodes
and the widths of the edges were scaled to represent the
abundance of the individual proteins and interactions
across the 11 distinct TF-specific TRMs. For instance,
Esrrb, Klf4, Nanog, Pou5f1, Smarca4, Sox2 and Sp1 con-
stitute the larger nodes in the ESC-combined TRM
because they are present in the majority of the 11
TRMs. However, the Myc and Mycn nodes are relatively
small because they could only be found in the E2f1, Myc
and Mycn TRMs. The PPI network described by Wang
et al. contains 37 proteins and 69 interactions, and the
analysis of the overlap with the ESC-combined TRM
resulted in 13 proteins and 27 interactions in common
(Figure 2C). These common proteins included the target
TFs Pou5f1, Nanog and Esrrb (red nodes in Figure 2C),
and the following enriched TFs: Sp1, Zfp281 and Yy1
(light blue nodes in Figure 2C). This observation adds
further support to their role as co-regulators in the ESC
transcriptional network. Sp1 (or, in its absence, Sp3) has
been reported to bind to the promoter of Pou5f1 (Oct4) to
regulate its expression (40), and Zfp281 is known to
directly activate Nanog expression as well as being
required to maintain ESCs (41). Interestingly, Cdk1,
Hdac2, Nacc1, Nr0b1, Rest, Rif1, Sall4 and Zmym2,
which either lack a corresponding PWM or are not pre-
dicted to bind DNA directly, were also found both in the

ESC-combined TRM and the PPI network by Wang et al.
(31). This highlights an important characteristic of the
TRMs identified by rTRM, which is that important ESC
transcriptional regulators were reported as bridge
proteins. For instance, among the bridge proteins
included in the ESC-combined TRM (Figure 2B), Nr0b1
is essential for maintaining the ESC phenotype (42), as
well as an important determinant for specifying ESCs
over the closely related epiblast stem cells (37). Sall4 is
also essential for maintaining pluripotency in ESCs by
regulating the expression of Pou5f1 (Oct4) (43), and
Arid1a is a member of the ESC SWI/SNF chromatin re-
modeling complex (44). Finally, Sin3a is known to interact
with Nanog (45) and is also essential for ESCs (46).
Overall, these results demonstrate that rTRM recovers
known regulatory complexes and that the predicted
TRMs are especially enriched in TFs and other regulatory
proteins important for determining the ESC phenotype.

Gene functional enrichment analysis using the Gene
Ontology (GO) Biological Process category on both the
11 TRMs and the ESC-combined TRM identified specific
terms common to all TRMs and related to ESC biology
(Supplementary Figure S9). The genes Esrrb, Klf4, Msx1,
Nanog, Pou5f1, Rif1, Sall4, Smarca4, Sox2 and Stat3 were
all associated with ‘stem cell differentiation’ (P=2.1e-
13� 5.5e-3), whereas Esrrb, Klf4, Rif1, Sall4, Smarca4
and Stat3 were associated with ‘stem cell maintenance’
(P=2.7e-8� 2.9e-2). Enrichment analysis using the
genetic deletion phenotypes from the Mouse Genome
Informatics database showed that �17% (13/77) of the
nodes in the ESC-combined TRM were associated with
‘complete embryonic lethality between implantation and
somite formation’ (P� 0) and/or ‘partial embryonic le-
thality between implantation and somite formation’
(P=1.5e-5) (Table 1), thus providing further support
for the biological relevance of the nodes in the ESC-
combined TRM.

Table 1. List of embryonic lethal proteins identified in the ESC-

combined TRM

Entrez gene Symbol Embryonic lethal

93760 Arid1a Complete
15251 Hif1a Partial
18519 Kat2b Complete
17187 Max Complete
71950 Nanog Complete
18999 Pou5f1 Complete
99377 Sall4 Complete
20466 Sin3a Complete
20674 Sox2 Complete
20848 Stat3 Complete
22059 Trp53 Complete
93765 Ube2n Complete
226442 Zfp281 Complete

Genes were selected based on embryonic lethal phenotype obtained
from the Mouse Genome Database. Complete (MP:0011096) indicates
‘complete embryonic lethality between implantation and somite forma-
tion’, whereas partial (MP:0011106) indicates ‘partial embryonic lethal-
ity between implantation and somite formation’. Target TFs included
in the published ChIP-seq experiments are highlighted in bold.
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Finally, we investigated the published literature for in-
dependent evidence of the 77 proteins of the ESC-
combined TRM as having a role in ESC biology. We
found that �72% of the genes in the ESC-combined
TRM had been independently reported to play fundamen-
tal roles in the biology of ESCs (Supplementary Table S4).

