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Abstract
The electron-multiplying charge-coupled device (EMCCD) is a popular technology for imaging
under extremely low light conditions. It has become widely used, for example, in single molecule
microscopy experiments where few photons can be detected from the individual molecules of
interest. Despite its important role in low light microscopy, however, little has been done in the
way of determining how accurately parameters of interest (e.g., location of a single molecule) can
be estimated from an image that it produces. Here, we develop the theory for calculating the
Fisher information matrix, and hence the Cramer-Rao lower bound-based limit of the accuracy, for
estimating parameters from an EMCCD image. An EMCCD operates by amplifying a weak signal
that would otherwise be drowned out by the detector’s readout noise as in the case of a
conventional charge-coupled device (CCD). The signal amplification is a stochastic electron
multiplication process, and is modeled here as a geometrically multiplied branching process. In
developing our theory, we also introduce a “noise coefficient” which enables the comparison of
the Fisher information of different data models via a scalar quantity. This coefficient importantly
allows the selection of the best detector (e.g., EMCCD or CCD), based on factors such as the
signal level, and regardless of the specific estimation problem at hand. We apply our theory to the
problem of localizing a single molecule, and compare the calculated limits of the localization
accuracy with the standard deviations of maximum likelihood location estimates obtained from
simulated images of a single molecule.
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1. INTRODUCTION
The charge-coupled device (CCD) is a standard image detector with applications in areas as
disparate as cellular microscopy and astronomy. However, while its high quantum efficiency
renders it the imaging technology of choice in many situations, it is nevertheless unsuitable
for imaging under extremely low light conditions. This is primarily due to its measurement
noise, which can easily overwhelm the weak signal when few photons are detected from the
imaged object. Measurement noise is introduced when the signal is read out from the CCD,
and is commonly referred to as the camera’s readout noise.1
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A technology intended as a solution for the readout noise problem under low light
conditions is the electron-multiplying charge-coupled device (EMCCD). Similar to a CCD,
an EMCCD works by accumulating electrons in proportion to the number of photons it
detects. However, it is different in that it can take however many electrons that are
accumulated and substantially augment their number via a multiplication process, thereby
generating an amplified signal that effectively drowns out the readout noise. The signal
amplification is realized by passing the initially accumulated electrons through a gain
register consisting of typically several hundred stages. Specifically, electrons are multiplied
as each input electron to a given stage generates, with certain probabilities, secondary
electrons that are transferred along with the input electron itself to the next stage for further
amplification. With such a cascading mechanism, a large number of electrons can be
produced at the output of the gain register per initial electron, even when the probabilities
with which secondary electrons are generated are usually small (typically 0.01 to 0.02 for
one secondary electron per input electron per stage,2 and even smaller for multiple
secondary electrons per input electron).

Given an image acquired with a CCD or an EMCCD camera, parameters of interest can be
estimated that provide useful information about the imaged object. In single molecule
microscopy,3 for example, a topic of major interest has been the accurate determination of
the location of a fluorescent molecule.4, 5 Motivated by this specific estimation problem, we
have developed a general framework6 for calculating the Fisher information, and hence the
Cramer-Rao lower bound,7 for the estimation of parameters from an image produced by a
microscope. Using this framework, we have derived accuracy limits for estimating the
positional coordinates of a single point source5, 8 and the distance separating two closely
spaced point sources.9, 10 These performance measures, however, assume that a CCD is used
to acquire the image, and therefore do not apply to images acquired using an EMCCD.

Here, we develop the theory that is needed for deriving the Cramer-Rao lower bound-based
limit of the accuracy for estimating a parameter from an EMCCD image. To arrive at the
Fisher information for EMCCD data, an expression is required for the probability
distribution of the electron count that is obtained from the multiplication process described
above. To this end, the stochastic multiplication is modeled as a branching process,11 as
others have done in the context of EMCCDs.2, 12 However, as opposed to using the typical
Bernoulli model where a secondary electron is generated per input electron per stage with
probability b, or not generated with probability 1−b, we describe the generation of secondary
electrons using a geometric model of multiplication.

