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Abstract
Anatomical contexts (spatial labels) are critical for interpretation of medical imaging content.
Numerous approaches have been devised for segmentation, query, and retrieval within the Picture
Archive and Communication System (PACS) framework. To date, application-based methods for
anatomical localization and tissue classification have yielded the most successful results, but these
approaches typically rely upon the availability of standardized imaging sequences. With the ever
expanding scope of PACS archives — including multiple imaging modalities, multiple image
types within a modality, and multi-site efforts, it is becoming increasingly burdensome to devise a
specific method for each data type. To address the challenge of generalizing segmentations from
one modality to another, we consider multi-atlas segmentation to transfer label information from
labeled T1-weighted MRI data to unlabeled B0 data collected in a diffusion tensor imaging (DTI)
experiment. The label transfer approach is fully automated and enables a generalizable cross-
modality segmentation method. Herein, we propose a multi-tier multi-atlas segmentation
framework for the segmentation of previously unlabeled imaging modalities (e.g., B0 images for
DTI analysis). We show that this approach can be used to construct informed structure-wise noise
estimates for fractional anisotropy (FA) measurements of DTI. Although this label transfer
methodology is demonstrated in the context of quality control of DTI images, the proposed
framework is applicable to any application where the segmentation of unlabeled modalities is
limited due to the current collection of available atlases.
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1. INTRODUCTION
Picture Archive and Communication System (PACS) archives are becoming increasingly
prevalent for performing large scale analysis of medical images, and, in turn, making
powerful clinical inferences about these datasets. Numerous approaches have been devised
for segmentation, query, and retrieval within the PACS framework [1, 2]. Yet, these
approaches are often highly specialized and limited in their scope of potential applications.
With the ever expanding scope of PACS archives — including multiple imaging modalities,
multiple image types within a modality, and multi-site efforts, it is becoming increasingly
burdensome to devise a specific segmentation method for each data type. As a result, a
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generalizable framework for performing robust segmentation of wildly varying data has the
potential to radically increase the range of potential applications for PACS-based analysis
frameworks.

Recently, multi-atlas segmentation models have begun to gain traction as the premier
segmentation framework for performing consistent and robust segmentation [3, 4]. While
fully-manual techniques suffer from both inter- and intra-rater variability and fully-
automated segmentation techniques fail to provide the required robustness, multi-atlas
segmentation forms a middle ground between these approaches. In multi-atlas segmentation
models, spatial information from an existing dataset (labeled atlases) is transferred to a
previously unseen context (target) through a deformable registration. Each atlas provides its
own set of labels, creating multiple labeled observations of the target image within the target
coordinate system. After performing the deformable registrations, voxelwise label conflicts
between the registered atlases are resolved using label fusion [5–7] in order to form a single
estimate of the underlying target segmentation. Despite the success of previously proposed
multi-atlas segmentation techniques, existing approaches have primarily relied upon using
highly consistent and highly controlled datasets (i.e., collected from the same scanner,
location, and protocol [3–7]). However, in order for multi-atlas segmentation to be able to be
used for clinically relevant applications, the ability to accurately and robustly estimate
segmentations for diverse datasets is critical.

In this manuscript, we use multi-atlas segmentation for the robust segmentation of B0
images as part of a quality control framework for Diffusion Tensor Imaging (DTI). DTI is a
magnetic resonance (MR) imaging technique that provides contrasts uniquely sensitive to
intra-voxel tissue microarchitecture on a scale of tens of microns [8]. DTI has transformed
MR neuroimaging studies and has found wide-spread applications in non-invasive
assessment of white matter microstructure, reconstruction of major fiber bundles, and
mapping of in vivo brain connectivity. Although an invaluable and ubiquitous technique, a
DTI experiment is demanding and high quality data is difficult to maintain. The collection of
a DTI dataset can consist of up to 90 or more volumes, is aggressive on hardware
particularly gradients, and is susceptible to traditional and unique artifacts [9]. Additionally,
the processing of DTI data involves mapping data to a logarithmic diffusion model which is
well known to induce bias in measured parameters [10]. The documented challenges of
producing accurate and biophysically meaningful numbers from a DTI experiment suggest
DTI is an important and necessary target for quality analysis evaluation methods.
Segmentation methods can significantly bolster automatic quality analysis efforts by
enabling the informative projection of statistical parameters across structural regions. In this
paper, we provide an inter modality automatic segmentation method for the purposes of
creating structurally informed estimates of the noise in fractional anisotropy (FA) estimates.

