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Succinate is a valuable platform chemical for multiple applications. Confronted with the exhaustion of fossil energy resources,
fermentative succinate production from renewable biomass to replace the traditional petrochemical process is receiving an
increasing amount of attention. During the past few years, the succinate-producing process using microbial fermentation has been
made commercially available by the joint efforts of researchers in different fields. In this review, recent attempts and experiences
devoted to reduce the production cost of biobased succinate are summarized, including strain improvement, fermentation
engineering, and downstream processing. The key limitations and challenges faced in current microbial production systems are
also proposed.

1. Introduction

Succinate, also known as 1,4-butanedioic acid or amber acid,
is a four-carbon dicarboxylic acid for multiple applications.
Succinate and its desirable properties have been known for
a long time. In the agricultural field, succinate is a known
growth regulator [1] which can be used for seed treatment
and plant rooting. In the food industry, succinate is used
as a flavoring enhancer for beverages, a bread softening
agent, and a catalyst for food seasoning preparation [2]. It is
generally considered as safe and has been approved by the
US Food and Drug Administration. In the pharmaceutical
industry, succinate acts as an anticarcinogenic agent and
as an insulinotropic agent [3]. In the chemical industry,
succinate is a precursor for the production of many high-
value chemicals including 1,4-butanediol, tetrahydrofuran,
𝛾-butyrolactone, and 2-pyrrolidinone [4]. Finally, succinate
is a precursor to many specialized polyesters, for example,
polybutylene succinate (PBS) [5], which might be its most
promising application area.

Due to its versatile applications, succinate is rising to
a bulk chemical in recent years. The global production is
estimated between 30,000 and 50,000 tons per year [6].
According to a survey report from MarketsandMarkets,

the market of succinate is expected to grow at a rate of 18.7%
from 2011 to 2016 [7]. The global market for succinate in
terms of revenue was estimated to be worth $182.8 million
in 2010 and is expected to reach $496.0 million by 2016.
As shown in Figure 1, Europe and North America were the
largest two markets in 2010, accounting for 35.0% and 31.0%
of the global succinate demand, respectively. Asia-Pacific was
the third succinate consuming regions and is expected to
be the fastest growing market in the near future owing to
the strong demand from key countries such as China and
India. The increasing demand of succinate is promoting us
to develop cost effective synthesis routes to support its ever-
growing markets.

2. The Limitation of Traditional Petrochemical
Succinate-Producing Processes

Succinate is traditionally manufactured through chemical
routes using paraffin, maleic anhydride, acetylene, or acrylic
acid as the starting materials. Paraffin oxidation is the initial
method to prepare succinate [8]. Under the catalysis of Mn
or Ca, paraffin is deeply oxidized to a mixture of dicarboxylic
acid. After steam distillation, succinate in the aqueous phase
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Figure 1: Succinate market share by geography in the year of 2010.

can be crystallized. This process is well established, but the
yield and purity of succinate are relatively low. Another
conventional approach widely used to produce succinate is
the hydrogenation of maleic anhydride.This process requires
several types of noble metal-based catalysts, such as Pd and
Ru [9]. In addition, the reaction is carried out under high
temperature and high pressure conditions [10], which is
not environmental friendly. Electrolytic reduction of maleic
anhydride in acidic medium also leads to the production
of succinate. The reaction could be conducted under mild
conditions and the conversion rate is even higher [11].
However, the consumption of large quantities of electricity
power increases the production cost.

Although other chemical synthesis routes such as the
catalytic addition of acetylene and acrylic acid using much
cheaper feedstocks have been proposed [12], their industrial
application is still far fromoccurring. Alongwith the decrease
of global fossil fuel resources and the rise of crude oil
price, these traditionally succinate-producing methods from
petrochemicals are becoming costly and causing serious
pollution problems, requiring us to find new pathways for
succinate manufacture.