Comparison between embryonic and HSC TRMs

Hematopoiesis is possibly the best-understood model of
adult stem cell development and differentiation (47–51),
where a large number of essential TFs have been identified
largely from specific mutations that lead to hematopoietic
malignancies (4,52,53). Wilson et al. (3) previously
reported the genome-wide binding locations of 10 key
HSC TFs, including Erg, Fli1, Gata2, Gfi1b, Lmo2,
Lyl1, Meis1, Sfpi1, Runx1 and Tal1/Scl. Following the
same workflow described above for ESCs, we generated

9 independent TRMs for each TF and then produced a
combined TRM for HSCs (Figure 3A and Supplementary
Figure S10). Lyl1 was not present in the PPI network and
hence a corresponding TRM could not be reconstructed.
Visual inspection of the 9 TRMs highlighted a preference
for homeodomain (13 proteins), bHLH (9 proteins), C2H2
zinc finger (7) and tryptophan cluster factor members
(ETS family TFs, some of which were already known to
be essential for HSCs, such as Sfpi1 and Fli1).
Supplementary Table S2 gives details on the numbers of
motifs and genes at each stage in the analysis pipeline,
whereas Supplementary Table S3 lists the proteins
included in each individual TRM together with their clas-
sification and role in the network. Supplementary Table
S4 provides a list of the proteins included in the HSC-
combined TRM.
GO enrichment analysis for the Biological Process

category returned specific terms associated both with
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stem cell and hematopoietic cell biology, including ‘germ-
line stem cell maintenance’, ‘regulation of stem cell
maintenance’, ‘stem cell maintenance’ and ‘stem cell differ-
entiation’. In addition, the terms ‘hemopoietic stem cell dif-
ferentiation’ and ‘hemopoietic stem cell proliferation’
were enriched in 8 of 10 modules (P=0.01� 0.04)
(Supplementary Figure S11). Moreover, examination of
the genes in the HSC-combined TRM identified 22 of 96
(23%) as leading to impaired hematopoiesis on genetic
deletion, and the following terms as being significantly
enriched: ‘impaired hematopoiesis’ (P� 0), ‘abnormal
hematopoiesis’ (P=2.9e-11), ‘abnormal blood cell morph-
ology/development’ (P� 0) and ‘abnormal lymphopoiesis’
(P=8.9e-6) (Table 2). Collectively, these results suggest an
enrichment of hematopoietic factors in the combined TRM
predicted for HSCs. Finally, an in-depth investigation of
the published literature on the 96 proteins constituting the
HSC-combined TRM returned 76% of genes as having in-
dependent experimental evidence for specific roles in HSC
biology (Supplementary Table S4). For instance, Ldb1 is
essential for HSCmaintenance in the mouse, where it forms
a complex with Lmo2, Tal1 (Scl) and Gata1 (or Gata2)
(54). Therefore, besides recovering TFs with known roles
in HSCs, the HSC-combined TRM contained additional
proteins of specific importance for blood stem cells.
We compared the combined TRMs of ESCs and HSCs

(which characterize two distinct types of stem cell, embry-
onic and mature) and found that both networks share 27

distinct proteins. Comparing the number of edges yielded
29 (16%) interactions in common between the HSC and
ESC-combined TRMs, with 141 (82%) edges being unique
to ESCs and 155 (84%) edges being specific to HSCs
(Figure 3B). An all-against-all pairwise comparison of
the percentage of shared edges among the 20 TRMs
identified in ESCs and HSCs (Supplementary Figures S6
and S10), followed by hierarchical clustering, identified
two clearly distinct clusters: one containing all the
TRMs of ESCs, and a second cluster harboring all the
TRMs of HSCs (Figure 3C). This indicates that
although some of the proteins and edges identified in the
TRMs are common to both ESCs and HSCs, the regula-
tory pathways connecting the TFs in the two types of stem
cell are actually different. Therefore, rTRM is capable of
identifying TRMs with clearly distinct and cell type-
specific features in the two types of stem cells.