Unfortunately, existing whole-brain atlases are primarily meant for T1-weighted images,
and, as a result, current multi-atlas approaches are limited in their scope of potential
applications until the database of potential atlases increases to a broader range of imaging
modalities. As a result of this limitation, we propose a multi-tier multi-atlas segmentation
framework for the segmentation of previously unseen imaging modalities (e.g., B0 images
for DTI analysis). Our multi-atlas approach can be viewed in two distinct steps: (1) we use
multi-atlas segmentation in order to construct a collection of B0 atlases, and (2) we use these
B0 atlases to perform multi-atlas segmentation of previously unseen DTI images. While we
focus on the problem of DTI quality control, the proposed framework could dramatically
increase the potential scope of clinically-relevant applications for PACS-based analysis
frameworks.
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This manuscript is organized in the following manner. First, we provide an overview of our
system for constructing intermediate whole-brain B0 atlases. Second, we describe our quality
control system for making structurally-informed noise estimates for the estimated FA maps
on unseen DTI experiments. Lastly, we provide some brief qualitative and quantitative
analysis for the type of information that can be gained using this type of quality analysis
system.

2. METHODS AND RESULTS
2.1 Data

Here, we use three distinct datasets in order to perform our analysis. First, we use a
collection of T1-weighted atlases that are used for the creation of the B0 atlases. These
atlases are part of the Open Access Series of Imaging Studies (OASIS) dataset [11] and were
manually labeled by an expert anatomist (courtesy of Neuromorphometrics, Inc. Somerville,
MA). For each atlas a collection of 26 labels (including background) were considered:
ranging from large structures (e.g., cortical gray matter) to smaller deep brain structures (see
Figure 4 for a complete list).

Second, in order to construct the B0 atlases, we used a collection of data that are part of the
Multi-Modal MRI Reproducibility study [12]. Briefly, the study consists of 42 total datasets
from 21 subjects, each scanned twice at 3T. Each subject produced both a whole-brain T1-
weighted image and DTI image. The T1-weighted images had a voxel resolution of 1.2 × 1.0
× 1.0 mm. The DTI images were acquired with a multi-slice, single-shot, echo planar
imaging (EPI) sequence with 32 gradient orientations at a b-value of 700 s/mm2with five
signal averages used for the minimally weighted volume. The resulting DTI images
consisted of 65 transverse slices with a field-of-view of 212 × 212 mm, reconstructed to 256
× 256 voxels (0.83 × 0.83 × 2 mm). We use the described B0 atlas construction technique in
order to provide a whole-brain segmentation of each of the 21 subjects that are part of this
dataset.

Lastly, the DTI trial data was collected using echo planar imaging (EPI) on a 3T Philips
scanner using an 8 channel head coil. A total of 32 gradient directions were collected using a
b-value of 700 s/mm2. The resulting images consisted of 60 transverse slices with a field of
view of 212 × 212 × 132 mm, reconstructed to 256 × 256 voxels (0.83 × 0.83 × 2.2 mm).