3. Metabolic Pathways for Succinate
Production by Microbial Fermentation

In the biological systems, succinate is an essential interme-
diate for cellular metabolism. In addition, it can also be one
of the end-products of anaerobic fermentation. Therefore,
it is possible to produce succinate using biological pro-
cesses to substitute the petrochemicals processes. Biological
processes are particularly attractive since microorganisms
usually utilize renewable feedstocks and produce much fewer
toxic by-products. In a report from the US Department of
Energy, succinate is listed as the first among the top 12 value-
added chemicals manufactured from biomass [13]. Recently,
biological routes for succinate production developed by two

companies, BioAmber and Reverdia, are commercially avail-
able.These processes are based on proprietaryEscherichia coli
and yeast strains.

Figure 2 provides an overviewof the biosynthetic pathway
of succinate from glucose under both anaerobic and aerobic
conditions. Under both conditions, glucose is degraded into
phosphoenolpyruvate (PEP) and finally to pyruvate by gly-
colysis.Through anaerobic fermentation, PEP is the substrate
for a carboxylase-catalyzed anaplerotic reaction and can be
converted to oxaloacetate by PEP carboxylase (ppc) or PEP
carboxykinase (pck). Pyruvate, the end-product of glycolysis,
can also be incorporated with CO

2
by pyruvate carboxylase

(pyc) ormalic enzyme (mae), forming oxaloacetate ormalate.
Both oxaloacetate and malate may be further converted
to fumarate by malate dehydrogenase (mdh) and fumarase
(fum). Fumarate can be finally reduced to succinate by
fumarate reductase (frd) [14].

Under aerobic conditions, succinate is an intermediate
of both tricarboxylic acid (TCA) cycle and glyoxylate shunt,
but no wild-type microorganism could accumulate it in large
quantities. Recently, the oxidative pathway for succinate pro-
duction has been artificially constructed in E. coli [15], Sac-
charomyces cerevisiae [16], and Corynebacterium glutamicum
[17] by deleting the critical gene, succinate dehydrogenase
(sdh), in the TCA cycle. As two carbons are lost as CO

2
in

the TCA cycle, the glyoxylate shunt is employed to bypass
the steps in the TCA cycle to improve the atom economy. As
shown in Figure 2(b), the TCA cycle and the glyoxylate shunt
separate at the isocitrate point. In order to block themetabolic
flux through the TCA cycle, two key regulatory points, sdh
and isocitrate dehydrogenase (icd), must be disrupted. Thus,
isocitrate enters the glyoxylate shunt and undergoes cleavage
into succinate and glyoxylate, which is catalyzed by isocitrate
lyase (icl) [18]. Then glyoxylate condenses with acetyl-CoA,
yielding malate. Finally, malate enters the residual TCA
cycle to regenerate isocitrate. For both anaerobic and aerobic
metabolism, branch pathways leading to the formation of
formate, acetate, ethanol, and lactate also exist to compete
with the succinate-producing pathway.

4. Microbial Succinate Producers

Since the succinate metabolic pathway has been resolved in
different biological systems, it is possible to produce this
valuable chemical through microbial fermentation. Up to
now, a number of fermentative succinate-producing bacteria
have been isolated and characterized to some extent. These
microorganisms can be generally classified into two cate-
gories: natural producers and engineered producers. Several
representative species that have been extensively investigated
are listed in Table 1.

4.1. Natural Producers. In nature, many wild-type microor-
ganisms are able to produce succinate at high yields. They
are mainly belonging to rumen bacteria including facultative
anaerobe (Actinobacillus succinogenes [19] and Mannheimia
succiniciproducens [20]) and strict anaerobe (Anaerobiospir-
illum succiniciproducens [21]). These natural producers show
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Figure 2: Anaerobic (a) and aerobic (b) metabolic pathways for the biosynthesis of succinate. Unidirectional arrows indicate that the
reactions are irreversible while two-directional arrows indicate that the reactions are reversible. Enzymes whose genes are deleted are
indicated by “X” across arrows. The abbreviations for the enzymes catalyzing these reactions are ack, acetate kinase; acn, aconitase; adh,
alcohol/acetaldehyde dehydrogenase; cs, citrate synthase; frd, fumarate reductase; fum, fumarase; icd, isocitrate dehydrogenase; icl, isocitrate
lyase; kgd, 𝛼-ketoglutarate dehydrogenase; ldh, lactate dehydrogenase;mae, malic enzyme;mdh, malate dehydrogenase;ms, malate synthase;
pck, PEP carboxykinase; pfl, pyruvate-formate lyase; pox, pyruvate oxidase; ppc, PEP carboxylase; pta, phosphotransacetylase; pyc, pyruvate
carboxylase; pyk, pyruvate kinase; scs, succinyl-CoA synthetase; and sdh, succinate dehydrogenase.
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Table 1: The typical microorganisms used for fermentative succinate production.