Besides deriving a Fisher information expression for EMCCD data, we introduce the notion
of a “noise coefficient” which allows the simple comparison of the Fisher information for
different data models via a scalar quantity. Using the noise coefficient, we compare the
Fisher information for CCD and EMCCD data over a range of expected signal levels. This is
an important exercise because electron multiplication is a random process that introduces
stochasticity of its own to the data, and should therefore only be used when low signal levels
are expected. Comparison using the noise coefficient enables a quantitative determination,
based on the expected signal level, of the choice between the CCD and the EMCCD in terms
of Fisher information.

The material presented here comprises an important subset of the content of our recent
work.13 In Section 2, a general result is presented from which the Fisher information
expressions for all data models considered in this paper can be obtained. Based on this
result, we also define the noise coefficient. In Section 3, a Fisher information expression is
presented for data that can be described as the output of a geometrically multiplied
branching process with added readout noise. By comparing its corresponding noise
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coefficient with that for CCD data, we examine the usefulness of electron multiplication as a
function of the expected signal level. In Section 4, the theory developed in Sections 2 and 3
for a single signal is generalized for a collection of independent signals which form a CCD
or an EMCCD image. This is immediately followed with an example that applies the
generalized theory to the problem of localizing a single molecule from an image.
Specifically, we calculate the Cramer-Rao lower bound-based limits of the accuracy for
estimating the positional coordinates of a point source from a CCD image and an EMCCD
image. We also compare the accuracy limits with the results of maximum likelihood
estimations performed on simulated image data.

2. THE NOISE COEFFICIENT
We begin with the analysis of the Fisher information content of a scalar random variable that
models the data in a single pixel of an EMCCD. Specifically, the signal that is detected is
modeled as a Poisson random variable, since photon emission (e.g., by a fluorescent
molecule), and hence the detection of those photons by a camera, are typically described as
Poisson processes. The actual data in the pixel, however, is a readout noise-corrupted
version of the signal that has been stochastically amplified with the intention to drown out
the added noise.

Our goal is to calculate the Fisher information matrix pertaining to parameter estimation
problems such as the localization of a single molecule from its image. Such estimation
problems take on the typical form where the probability distribution of the incident Poisson
signal is parameterized by its mean ν. The mean ν, however, is itself a function of the vector
θ of parameters (e.g., the positional coordinates of a single molecule) that we want to
estimate. We first give an expression for the Fisher information matrix I(θ) of a random
variable using this specific parameterization (see our earlier work13 for the proof).

Theorem 2.1 Let Zν be a continuous (discrete) random variable with probability density
(mass) function pν, where ν is a scalar parameter. Let ν = νθ be a reparameterization of pν
through the possibly vector-valued parameter θ ∈ Θ, where Θ is the parameter space. We
use the notation Zθ (pθ) to denote Zνθ (pνθ), θ ∈ Θ. Then the Fisher information matrix I(θ)
of Zθ with respect to θ is given by

(1)

Note that the scalar expectation term in Eq. 1 is just the Fisher information of the random
variable Zθ with respect to νθ.

Two corollaries immediately follow from Theorem 2.1 which pertain to image data acquired
under two important scenarios. The first corollary (see our earlier work13 for the proof)
gives the Fisher information matrix IP(θ) for the ideal scenario where a Poisson-distributed
number of electrons are read out from a camera that introduces no readout noise. This
scenario represents the best case wherein a CCD is somehow able to output a pure Poisson
signal, and will therefore be used as the benchmark against which practical scenarios are
compared. From this point onwards, the function νθ will represent the mean of the Poisson
signal.
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Corollary 2.1 Let Zθ be a Poisson random variable with mean νθ > 0, such that its

probability mass function is , z = 0, 1, …. The Fisher information matrix
IP(θ) of Zθ is given by

(2)

The second corollary (see our earlier work13 for the proof) gives the Fisher information
matrix IR(θ) for the practical scenario where readout noise is added to a Poisson-distributed
number of electrons when they are read out from a camera. This scenario importantly
corresponds to the practical operation of a CCD. As is typically done, this corollary models
the readout noise as a Gaussian random variable.