2.2 Construction of the B0 Atlases
A flowchart demonstrating the creation of the B0 atlases can be seen in Figure 1. The
process begins by performing an affine followed by a non-rigid registration (using ART
[13]) between the T1 atlases and the provided Multi-Modal T1 subjects. In a recent
comparison of several non-rigid registration algorithms [14], ART was shown to be a
consistent performer in addition to requiring significant less computation and resources
when compared to other non-rigid registration algorithms. After performing these non-rigid
registrations, a collection of 15 labeled observations from each subject were created. These
labeled observations were then fused using a recently proposed non-local statistical fusion
algorithm (Non-Local STAPLE – NLS [5]). Finally, these fused labels were then transferred
to the associated B0 image for the same subject using a rigid registration (FSL's FLIRT
[15]). This process was then repeated for each of the 21 subjects resulting in 21 intermediate
B0 atlases which can then be used for the multi-atlas segmentation of a new, previously
unseen DTI target.

Qualitative results for this process can be seen in Figure 2. Here, we present three
representative examples for this atlas creation process. In Figure 1A we present a sample
T1-weighted target image from the multi-modal dataset, with associated label estimates

Asman et al. Page 3

Proc SPIE. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from the multi-atlas segmentation process using two different label fusion algorithms:
Majority Vote [3] (seen in Figure 2B) and NLS (seen in Figure 2C). Note the clear
qualitative improvement provided by NLS over a majority vote, particularly in terms of the
quality of estimated cortical gray matter labels. Finally, three representative B0 atlases with
their associated label estimates can be seen in Figure 2D and Figure 2E, respectively. Due to
the fact that the transfer of these fused labels requires an intra-subject rigid registration, it is
expected that the estimated labels would be of a very similar quality to the original T1-
weighted labels.

2.3 PACS-Based DTI Quality Control
Given the provided B0 atlas creation framework, it is now possible to perform multi-atlas
segmentation of new, previously unseen, B0 target images that are part of an associated DTI
experiment. This multi-atlas segmentation now allows us to make powerful statistical
inferences into the relationship between DTI quality analysis and the underlying structure of
the image. Here, we use the proposed segmentation framework in order to perform a
straightforward, yet powerful inference framework for understanding the local, structure-
wise noise in terms of the estimated FA.

An overview of our framework can be seen in Figure 3. The process begins by acquiring a
new DTI image using the local PACS-based Vanderbilt Image Processing Enterprise
Resource (VIPER). VIPER is an integrated modular quality control system that allows for
robust image acquisition using a standard PACS protocol. Once a new DTI image has been
acquired, standard DTI processing takes place (e.g., accounting for patient movement via
intra-subject rigid registrations) and the FA map is calculated through model fitting
procedures for this particular subject. Simultaneously, the pre-computed B0 atlases are used
to perform a multi-atlas segmentation of the newly acquired B0 image. The multi-atlas
segmentation procedure is identical to the construction of the B0 atlases, where all pairwise
registrations are performed using ART and the registered atlases are fused using NLS.
Finally, once the FA map and the multi-atlas segmentation of the newly acquired image are
performed, local structure-wise noise estimation (i.e., the estimation of σFA) is performed
using a bootstrap estimation.

Wild-bootstrap estimation has been adapted for DTI and has recently been demonstrated to
produce good estimates of σFA[16], and confidence intervals based upon bootstrap estimates
of σFA have been demonstrated to be sensitive to DTI data quality [17]. The premise of
bootstrap is that the empirical standard deviation of FA that would be measured if repeated
datasets were collected, can be estimated through Monte Carlo simulation of repeated
datasets with similar statistical properties as the empirically observed dataset. Measured
errors, as determined by the measured versus fitted data, are shuffled and re-added to the
fitted data to create new data that is artificially sampled from a population similar to the
original measured data. The new data is fit to the diffusion model and a population of FA
values is created. This process was repeated for every structure in the multi-atlas
segmentation model (using 3% of the total samples per structure) in order to get structure-
wise FA noise estimates.