Type Species Oxygen requirement

Natural producers

Bacteria Actinobacillus succinogenes Facultative anaerobe
Bacteria Anaerobiospirillum succiniciproducens Strict anaerobe
Bacteria Mannheimia succiniciproducens Facultative anaerobe
Bacteria Bacteroides fragilis Strict anaerobe
Bacteria Enterococcus faecalis Facultative anaerobe
Bacteria Klebsiella pneumoniae Facultative anaerobe
Bacteria Succinivibrio dextrinosolvens Strict anaerobe
Fungi Aspergillus niger Facultative anaerobe
Fungi Paecilomyces varioti Facultative anaerobe
Fungi Penicillium simplicissimum Facultative anaerobe

Engineered producers
Bacteria Escherichia coli Facultative anaerobe
Bacteria Corynebacterium glutamicum Aerobe
Yeast Saccharomyces cerevisiae Facultative anaerobe

excellent tolerance to osmotic pressure caused by high level of
succinate. However, the cultivation of these natural producers
always requires expensive nutrientmedia, thus increasing the
production cost.

Many fungal strains such as Paecilomyces varioti [22],
Aspergillus niger [23], and Penicillium simplicissimum [24] are
also found to be suitable for succinate production.They could
secrete succinate as a metabolic by-product under aerobic
and/or anaerobic conditions, but the productivity is much
lower when compared with the bacterial strains. Besides,
succinate is synthesized in the fungal cell mitochondria and
has to cross the mitochondrial and cellular membrane [25].
Therefore, it is more favorable to use bacteria for succinate
production instead of fungi.

4.2. Engineered Producers. In addition to the natural produc-
ers, many microorganisms can be metabolically engineered
to produce succinate as a fermentative end-product. These
engineered producers are always model microorganisms
since they are easy to be genetically modified. A completely
engineered pathway is required to render them capable of
producing succinate. E. coli, C. glutamicum, and S. cerevisiae
are the representatives of these engineered producers. As a
reference organism, E. coli is favored by molecular biologists
due to its fast growth rate and ease of manipulation [26,
27]. Numerous studies have been conducted on this bacteria
and commercial production of succinate has been reached
recently.C. glutamicum is one of the few gram-positive bacte-
ria which have been tested for succinate production. Perhaps
the highest titer of succinate was obtained in a cell recycling
fed-batch culture of this bacterium [28]. S. cerevisiae has been
well characterized to achieve high concentrations of succinate
to enhance the quality of wine [29]. It is also a potential
industrial producer since this yeast could grow under acidic
conditions.

5. Strain Improvement to Increase
Succinate Productivity

A highly productive strain is the primary factor to achieve
an industrial level succinate production. Early studies for

strain improvement mainly relied on identifying and iso-
lating new microbial strains as well as enhancing the
succinate-producing ability of currently available strains.
Many assay methods for rapid and high-throughput screen-
ing of succinate-producing strains were established [30].
However, strain screening always requires considerable
amount of time and resources. Along with the development
ofmodern biology technology, themolecularmechanisms for
biological succinate production have been largely resolved.
It is now possible to rationally modify the microbial strains
to improve succinate productivity by metabolic engineer-
ing tools. Eliminating the competing pathways, altering
metabolic flux to channel the flow of key intermediates,
and enhancing cofactors supplies would lead to even higher
succinate yields [31]. Many studies have been performed
on these topics and encouraging results have been obtained
during the past few years. In Table 2, we summarize these
advances to improve succinate production using different
microorganisms.