Corollary 2.2 Let Zθ = Vθ+W, where Vθ is a Poisson random variable with mean νθ > 0, and

W is a Gaussian random variable with mean ηw and variance . Let Vθ and W be
stochastically independent of each other, and let W be not dependent on θ. The probability
density function of Zθ is then the convolution of the Poisson probability mass function with

mean νθ and the Gaussian probability density function with mean ηw and variance , given

by , z ∈ ℝ. The Fisher information matrix IR(θ)
of Zθ is given by

(3)

Note that the probability density function pθ,R in the above corollary can be found
elsewhere.1

According to Theorem 2.1 and illustrated by Corollaries 2.1 and 2.2, different probability
distributions of the random variable Zθ will produce Fisher information matrices that differ
from one another only through the Fisher information of Zθ with respect to νθ (i.e., only
through the scalar expectation term of Eq. 1). We therefore propose, for the purpose of
comparing the Fisher information of different data models, a “noise coefficient” based on
this quantity. Since Eq. 2 gives the Fisher information for the best case scenario of a Poisson

signal that is not corrupted by readout noise, we take its scalar expectation term  as the
reference, and define the noise coefficient as follows.

Definition 2.1 Let Zθ be a continuous (discrete) random variable with probability density
(mass) function pθ. Let pθ be parameterized by θ through the mean νθ > 0 of a Poisson-
distributed random variable. Then the noise coefficient (with respect to νθ) of Zθ, denoted by
α, is given by

(4)
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The noise coefficient of Eq. 4 is simply the ratio of the Fisher information of Zθ to that of
the ideal, uncorrupted Poisson signal, both with respect to νθ. It is a nonnegative scalar, and
the larger its value, the higher the amount of information the random variable Zθ contains
about the parameter vector θ. Using the noise coefficient, the Fisher information matrix I(θ)
of a random variable Zθ that falls within the confines of Definition 2.1 can be expressed as
I(θ) = α · IP(θ), where IP(θ) is the matrix of Eq. 2.

For the ideal scenario of Corollary 2.1 where the data is the pure Poisson signal, the noise

coefficient is trivially . For the practical scenario of Corollary 2.2 where
Gaussian readout noise is added to the Poisson signal, the noise coefficient αR is just

(5)

and the Fisher information matrix IR(θ) of Eq. 3 can be written as IR(θ) = αR · IP(θ).

The results presented thus far, and the result to be presented in Section 3, entail data that can
be described as a Poisson signal with mean νθ that may have been stochastically amplified
by some random function M before potentially being corrupted by some additive readout
noise W. Since neither the stochasticity introduced by the multiplication nor the readout
noise is dependent on θ, they contribute no additional information about θ. The noise
coefficient α for these data models can therefore be expected to be at most 1 (i.e., at most
αP), and we state this result formally in the following theorem (see our earlier work13 for the
proof).

Theorem 2.2 Let Θ be a parameter space and let Zθ = M(Vθ) + W, θ ∈ Θ, where Vθ is a
Poisson random variable with mean νθ > 0, M is a random function, and W is a scalar-
valued random variable. We assume that Vθ, M, and W are stochastically independent.
Then, for the noise coefficient α of Zθ, 0 ≤ α ≤ 1.

3. GEOMETRIC SIGNAL MULTIPLICATION
As stated in Section 1, we model electron multiplication in an EMCCD pixel as a branching
process11 that is geometrically multiplied. Specifically, the branching process is one where
an initial Poisson-distributed number of signal electrons are fed into a series of stages, and
where in each stage, an input electron generates a total of k electrons, including itself,
according to the zero modified geometric distribution14 defined as follows.