Example results using this DTI quality control framework are shown in Figure 4. Here, we
present two representative examples in which meaningful statistical inference can be made
about the underlying quality of the DTI data in terms of the structure of the human brain. At
the top of Figure 4, visual results for both target images are presented. For each target, the
B0 image and labels are presented. Additionally, the estimated FA map, and the median
value from the structure-wise noise estimates, σFA, are presented for each structure. Below
the qualitative results, quantitative results for each considered structure (from the original
T1-weighted atlases) are presented. For both examples, both the observed (blue boxplot) and
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a canonical (black boxplot) distribution of σFA values are presented. The canonical σFA
values are derived from the well-controlled multi-modal dataset that was used to construct
the intermediate B0 atlases. These well-controlled results present a representative baseline
by which the new DTI datasets can be compared. For the results presented in Figure 4, we
show two examples by which largely different inferences can be made. For the example
target 1, the structure-wise σFA values are very similar to the expected distribution of noise
estimates from the well-controlled dataset. The results for this target are a strong indication
that the new, previously unseen, DTI dataset is behaving properly in terms of overall data
quality. To contrast, the second example has significantly higher noise. This problem is
exhibited both in the qualitative results (top of Figure 4) and the quantitative results (bottom
of Figure 4) where the noise estimates are significantly higher than the baseline σFA values
estimated from the well-controlled multi-modal dataset.

3. DISCUSSION
The proposed inter-modality analysis framework through multi-atlas segmentation expands
the ability of segmentation methods to label a broad range of imaging types present in
clinical settings. Herein the segmentation methodology was demonstrated as an integral part
of a fully-automated DTI analysis framework intended as a technique for performing large-
scale quality control of medical images with only limited user intervention. The key to the
implementation of this framework is the development of a technique for constructing
intermediate “B0 atlases” without the need for an existing manually labeled dataset of the
appropriate modality (Figure 1). Additionally we show that the resulting atlases from this
construction framework can be very high quality and not require the need for manual
correction or intervention (Figure 2). To demonstrate the potential for this type of
framework, we demonstrate a quality control framework for the analysis of DTI images.
Here, we use a PACS-based framework to automatically construct a labeled estimate for the
B0 image as well as local, structurally-informed noise estimates for the fractional anisotropy
of the DTI image (Figure 3). To demonstrate the benefits of this type of approach, we
presented both qualitative and quantitative results on two distinct target images that
demonstrate the type of inferences that can be made using this analysis framework (Figure
4).

Due to the advancements in multi-atlas segmentation, we can now have confidence in the
ability of our approach to construct reasonable atlases from previously unlabeled data and
modalities. Herein, we use a very straightforward pairwise registration-based multi-atlas
framework for both the construction of the B0 atlases, as well as the segmentation of the
new, previously unseen target images. However, in order to implement this on a very large-
scale several experiments would have to be performed in order to understand the optimality
of the approach. Firstly, we use the non-rigid registration algorithm ART [13]. Significant
research would have to take place in order to compare other potential registration algorithms
and optimally describe the application at hand (e.g., resource constraints, time constraints,
accuracy constraints). For example, if lower quality atlases could be utilized, then it is
possible that faster, affine registrations could be used to achieve similar quality control
characteristics. Secondly, we use the recently proposed statistical label fusion algorithm,
NLS [5]. This approach simultaneously uses rater performance characteristics and the
underlying intensity differences between the target and the atlases in order to estimate a
globally optimal label estimate. However, this approach can be fairly resource consuming
(e.g., 3–4 hours per B0 image). As with the registration approach, less resource consuming
approaches could be used (e.g., a majority vote) if lower quality label estimates could be
tolerated.
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Here, we show how this process can be used for the quality control of DTI images.
However, the extension of this technique to other avenues of research (e.g., other MR
sequences, MR to computed tomography (CT)) is straightforward and presents fascinating
potential. In the end, what we have presented is a fully general framework for analyzing
nearly any medical imaging modality or sequence within a PACS-based infrastructure.
Today, many PACS archives contain huge numbers of subjects with a wide variety of
imaging modalities per subject. As an example, consider a problem where large scale
analysis of whole-brain CT images was desired (e.g., for surgical planning purposes). If the
proposed model were extended to automatically query the PACS archive for subjects that
contain both a whole-brain CT and T1-weighted MRI, then extensive collections of
intermediate CT atlases could then be constructed for future analysis of new, previously
unseen, patients that have received a whole-brain CT. Additionally, if this query system was
taken a step further, it is possible to imagine a PACS-based analysis framework in which
huge collections of intermediate atlases are constructed across a wide range of imaging
modalities and sequences. In other words, it would be potentially possible to construct
intermediate atlases for all imaging modalities in which a single (or collection) of subjects
received both the desired modality and a T1-weighted image. The potential for a framework
such as this is nearly limitless and would allow for large-scale PACS-based analysis of
medical image previously unseen in the research community.