5.1. Inactivation of the Branch Pathways. As succinate is not
the sole product of microbial fermentation, knockout of
the enzymes in competitive pathways is an obvious strategy
to boost its production. During mixed-acid fermentation
under anaerobic conditions, acetate, ethanol, lactate, formate,
pyruvate, and succinate make up the major soluble prod-
ucts [51]. The first approach to eliminate these by-products
was inactivating the lactate producing pathway since this
pathway was simply catalyzed by a single enzyme, lactate
dehydrogenase (ldh) [32]. By deleting the genes encoding the
known pathway of acetate formation, phosphotransacetylase
(pta), and acetate kinase (ackA), the synthesis of this by-
product could be drastically reduced and succinate formation
was enhanced [49]. The branch pathway splitting pyruvate
into acetyl-CoA and formate by means of pyruvate formate
lyase (pfl) would lead to the formation of acetate, ethanol,
and formate. However, knockout of the pfl gene individually
could only enhance lactate production while the succinate
concentration in the pflmutant strain was even slightly lower
when compared to the control strain [52]. Although the ldh
and pfl double mutant strain could lead to an improved
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Table 2: Overview of metabolic engineering strategies to improve succinate production using different microorganisms.

Strains Genotypes Culture strategies Succinate production References
Escherichia coli

SBS110MG ΔadhE, ΔldhA, expression
of Lactococcus lactis pyc Batch 15.6 g/L, 1.3mol/mol

glucose [32]

NZN111 ΔpflB, ΔldhA Fed-batch 28.2 g/L, 1.13mol/mol
glucose [33]

AFP111 ΔldhA, ΔptsG Batch 0.88mol/mol glucose [34]
W3110GFA ΔptsG, ΔpykF, ΔpykA Batch 17.35mM [35]

QZ1111 ΔptsG, ΔpoxB, Δpta,
ΔsdhA, ΔiclR Batch 1.45mmol/(g⋅h) [36]

HL27659k ΔsdhAB, ΔackA-pta,
ΔpoxB, ΔiclR, ΔptsG Fed-batch 0.91mol/mol glucose [37]

KJ073 ΔldhA, ΔadhE, ΔackA,
ΔfocA-pflB, ΔmgsA, ΔpoxB Batch 1.2mol/mol glucose [38]

JCL1208 overexpression of native ppc Batch 10.7 g/L [39]

xz320 ΔackA, ΔldhA, ΔadhE,
ΔpflB, ΔmgsA, ΔpoxB, Δppc Fed-batch 348mM [40]

LS1 ΔldhA, overexpression of
native mae Batch 2.34 g/L [41]

NZN111
ΔpflB, ΔldhA,

overexpression of native
mdh

Fed-batch 15.2 g/L [42]

NZN111
ΔpflB, ΔldhA,

overexpression of native mae
and fum

Batch 7 g/L [43]

SBS990MG
ΔadhE, ΔldhA, Δpta-ackA,
expression of Lactococcus

lactis pyc
Batch 1.7mol/mol glucose [44]

NZN111
ΔpflB, ΔldhA,

overexpression of native
pncB

Fed-batch 18.3 g/L [45]

K-12ppc
Δppc, expression of

Actinobacillus succinogenes
pck

Batch 26.4mM [46]

Saccharomyces cerevisiae

AH22ura3 Δsdh1, Δsdh2, Δidh1, Δidp1 Batch 3.62 g/L, 0.11mol/mol
glucose [16]

DFRDS ΔOSM1, ΔFRDS Batch 130 𝜇mol/(h⋅g dry cells) [47]

8D Δsdh, Δser3/ser33,
Overexpression of native icl1 Batch 0.9 g/L [48]

Corynebacterium glutamicum

BL-1
Δsdh, Δpta-ackA, Δpqo,
Δcat, overexpression of
native ace, pyc and ppc

Fed-batch 10.6 g/L, 0.45mol/mol
glucose [17]

BOL-2
Δcat, Δpqo, Δpta-ackA,
ΔldhA, overexpression of

native pyc and
Mycobacterium vaccae fdh

Fed-batch 1134mM, 1.67mol/mol
glucose [49]