Identification of developmental stage-specific TRMs

Besides identifying highly relevant cell type-specific TRMs
in ESCs and HSCs, we also tested the ability of rTRM to
reconstruct TRMs in other embryonic/precursor cells as
well as in differentiated CD4+ T cells. TRMs were
identified for Cdx2 in TSCs, for Sox2 in NPCs and for
Gata3 in Th1, Th2, Th17 and iTreg cells, with all resulting
TRMs shown in Supplementary Figure S12. The Cdx2-
based TRM for TSCs included some proteins essential
for the determination and function of trophoblast cells.
For instance, Runx1 is known to regulate the expression
of Ada, a gene expressed in placental trophoblast cells that
plays a fundamental role in the developing embryo (55),
Smarca4 is important for TSC maintenance (56) and Rnf2
(also known as Ring1b, a polycomb protein) inactivates
the X chromosome in developing female embryos (57).
The Sox2-based TRM for NPCs is remarkably different
from the Sox2 TRM from ESCs: whereas nuclear recep-
tors with C4 zinc fingers were predicted in ESCs (including
Esrra and Esrrb), other TF families seem to be specific to
the Sox2 TRM of NPCs, including bHLH (Tcf3, Tcf4),
Fork head (Hoxa1, Hoxa5), Paired box (Pax6), SAND
(Gmeb2), Tryptophan cluster (Etv6) and STAT (Stat3).
The distinct TRMs identified around Gata3 in CD4+ T
cells presented important similarities (which is under-
standable, as all these cell types are developmentally
close), as well as differences. To provide a comprehensive
snapshot of all these T cell TRMs, all networks were
combined and the nodes colored according to the cell
type where they had been predicted (Supplementary
Figure S13). Most nodes are common to all cell types
(red nodes), whereas others are specific to iTreg cells
(blue nodes), suggesting that iTreg cells are the most func-
tionally distinct cell type. Even though all these T cell
types have clearly distinct functions, the interpretation
of these graphs is problematic, given the cells’ develop-
mental proximity, and probably additional factors such
as epigenetic and temporal regulation, should be taken
into account in these cases. For instance, Runx1 is a
factor common to all T cells, but under specific
circumstances, it is known to inhibit the differentiation
of naı̈ve CD4+ T cells into Th2 cells by repressing Gata3

Table 2. List of proteins identified in the HSC-combined TRM with

abnormal/impaired hematopoiesis

Entrez gene Symbol Impaired hematopoiesis

12400 Cbfb Hematopoiesis
12914 Crebbp Hematopoiesis
23871 Ets1 Lymphopoiesis
14011 Etv6 Hematopoiesis/lymphopoiesis
14247 Fli1 Hematopoiesis
14281 Fos Lymphopoiesis
14460 Gata1 Hematopoiesis
14461 Gata2 Hematopoiesis/morphology
14582 Gfi1b Morphology
15412 Hoxb4 Hematopoiesis
15414 Hoxb6 Hematopoiesis
16452 Jak2 Hematopoiesis
16909 Lmo2 Morphology
17268 Meis1 Hematopoiesis
18514 Pbx1 Hematopoiesis
12394 Runx1 Hematopoiesis
12393 Runx2 Hematopoiesis
20375 Sfpi1 Hematopoiesis/morphology
20586 Smarca4 Morphology
20587 Smarcb1 Morphology
21349 Tal1/Scl Hematopoiesis
21423 Tcf3 Lymphopoiesis/morphology

Genes were selected based on altered hematopoietic phenotype,
including ‘impaired hematopoiesis’ (MP:0001606), ‘abnormal hemato-
poiesis’ (MP:0002123), ‘abnormal blood cell morphology/development’
(MP:0002429) and ‘abnormal lymphopoiesis’ (MP:0002401).
‘Hematopoiesis’ below stands for ‘impaired hematopoiesis’ and/or
‘abnormal hematopoiesis’, ‘Lymphopoiesis’ stands for ‘abnormal
lymphopoiesis’ and ‘Morphology’ stands for ‘abnormal blood cell
morphology/development’. Target TFs included in the ChIP-seq experi-
ments are highlighted in bold.
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expression, another common factor (58). Furthermore, the
interaction between Runx1, RORgt and Foxp3 regulates
the differentiation of the Th17 route (59).

Finally, we compared all the TRMs identified in this
study using the Jaccard index of the shared edges
followed by hierarchical clustering (Figure 4). The
TRMs clustered by cell type, clearly separating the ESC,
NPC, HSC and TSC TRMs. Interestingly, the HSCs and
CD4+ T cell TRMs clustered together, with Sfpi1 (Pu.1)
displaying similarity to both HSCs and CD4+T cells. This
suggests a critical role for Sfpi1 (Pu.1) in different aspects
of hematopoietic cell development, which is supported by
the high interdependence between Gata3 and Sfpi1 (Pu.1)
(60,61).