In conclusion, we have demonstrated an expanded application for segmentation methods
which enables greater diversity in label transfers and increases the clinical relevance of
multi-atlas segmentation. Our method transfers labels from atlases of one image modality
(T1-weighted) to a secondary image modality (Bo) for which no atlases exist. The method
was incorporated into a fully-automated quality control framework for analysis of acquired
DTI images. Our approach requires the (offline) construction of intermediate B0 atlases
using a standard pairwise registration multi-atlas segmentation procedure. Using these
intermediate B0 atlases, we then show that it is possible to use a PACS-based development
environment in order to provide local, structurally-informed, noise estimates for the FA
measurements for the quality control of DTI images.

Acknowledgments
We would like to acknowledge Michael Esparza for his quality analysis assessment. This research was supported in
part by a post-doctoral training grant in image science (T32 EB003817), the Vanderbilt CTSA (UL1 RR024975-01)
from NCRR/NIH, and NIH/NINDS 1R21NS064534, 2R01EB006136, 1R03EB012461, R01EB006193.

REFERENCES
[1]. Greenspan H, Pinhas AT. Medical image categorization and retrieval for PACS using the GMM-

KL framework. Information Technology in Biomedicine, IEEE Transactions on. 2007; 11(2):
190–202.

[2]. Gordon S, Zimmerman G, Greenspan H. Image segmentation of uterine cervix images for
indexing in PACS. 2004; 298

[3]. Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A. Automatic anatomical brain MRI
segmentation combining label propagation and decision fusion. NeuroImage. 2006; 33(1):115–
126. [PubMed: 16860573]

[4]. Rohlfing T, Russakoff DB, Maurer CR. Performance-based classifier combination in atlas-based
image segmentation using expectation-maximization parameter estimation. IEEE Transactions on
Medical Imaging. 2004; 23(8):983–994. [PubMed: 15338732]

[5]. Asman AJ, Landman BA. Non-Local STAPLE: An Intensity-Driven Multi-Atlas Rater Model.
Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2012; 7512:417–
424.

Asman et al. Page 6

Proc SPIE. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[6]. Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation
(STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on
Medical Imaging. 2004; 23(7):903–921. [PubMed: 15250643]

[7]. Sabuncu MR, Yeo BTT, Van Leemput K, Fischl B, Golland P. A generative model for image
segmentation based on label fusion. IEEE Transactions on Medical Imaging. 2010; 29(10):1714–
1729. [PubMed: 20562040]

[8]. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis - a
technical review. NMR Biomed. 2002; 15(7–8):456–67. [PubMed: 12489095]

[9]. Gallichan D, Scholz J, Bartsch A, Behrens TE, Robson MD, Miller KL. Addressing a systematic
vibration artifact in diffusion-weighted MRI. Human Brain Mapping. 2010; 31(2):193–202.
[PubMed: 19603408]

[10]. Jones DK, Basser PJ. Squashing peanuts and smashing pumpkins”: How noise distorts diffusion-
weighted MR data. Magnetic Resonance in Medicine. 2004; 52(5):979–993. [PubMed:
15508154]