Mannheimia succiniciproducens

LPK7 ΔldhA, ΔpflB, Δpta, ΔackA Fed-batch 52.4 g/L, 1.16mol/mol
glucose [50]
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succinate production to about 28.2 g/L, this strain lost its abil-
ity to ferment glucose anaerobically due to redox imbalance
[33]. The introduction of another null mutation of the ptsG
gene which encoded a key enzyme for the PEP-dependent
phosphotransferase system (PTS) essential to sugar uptake
into the double mutant strain restored the ability to ferment
glucose and the resulting strains produced more succinate
[34]. Fed-batch culture using the triple mutant strain as the
host achieved a final succinate concentration of 99.2 g/l with
an overall yield of 110% andproductivity of 1.3 g/(L ⋅h) [53]. In
addition, pyruvate formation could be inhibited by disrupting
two pyruvate kinases (pykF and pykA) together with the
ptsG gene,which also allowed enhanced succinate production
[35].

For aerobic succinate production, the TCA cycle can be
blocked at key points for the accumulation of succinate. The
disruption of the sdh and icd genes is indispensable to create
an aerobic succinate-producing strain [36]. The glyoxylate
route, which is critical for aerobic succinate production, could
be activated by knocking out a repressor protein, IclR [37].
Besides, pyruvate oxidase (pox), catalyzing the oxidation of
pyruvate, leads to the production of acetate under aerobic
conditions. Knockout of this gene was also shown to be
helpful for the production of succinate and succinate yield
reached 1.2 moles per moles of glucose [38].

5.2. Redirecting Metabolic Flux to the Intermediates of Succi-
nate-Producing Pathway. Overexpression of the genes direct-
ly involved in the succinate biosynthesis pathway also shows
the potential to enhance its production. The genes coding
for key enzymes responsible for succinate biosynthesis have
been identified to be ppc, pck, pyc, mae, mdh, fum, and
frd. There are three different kinds of CO

2
-fixing metabolic

reactions catalyzed by ppc, pck, and pyc, respectively. These
carboxylation reactions of three-carbon metabolites are the
first step for succinate synthesis. Expression of these three
key enzymes has been demonstrated to be critical for the
enhancement of succinate production in different hosts [28,
39, 40, 50]. Mae, catalyzing the reductive carboxylation
of pyruvate to malate, provides an alternative route to
succinate from pyruvate instead of PEP. When expressing
an NAD+-dependent malic enzyme in a mutant E. coli
strain that was unable to metabolize pyruvate, fermentative
metabolism was redirected to succinate and thus resulting in
accumulation of succinate [41]. Mdh catalyzes the conversion
of oxaloacetate to malate. Overexpressed mdh in the ldh
and pfl double mutant strain could restore anaerobic cell
growth and glucose utilization. About 21 g/L of glucose was
completely consumed and succinate reached 15.2 g/L after
anaerobic fermentation for 15 h [42]. Fum could convert
malate to fumarate and further overexpression of this enzyme
with mae eliminated malate production while enhancing
succinate production [43]. Frd catalyzes the reduction of
fumarate to succinate, the last step for succinate production. It
plays a key role in the energymetabolism and also contributes
to succinate production during microbial fermentation [54].

5.3. Enhancement of Reducing Power Availability and Energy
Metabolism. Whenmanipulatingmetabolic fluxes to specific

metabolites, it is important to achieve a redox and energy
balance between the substrates and the products. Succinate
biosynthesis is strongly determined by the reducing power
and energy supplies of the host. The anaerobic fermentative
pathway from PEP or pyruvate to succinate requires two
moles of NADH [55]. The reducing power generated in
the formation of PEP or pyruvate through the glycolytic
pathway (one NADH) is not enough to convert all the
PEP to succinate. Therefore, supplying additional reducing
power has the potential to enhance succinate production
[56]. A higherNADH/NAD+ ratio could be obtained through
manipulating the culture to a more reductive environment
[57]. By eliminating the IclR transcriptional repressor to
activate the aerobic glyoxylate pathway in a mutant strain,
enough NADH is generated to reduce the metabolic inter-
mediates to succinate. This engineered strain was capable
of achieving a succinate yield of 1.6 moles per mole of
glucose at very high rates [44]. On the contrary, excessive
supply of NADH might also inhibit succinate production.
It is crucially important to maintain a redox balance in the
host. For instance, NAD+ regenerationwas achieved in the pfl
and ldh double mutant strain by overexpression of nicotinate
phosphoribosyltransferase. A significant increase in cell mass
and succinate production were observed. The final titer was
enhanced to 3.7-fold of the control strain under the same
induction conditions [45].

