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Abstract
Dual-systems models of visual category learning posit the existence of an explicit, hypothesis-
testing ‘reflective’ system, as well as an implicit, procedural-based ‘reflexive’ system. The
reflective and reflexive learning systems are competitive and neurally dissociable. Relatively little
is known about the role of these domain-general learning systems in speech category learning.
Given the multidimensional, redundant, and variable nature of acoustic cues in speech categories,
our working hypothesis is that speech categories are learned reflexively. To this end, we examined
the relative contribution of these learning systems to speech learning in adults. Native English
speakers learned to categorize Mandarin tone categories over 480 trials. The training protocol
involved trial-by-trial feedback and multiple talkers. Experiment 1 and 2 examined the effect of
manipulating the timing (immediate vs. delayed) and information content (full vs. minimal) of
feedback. Dual-systems models of visual category learning predict that delayed feedback and
providing rich, informational feedback enhance reflective learning, while immediate and
minimally informative feedback enhance reflexive learning. Across the two experiments, our
results show feedback manipulations that targeted reflexive learning enhanced category learning
success. In Experiment 3, we examined the role of trial-to-trial talker information (mixed vs.
blocked presentation) on speech category learning success. We hypothesized that the mixed
condition would enhance reflexive learning by not allowing an association between talker-related
acoustic cues and speech categories. Our results show that the mixed talker condition led to
relatively greater accuracies. Our experiments demonstrate that speech categories are optimally
learned by training methods that target the reflexive learning system.

Introduction
A large body of behavioral and neuroscience research suggests that visual category learning
is mediated by at least two separate albeit partially overlapping learning systems (Ashby &
Maddox, 2005; Knowlton, 1999; Nomura & Reber, 2008; Poldrack & Packard, 2003). The
explicit, ‘reflective’ learning system depends on working memory and executive attention to
develop and test hypotheses and rules for explicit classification. Processing in this system is
available to conscious awareness and is mediated by a circuit primarily involving
dorsolateral prefrontal cortex, anterior cingulate and the anterior caudate nucleus (Ashby &
Ell, 2001; Seger & Miller, 2010). The implicit, procedural-based, ‘reflexive’ learning
system, is not consciously penetrable and operates by associating perception with actions
that lead to reinforcement via feedback. Dual system models predict that the two systems are
complementary in learning various category structures, some of which are reflective-
optimal, and others reflexive-optimal. Although more than 20 years of research has
motivated the dual-systems framework, this model has not been systematically applied to
examine speech category learning.
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Previous speech learning studies have examined category learning as an emergent property
of unsupervised and/or supervised learning processes (Goudbeek, Cutler, & Smits, 2008;
McClelland, Fiez, & McCandliss, 2002; Norris, McQueen, & Cutler, 2003; Toscano &
McMurray, 2010; Vallabha, McClelland, Pons, Werker, & Amano, 2007). In unsupervised
learning, statistical regularities in the input lead to category representations in sensory
regions through a process of implicit Hebbian learning (Goudbeek, et al., 2008; Goudbeek,
Swingley, & Smits, 2009; McClelland, et al., 2002). More recent, computationally based
unsupervised learning models incorporate competition in addition to statistical learning
(McMurray, Aslin, & Toscano, 2009; Toscano & McMurray, 2010). From the
neurobiological perspective, unsupervised category learning is driven is instantiated within
topographical maps in the primary and secondary auditory regions that are sensitive to input
statistics (Guenther, Nieto-Castanon, Ghosh, & Tourville, 2004; Vallabha & McClelland,
2007). In contrast, supervised learning models posit that some form of instructional
feedback (lexical or selective attention) to the sensory network is necessary, in addition to
Hebbian learning (Norris, et al., 2003). Although significant unsupervised speech learning
can occur in adults, category learning with feedback can lead to substantially larger gains
(Goudbeek, et al., 2008; McClelland, et al., 2002).