Definition 3.1 A zero modified geometric distribution is a probability distribution
(pk)k=0,1,… given by

(6)

where 0 ≤ a < 1 and 0 ≤ b < 1.

It is easily verified that the zero modified geometric distribution has mean

. Importantly, it has a probability generating
function of linear fractional form, a special property which allows the probability
distribution of the number of electrons XN,θ at the output of an N-stage branching process
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with a zero modified geometric model of multiplication to be specified explicitly without
recursion.11 Moreover, Definition 3.1 shows that the zero modified geometric distribution
allows the possibility of obtaining zero or more electrons per input electron per stage
(including the input electron itself). This makes it suitable for modeling signal amplification
in an EMCCD, since electron loss mechanisms may exist during the multiplication, and
since it is possible that more than one secondary electron is generated per input electron per
stage.12 By setting the parameter a = 0, the zero modified geometric distribution of Eq. 6
reduces to the standard geometric distribution pk = (1 − b)bk−1, k = 1,2,…, with mean

. While the more general zero modified geometric
distribution will be used in the next theorem, the standard geometric distribution will be
assumed for all subsequent illustrations.

Using the theory of probability generating functions, a probability mass function was
previously derived13 for the number of electrons XN,θ at the output of an N-stage branching
process with an initial Poisson-distributed number of electrons and a zero modified
geometric model of multiplication. Since we model the data Zθ in a given pixel of an
EMCCD as the sum of XN,θ and a Gaussian random variable W representing the readout
noise, the probability density function of Zθ is the convolution of the probability mass
function of XN,θ and a Gaussian probability density function. The following Theorem gives
this density function and the corresponding noise coefficient and Fisher information matrix.

Theorem 3.1 Let Zθ = XN,θ + W, where XN,θ, N ∈ {0, 1, …}, is the number of particles at
the output of an N-stage branching process with an initial Poisson-distributed particle count
with mean νθ > 0 and a zero modified geometric model of multiplication, and W is a

Gaussian random variable with mean ηw and variance . Let XN,θ and W be stochastically
independent, and let W be not dependent on θ.

1. The probability density function of Zθ is, for z ∈ ℝ,

(7)

where A = (1 − a)(m − 1)mN, B = b(mN − 1)m + (1 − a)(m − 1), C = b(mN − 1)m, D

= mN(1 − a)2(m − 1)2,  denotes “l − 1 choose j”.

2. The noise coefficient corresponding to pθ,GeomR is

(8)

and the Fisher information matrix of Zθ is IGeomR(θ) = αGeomR · IP(θ), where IP(θ)
is as given in Eq. 2.

The term mN in Eqs. 7 and 8 is called the mean gain, and is the average number of electrons
at the output of the multiplication process given a single initial electron.
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To demonstrate a comparison of the Fisher information of different data models using the
noise coefficient, Fig. 1 plots, as a function of the mean νθ of the initial Poisson electron
count, the noise coefficient αR of Eq. 5, and the noise coefficient αGeomR of Eq. 8 for
different mean gain values and with a = 0 for standard geometric multiplication. In
accordance with Theorem 2.2, the plot shows that αR and αGeomR take on values between 0
and 1 for any value of νθ. The Fisher information matrices IR(θ) and IGeomR(θ) are therefore,
as expected, no greater than IP(θ) of the ideal scenario of Corollary 2.1.

The figure further shows, for the set of mean gain values used, that αGeomR is greater than
αR for νθ values of up to roughly 60 electrons. In this range of νθ values, a higher mean gain
generally yields a larger αGeomR. Beyond roughly νθ = 60 electrons, however, αGeomR starts
to become smaller than αR in order of decreasing mean gain. By roughly νθ = 130 electrons,
multiplication with any of the mean gain values yields an αGeomR that is less than αR. Figure
1 thus demonstrates that electron multiplication is beneficial when the expected signal level
is relatively low (or equivalently, when the readout noise level is relatively significant).
When the expected signal level is relatively high such that the readout noise level is already
insignificant in comparison, multiplication has the undesirable net effect of introducing
additional stochasticity to the data. Though these observations are generally known, we have
demonstrated them quantitatively as a function of the expected signal level, and from the
perspective of Fisher information.