ATP supply is another critical factor that influences
the production of succinate. The conversion of PEP to
oxaloacetate can be catalyzed by ppc and pck, respectively.
Energy contained in PEP is lost using the former carboxylase
with the release of inorganic phosphate. On the contrary,
the reaction catalyzed by the ATP-generating pck, which was
found in A. succiniciproducens [58], is favorable for succinate
biosynthesis. Heterologous expressing this carboxykinase in
an E. coli ppc mutant strain produced additional ATP and
increased succinate production by 6.5-fold [46].

6. Fermentation Process Engineering

Fermentation engineering is the foundation for the industri-
alization of biobased succinate. The succinate fermentation
process has been investigated in depth in the past few decades
and recent work mainly focused on the following issues.

6.1. Optimization of Fermentation Conditions. Media com-
ponents and fermentation process parameters are the most
basic and simplest approach to achieve a higher titer of
the desired products. Since the media for succinate fermen-
tation always contains a variety of nutrient components,
the effects of an individual component and the interactions
between different components are needed to be studied,
which requires rational experiment design. Plackett-Burman
design (PBD) and central composite design (CCD) could
be used for rapid screening of multifactors to find the most
significant factors. Moreover, response surface methodology
(RSM) was employed to optimize the concentration of the
important factors. Succinate production of C. glutamicum in
the optimized medium was about 1.46-fold higher than the
original medium [59].
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Other fermentation parameters such as CO
2
(or carbon-

ate) supply, temperature, pH, and dissolved oxygen (DO) also
showed significant effect on succinate production. As one
mole of CO

2
is theoretically required for the synthesis of

one mole of succinate, optimization of CO
2
partial pressures

would contribute to succinate production. Under the opti-
mized conditions, a succinate concentration of 51.6 g/L with
a yield of 75.8% was reached for the producer A. succinogenes
[60].The culture temperature should be optimized according
to the strain employed. As the accumulation of succinate
would make the culture broth to be acidic, the pH of the
fermentation broth should be adjusted to a suitable value
according tomaximizing the production. A pH of 6.4 yielded
the highest specific succinate productivity for E. coli strain
AFP111 [61]. The DO control in the whole fermentation
process also strongly affected cell growth and succinate
production, especially for aerobic cultivation. It was found
that 2–5 h of low dissolved oxygen culture during the aerobic
phase improved succinate productivity using the metaboli-
cally engineered E. coli strain SBS550MG [62].

6.2. Employment of Different Fermentation Strategies. Most
of the current succinate-producing systems are performed
under anaerobic conditions. Unfortunately, anaerobic fer-
mentation has inherent disadvantages, for example, long
doubling time, slow carbon throughput, and low product
formation rates, that are difficult to surmount [63]. There-
fore, a “dual-phase” fermentation process was established to
overcome these problems. Cells grew quickly to generate
enough biomass under aerobic conditions, then switching to
anaerobic conditions for succinate production.The volumet-
ric productivity of succinate was greatly enhanced for both E.
coliNZN111 and AFP111 using the dual-phase culture strategy
[64].

Batch or fed-batch fermentation is the preferred mode
of operation for succinate production. However, continu-
ous production of succinate is likely to outperform batch
processing, especially when considering the projections of
the following downstream processing. During the past few
years, continuous succinate fermentation has been carried
out by researchers from different institutes, but only the
natural producers such as M. succiniciproducens [65], A.
succiniciproducens [66], and A. succinogenes [67] have been
tested. Cell recycle bioreactors with integrated membrane
separation system are required for continuous succinate
production.