DISCUSSION

We have implemented a framework (rTRM) for the sys-
tematic identification of TRMs from PPI networks. Using
rTRM, we built TRMs specific for the well-studied ESCs
and HSCs, which were highly enriched in known regula-
tory factors in both cell types as �75% of the proteins in
the corresponding TRMs had been reported to be
involved in the function of either ESCs or HSCs.
Moreover, the comparison between the ESC-combined
TRM and the experimentally determined PPI network
by Wang et al. (31) demonstrated that rTRM can success-
fully identify additional proteins with known roles in the
regulation of ESCs that cannot be found using genomic
information alone, thereby emphasizing the advantage of
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Figure 4. Comparison of all the TRMs identified in this study. Heatmap displaying the Jaccard index of edges shared between the individual TRMs
identified in ESCs, HSCs, TSCs, NPC and CD4+ T cells. TRMs with similar network structures were identified using hierarchical clustering.
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our approach over methods that ignore PPI information.
A significant fraction of the reconstructed TRMs were
composed of ‘bridge’ proteins, including TFs like Smad1
and Nanog, which did not have a corresponding binding
matrix in our collection of PWMs. However, it is possible
that once the information on their binding specificities is
included, some of these will become part of the ‘enriched’
set of TFs (e.g. Smad1 and Nanog in ESC). Nevertheless,
in some TRMs, specific proteins were predicted for which
DNA binding specificity information (PWM) is available,
although these PWMs were not found to be enriched,
genuinely suggesting a putative role as bridge proteins
(e.g. Gata1, Hoxa9). This might be indicative of tethering,
an increasingly important regulatory mechanism for some
TFs (62). Bridging proteins typically also include chroma-
tin modifying and remodeling enzymes, and signaling mol-
ecules, all of which lack the ability to bind specific DNA
sequences, and which therefore are impossible to detect
using sequence-based approaches only.
The reconstruction of TRMs can yield extremely

valuable information when experimental datasets are
scarce, or when no regulatory proteins have yet been
identified. This is especially true for poorly characterized
systems such as the IL10/JAK1/STAT3 pathway that
drives the anti-inflammatory response in various immune
cells and where few co-factors of STAT3 have been
identified (63,64). We recently applied rTRM to predict
co-factors that determine the cell type-specific and cell
type-independent binding modes of STAT3 in four
distinct cell types, and experimentally demonstrated by
ChIP-qPCR the role of E2f1 as a co-factor of STAT3 in
macrophages (65,66).
In recent years, a number of methods have been de-

veloped that integrate experimentally determined binding
sites with expression data to identify gene regulatory
networks. In 2003, Bar-Joseph et al. (67) explored the
genome-wide regulatory patterns for 106 yeast TFs using
epitope tagging in combination with over 500 expression
experiments to identify sets of co-expressed genes that
were regulated by specific TFs (67). In 2006, Wu et al.
(68) followed a similar approach but instead included in-
formation from ChIP-chip data, also in yeast. Other avail-
able tools combine ChIP-seq data with motif analysis (69),
sometimes even including spatial constraints to specific-
ally identify cis-regulatory modules in enhanceosomes
(37, 70–71). The general limitation of all these methods,
however, is that they ignore PPI information and simply
focus on the local DNA sequence to discover gene regu-
latory units. All proteins require physical interactions with
other proteins to perform their functions, and therefore
PPIs cannot be neglected if we want to understand
complex systems of interacting molecules. TRMs
function as compact modules, as the proteins in the
complex engage in stronger interactions within the
complex than with external molecules (9).
In conclusion, elucidating the genetic targets of TFs is

crucial for understanding their downstream biological
effects, but an equally important piece of information is
the combinatorial interactions of key TFs with specific co-
factors that aid in the selection of genomic sites, are
involved in the modulation of the local epigenetic

environment and also integrate multiple signals. rTRM
is a novel method that takes advantage of existing PPI
information and which can be systematically applied to
the reconstruction of TRMs in distinct cell types and bio-
logical contexts. Proteins interact with other proteins to
form complexes and perform specific functions, and
protein modules are often used in a variety of biological
contexts (9). Ergo, a more complete description of experi-
mentally validated PPIs in public databases will undoubt-
edly increase the predictive power of rTRM. rTRM
provides researchers with a powerful tool to dissect the
multiple levels of regulation of their TFs of interest. The
reconstruction and experimental validation of TRMs will
provide fundamental insights not only into physiological
TF mechanisms but also into deregulated transcriptional
networks that lead to pathological states.
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