4. GENERALIZATION TO AN IMAGE
The theory we have developed in the previous sections applies to a single pixel of a CCD-
based detector. By making the reasonable assumption that the data in different pixels of an
image are independent measurements, however, the Fisher information matrix for an image
is just the sum of the Fisher information matrices for its pixels. For an image of K pixels, the

Fisher information matrix can thus be written as ,
where the notation is as before and the subscript k denotes quantity for the kth pixel. It
follows that for an ideal K-pixel image of uncorrupted Poisson signals, (i.e., αk = 1 for k = 1,

…, K), the Fisher information matrix is just . Using these
expressions, we give an inequality (see our earlier work13 for the proof) which relates Iim(θ)
for a practical image to Iim,P(θ) for its corresponding ideal image.

Theorem 4.1 Let . Let αmin and
αmax denote, respectively, the smallest and the largest elements in the sequence
(αk)k = 1, …, K. Then we have

Theorem 4.1 can be used to assess how close a practical image is to its corresponding ideal
image in terms of Fisher information content. It will be used in the example that follows.

To conclude this paper, we apply our theory to the localization of a fluorescent molecule.
We consider the estimation of the location of an in-focus point source (i.e., a single
molecule) from its image as observed through a fluorescence microscope and detected by a
CCD or an EMCCD camera. For this problem, the mean of the Poisson-distributed electron
count at the kth pixel of the camera due to detected photons can be shown to be6
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(9)

where Nphoton is the expected number of photons from the point source that are detected at
the detector plane, x0 and y0 are the x and y coordinates of the point source in the object
space where it resides, M is the magnification of the microscope, Ck is the region in the
detector plane occupied by the pixel, and βk is the expected number of background photons
(i.e., photons from anything other than the point source) detected at the pixel, which is
assumed to be Poisson-distributed and independent of the number of photons detected from
the point source. The function q is referred to as an image function,6 and describes the image
at unit magnification of a point source that is located at the origin of the object space
coordinate system. Here, we assume the image of our point source to be given by the
classical Airy point spread function,15 and q can thus be written as6

where na is the numerical aperture of the objective lens, λ is the wavelength of the photons
detected from the point source, and J1 is the first order Bessel function of the first kind.

Using Eq. 9 and the point source attributes and imaging parameters given in Fig. 2, the mean
initial electron counts in the pixels of an 11-by-11 pixel image were calculated. Using these
values, the noise coefficients for the ideal, the CCD, and the EMCCD data models were then
computed. By definition, the noise coefficient αP of the ideal Poisson data scenario is
trivially 1 for every pixel of the image. For the CCD and the EMCCD scenarios, their noise
coefficient profiles are plotted in Fig. 2. Shown in part (a) of the figure, αR (Eq. 5) for the
pixels of the CCD scenario exhibits a relatively wide range of values from 0.031 to 0.579.
By Theorem 4.1, this implies that the Fisher information for this scenario is somewhere
between 3% and 58% of that for the ideal scenario. In contrast, and shown in Fig. 2(b),
αGeomR (Eq. 8) for the pixels of the EMCCD scenario exhibits a much narrower range of
values from 0.502 to 0.597. Therefore, a much tighter bound can be obtained for the Fisher
information in this case using Theorem 4.1, which indicates that the information content is
somewhere between 50% and 60% of that for the ideal scenario. Note that the relatively
large minimum αGeomR of 0.502 represents a significant increase in the information content
of all but the center pixel due to the high mean gain multiplication. The center pixel has by
far the highest signal level, and actually has an αGeomR that is smaller than αR. This
reiterates the idea that EMCCD amplification is most beneficial when the signal level is low,
and is minimally useful or even harmful when the signal level is high.