6.3. Extension of the Fermentation Feedstocks. Glucose is gen-
erally used as the carbon source for succinate fermentation.
Even though glucose is abundantly available, its relative high
price increases the production costs. In addition, glucose is
manufactured by hydrolyzing starch using 𝛼-amylase and
debranching enzyme or isoamylase. The excessive consump-
tion of glucose is a threat to global food security. In order to
develop a more sustainable biobased industrial production
of succinate, it will be crucial to use low-cost substrates,
especially nonfood feedstocks, and develop a robust strain
capable of catalyzing these rawmaterials to produce succinate
in good yields.

Glycerol is an abundant waste product of the biodiesel
industry with limited commercial uses. The biological pro-
duction of succinate from glycerol is an attractive process,
since it produces a high added-value compound from this by-
product while decreasing environmental pollution. Efficient
bioconversion of glycerol to succinate has been successfully
achieved by using A. succiniciproducens [21], A. succinogenes
[68], and metabolically engineered E. coli [69].

Xylose is a renewable sugar which can be derived from
lignocellulosic biomass. Fermentation of xylose to succinate
has been made possible by current available strains. Anaero-
bic fermentation of xylose using an engineered E. coli strain
produced a final succinate concentration of 11.13 g/L [70].
However, using pure xylose for fermentation is obviously eco-
nomically unfeasible. To further lower the production cost,
utilization of biomass hydrolysates, the second-generation
fermentation feedstocks, seems to be more significant. There
has been an increasing trend towards the utilization of
agricultural wastes or residues such as corn straw [71], wheat
straw [72], corn stover [73], and sugarcane bagasse [74] for the
production of succinate. As most of the succinate-producing
strains could not ferment cellulosic biomass, a pretreatment
step is required for the conversion of lignocellulosicmaterials
to reducing sugars. The saccharification technology is essen-
tial to downstream fermentation [75].

7. Separation and Purification of Succinate
from the Fermentation Broth

Recovery of succinate from the fermentation broth is the last
step for biological succinate production. The separation and
purification of succinate are estimated to make up more than
50% of the total costs in its microbial production [76]. To
make fermentation-based succinate production competitive
with petrochemical processes, the development of optimized
producing strains and fermentation processes must be com-
bined with cost-saving and energy-effective downstream
processes to minimize the production costs.

As shown in Figure 3, the first downstream processing
step of succinate purification is to separate microbial cells
from the fermentation broth by centrifugation or filtration
which is followed by ultrafiltration to eliminate proteins,
polysaccharides, and other polymers from the supernatant.
For the isolation of purified succinate, different strategies
including crystallization, precipitation, extraction, electro-
dialysis, membrane separation, chromatography, and in situ
separation have been investigated. The comparison of differ-
ent downstream processing strategies for succinate separa-
tion is presented in Table 3.The traditional succinate recovery
method is based on precipitation and crystallization technol-
ogy. During succinate fermentation, Ca(OH)

2
can be used

to control the fermentation pH and precipitate succinate.
In this process, a large amount of CaSO

4
was accumulated,

which is commercially useless [77]. Under acidic conditions,
the solubility of succinate is relatively low. Therefore, the
classical crystallization method could be used for the sep-
aration of succinate [78]. However, the low recovery rate
and purity of the final product requires recrystallization
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Figure 3: Strategic approaches for the separation and purification of succinate from the fermentation broth.

Table 3: Comparison of different downstream processing strategies for succinate separation and purification.

Downstream processing
strategies Advantages Disadvantages

Crystallization Easy to be operated; without additional reagents.
Low succinate yield and purity; recrystallization is
required.

Precipitation Low technological barriers; inexpensive
precipitants.

Requirement of large quantities of precipitants;
generation of useless by-products.

Extraction High output and low energy consumption.
Pretreatment of the fermentation broth is required;
expensive extraction agents used for reactive extraction.

Electrodialysis Relatively mild conditions; can be used for
continuous separation.

High energy consumption; high cost of the membranes;
low selectivity for succinate.

Chromatography Easy to be scaled up.
Regeneration of the chromatographic matrix requires
large amounts of acids and alkalis.

In situ separation Can be coupled with the fermentation process;
relieving product inhibition.