[11]. Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open Access Series of
Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and
demented older adults. Journal of Cognitive Neuroscience. 2007; 19(9):1498–1507. [PubMed:
17714011]

[12]. Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IAL, Farrell JAD, Bogovic JA, Hua J,
Chen M, Jarso S. Multi-Parametric Neuroimaging Reproducibility: A 3T Resource Study.
Neuroimage. 2010; 54(4):2854–2866. [PubMed: 21094686]

[13]. Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. A fully automatic multimodality image
registration algorithm. Journal of Computer Assisted Tomography. 1995; 19(4):615. [PubMed:
7622696]

[14]. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang MC, Christensen GE,
Collins DL, Gee J, Hellier P. Evaluation of 14 nonlinear deformation algorithms applied to
human brain MRI registration. NeuroImage. 2009; 46(3):786–802. [PubMed: 19195496]

[15]. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain
images. Medical Image Analysis. 2001; 5(2):143–156. [PubMed: 11516708]

[16]. Whitcher B, Tuch DS, Wisco JJ, Sorensen AG, Wang L. Using the wild bootstrap to quantify
uncertainty in diffusion tensor imaging. Hum Brain Mapp. 2008; 29(3):346–62. [PubMed:
17455199]

[17]. Heim S, Hahn K, Sämann P, Fahrmeir L, Auer D. Assessing DTI data quality using bootstrap
analysis. Magnetic Resonance in Medicine. 2004; 52(3):582–589. [PubMed: 15334578]

Asman et al. Page 7

Proc SPIE. Author manuscript; available in PMC 2013 December 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Flowchart demonstrating the B0 atlas construction framework. The process begins by taking
a collection of available labeled T1-weighted atlases and performing a non-rigid registration
between them and the new, unlabeled, T1-weighted images from a multi-modality dataset.
The registered atlases are then fused together (using an existing label fusion algorithm) to
form a final estimate for the intra-modality target. Finally, a rigid registration is performed
between intra-subject T1-weighted image and the B0 image. A final whole-brain
segmentation estimate is then constructed by transferring the labels using the same rigid
transformation to the B0 image.
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Figure 2.
Example qualitative results from the B0 construction process. Here, three representative
target subjects are presented. For each target, the T1-weighted image, the fused labels from a
majority vote and the recently proposed Non-Local STAPLE label fusion algorithm are
presented. Additionally, the intra-subject B0 image is also presented with the associated final
segmentation estimate for this new, previously unseen modality. The B0 segmentation
estimate is formed by transferring the Non-Local STAPLE labels via a rigid registration.
Note the improvement by Non-Local STAPLE over the standard majority vote based
approach.
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Figure 3.
Flowchart demonstrating the PACS-based Diffusion Tensor Imaging quality analysis
framework. The framework begins by utilizing a PACS-based framework for acquiring a
recently scanned target. Once the DTI image is acquired, standard pre-processing steps are
performed for accounting for patient movement via an intra-subject rigid registration. Next,
a whole image FA map and the multi-atlas segmentation process (using the pre-computed B0
atlases) are performed simultaneously in order to achieve the pertinent information about the
current subject. Finally, structure-wise FA noise estimates are constructed using a wild-
bootstrap estimation procedure.
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Figure 4.
Example qualitative and quantitative results for the DTI quality analysis framework. Here,
two representative subjects are presented. At the top of the figure, the qualitative results are
presented. For both target subjects, the B0 image, the B0 segmentation, the estimated
voxelwise FA map, and the median structure-wise FA noise estimates are presented using
the median value from a wild-bootstrap procedure using 3% of the available voxels for each
structure. Lastly, the qualitative results for both target subjects are presented for each
subject. For all of the considered structures, the observed distribution of FA values and the
expected distribution (from the well-controlled multi-modality dataset) are presented. Note
that the observed FA values for the second target subject are significantly different than the
expected distribution which indicates the presence of a low-quality DTI dataset.
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