To demonstrate what the noise coefficient profiles of Figs. 2(a) and 2(b) translate to in terms
of parameter estimation accuracy, the Cramer-Rao lower bound-based limits of the accuracy
for localizing the point source were calculated for all three data scenarios. Specifically, by
defining the coordinates of the point source as the unknown parameters to be estimated (i.e.,
by defining θ = (x0, y0)), the limits of accuracy were obtained as

 for y0, where Iim(θ) was calculated for each data
scenario using its respective noise coefficient profile. Since the accuracy limit is identical
for x0 and y0 due to the symmetry of the image as defined, it is simply referred to as the limit
of the localization accuracy in Table 1. As shown in this table, the best accuracy limit of
7.48 nm, as expected, belongs to the ideal scenario of Poisson data. In sharp contrast and
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worse by more than a factor of two, the poorest accuracy limit of 16.41 nm belongs to the
CCD scenario due to the corruption of the Poisson signals by the camera readout noise.
However, demonstrating the effect of using high mean gain electron multiplication to drown
out the readout noise, the table shows that a significantly improved accuracy limit of 10.47
nm is obtained for the EMCCD scenario.

Additionally, Table 1 shows, for each data scenario, the mean and standard deviation of the
x0 estimates produced by maximum likelihood estimations performed on 1000 simulated
images of the point source. For each data scenario, the mean of the estimates is very close to
the true value of x0, and the standard deviation of the estimates closely recovers the
corresponding limit of the localization accuracy. These results suggest that the maximum
likelihood estimator is able to achieve the Cramer-Rao lower bound. Details pertaining to
the generation of the simulated images and the implementation of the maximum likelihood
estimator for each data scenario are as described in our earlier work.13
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Figure 1.
Noise coefficient αR of Eq. 5 and noise coefficient αGeomR of Eq. 8 plotted as a function of
the mean νθ of the signal, which ranges in value from 0.43 to 194.19 electrons. Noise
coefficient αR (red curve) corresponds to the scenario of a Poisson signal that is corrupted
by readout noise, and noise coefficient αGeomR (black curves with markers) corresponds to
the scenario of a Poisson signal that is amplified by multiplication and subsequently
corrupted by readout noise. In the case of αGeomR, the signal is amplified through N = 536
stages (as in the gain register of a CCD97 chip, E2V Technologies, Chelmsford, UK) of
standard geometric multiplication (i.e., a = 0 in Eq. 8), and the different curves correspond
to mean gain values of mN = 1.01 (*), 1.03 (○), 1.06 (×), 1.31 (◊), 1.71 (·), 4.98 (□), 14.49
(+), and 1015.46 (Δ). For both αR and αGeomR, the readout noise is Gaussian with mean ηw =
0 e− and standard deviation σw = 8 e−.
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Figure 2.
Noise coefficient (αR for (a), αGeomR for (b)) profile for (a) a CCD image and (b) an
EMCCD image of an in-focus point source. The point source is assumed to emit photons of
wavelength λ = 520 nm, which are collected by an objective lens with magnification M =
100 and numerical aperture na = 1.4. The image of the point source is given by the Airy
point spread function, and is centered on an 11-by-11 array of 16 µm by 16 µm pixels (i.e.,
x0 = y0 = 880 nm, assuming the upper left corner of the pixel array is (0, 0)). The expected
number of photons detected from the point source is set to Nphoton = 200. The expected
number of background photons is set to βk = 2 for every pixel k. In (a), readout noise with
mean ηw = 0 e− and standard deviation σw = 8 e− is assumed for every pixel. In (b), the
standard deviation is higher at σw = 24 e−, and standard geometric multiplication with a
mean gain of m536 = 900 is assumed.
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