Relatively complicated processes; regeneration of
separation sorbent is required.

to make the final product suitable for commercial use.
Among different extraction methods, the reactive extraction
of succinate using aliphatic amines as reactive components
has been widely reported. The distribution coefficient of
succinate in different phases could be easily controlled via
adjusting the pH value of the fermentation broth. About
99.8% of purity and 73.1% of recovery rate could be obtained
through a newly developed reactive extraction process [79].
However, most of the studies on reactive extraction were
performed with pure aqueous phases and the process is often
interfered by contaminated acids, impurities, carbon sources,
protein, or salts. Electrodialysis is another process capable
of separating succinate from nonionized compounds and
can be combined with continuous fermentation to realize in
situ recovery of succinate [80]. The main drawback of this
process is its high energy consumption and the expensive and
easily polluted membranes. The chromatography methods,
especially using ion exchange or adsorption resin, have been
recently reported in many studies [81]. An adsorbent resin
NERCB09 was found to have a high adsorption capacity
of succinate with an excellent recycling property [82]. The
same as many other chromatographic processes, the resin
used has to be regenerated frequently and the regeneration
of sorbent needs a large quantity of acid and alkali, resulting

in additional pollutions. As high concentration of succinate
would inhibit cell growth, removing the inhibitory product
directly from the ongoing fermentation broth might enhance
its production. The strategies of extraction, electrodialysis,
and chromatographic absorption have the potential to be
used for in situ separation. In situ product removal always
requires a specific integrated fermentation system [83]. The
requirement of specific bioreactor increases the production
costs.

Up to now, separation and purification of succinate from
the fermentation broth is still an economical obstacle for its
biological production. The downstream processing methods
employed by BioAmber for commercial production were
mainly based on the classical crystallization strategy [84]. No
commercial applications have been reported using the other
recovery techniques discussed above since the separation
methods studied so far have some drawbacks or limitations.
The key challenge to successfully separate succinate from
the fermentation broth is how to apply these downstream
processing technologies to large-scale industrial processes in
a cost- and time-effective manner. In addition, separation
process coupled with upstream fermentation, that is, in situ
product removal, deserves more attentions in the future.
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8. Conclusions and Future Perspectives
Succinate is finding increasing applications in various areas
and biological succinate manufacturing represents a promis-
ing path for its viable industrial production. Fermentative
succinate production has many advantages, for example, the
decreasing consumption of nonrenewable resources and the
reduction of greenhouse gas emissions [85]. With the efforts
ofmany researchers in different fields, the current production
cost of biobased succinate has been economically competi-
tive with traditional petrochemical processes. However, the
extension of biobased succinate as an intermediary feedstock
for bulk chemicals production will still rely on inexpensive
manufacturing processes. It is estimated that the total pro-
duction cost of succinate could drop to below $0.45/kg under
the perfect condition [86]. The current biological process is
still far from this expectation.

The production cost of biobased succinate is largely
decided by two factors: the fermentation process and the sep-
aration process. As discussed above, downstream processing
makes up the majority cost for succinate production. There-
fore, downstreamprocessing ranks at the first place to achieve
an industrial level production.The development of economi-
cally competitive separation technology is essential to reduce
the production cost. On the other hand, the quality of the fer-
mentation process will determine the difficulty of separating.
The titer of succinate and the content of other organic acids in
the fermentation broth strongly affect the separation process.
Microbial strains with improved succinate-producing ability
and lower by-products formation allow for simpler and less
expensive purificationmethods. Recent advances in synthetic
biology and systems biology have provided new tools to
construct more efficient succinate-producing strains [87]. In
addition, improvements of the fermentation process and its
integration with the separation system also have the potential
to lower the whole production cost. It must be admitted that
advances in biobased succinate production could only be
achieved under the cooperation of scientists having different
background and expertise.

Obviously, fermentative succinate production opens a
new direction for bulk chemicals manufacture. Although
a number of technical challenges must be overcome, the
development of this biological process has a long term
prospect. We believe that by the joint efforts of researchers
in different fields, a sustainable and economically attractive
biobased succinate production will finally replace the tradi-
tional petrochemical processes in the near future.
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