While the role of statistical learning and feedback instruction in the form of lexical
influences have been extensively researched in speech learning, there has been less focus on
the role of domain-general feedback-based learning processes in mediating category
learning success. This is despite the fact that functional neuroimaging studies examining
speech category learning in adults implicate reflective and reflexive learning circuitry in
addition to the auditory regions (Callan et al., 2003; Tricomi, Delgado, McCandliss,
McClelland, & Fiez, 2006). In dual-systems models, reflective rules are encoded within the
sensory areas with bidirectional connections to working memory units within the lateral
portion of the prefrontal cortex (PFC). When a new rule is generated, the excitatory input
from the PFC to the head of the caudate is strengthened, resulting in the maintenance of a
newly established rule. The PFC units that each represents a particular rule are activated by
the anterior cingulate to select among various alternative rules. In comparison, during
reflexive learning, a single striatal unit (or small group of units) implicitly associates an
abstract cortical-motor response with a large group of sensory cells. The critical aspect of
learning occurs at cortical-striatal synapses, and synaptic plasticity is facilitated by a
dopamine-mediated reinforcement training signal. Despite the different circuitries, both the
reflective and reflexive learning systems utilize the sensory component within the primary
and association auditory regions. These components are reflectively or reflexively associated
with rewards (e.g., instructional feedback).

Our working hypothesis is that speech categories are optimally learned by the reflexive
learning system. This is because speech categories are often difficult to verbalize, easily
learned by infants whose attention and working memory networks are immature (Echols,
1993; Mugitani et al., 2009; Pierrehumbert, 2003), and utilize acoustic cues that are
multidimensional, highly redundant, and variable across talkers (Gandour, 1983; Holt &
Lotto, 2008, 2010). Creating rules for such a large dimensional space may not be optimal,
since generating and testing rules that involve multiple dimensions is resource intensive. In
the current paper, we use training manipulations on trial-by-trial feedback (Experiment 1, 2)
and talker variability (Experiment 3) to examine the relative contribution of the reflective
and reflexive learning systems to speech learning success.

The reflective and reflexive learning systems respond differentially to various training
manipulations. For example, delaying the presentation of feedback impairs learning in the
reflexive system, but not in the reflective system (Maddox, Ashby, & Bohil, 2003). This is
because the reflexive system is critically dependent on dopamine-mediated stimulus-
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response implicit reward learning. Delaying feedback interferes with dopamine release,
reducing the effectiveness of the association of stimulus-response with reward. Also, ‘full’
feedback that provides the correctness of the response on each trial as well as information
about which category was present speeds learning in the reflective system (Maddox, Love,
Glass, & Filoteo, 2008) relative to ‘minimal’ feedback that provides only the correctness of
the response on each trial. Full feedback promotes the generation and testing of rules that are
critical to reflective learning but disrupts the transfer of control to the reflexive system
(Maddox, et al., 2008). Previous studies have used these timing and feedback manipulations
to dissociate the learning systems in artificial category learning, but not in natural speech
category learning.

To this end, we conducted three category learning experiments to examine the effect of
various training manipulations that target either the reflective or reflexive learning systems
on speech category learning success. In each experiment, native English speakers were
trained to categorize nonnative Mandarin tone categories produced by multiple talkers
(Figure 1) with instructional feedback. This type of training structure (trial-by-trial feedback,
high talker variability) is ubiquitous in the speech learning literature. In Mandarin Chinese,
tone contours signify differences in word meaning (e.g., /ma/ with a rising tone means
“mother”, while /ma/ with a falling tone means “to scold,” Figure 1). Previous studies show
that native English speakers have difficulty in learning tone categories, which is
hypothesized to result from inadequate relative weighting of talker-independent pitch
direction cues (Chandrasekaran, Sampath, & Wong, 2010; Wang, Jongman, & Sereno,
2003).

Training manipulations used in experiments 1 and 2 were derived from visual category
learning studies. Experiment 1 determined the extent to which the immediacy of feedback
(immediate vs. delayed) impacts tone category learning. Experiment 2 determined the extent
to which information content of feedback (full versus minimal feedback) impacts tone
category learning (Figure 2). Immediate feedback is critical for the reflexive system but not
the reflective system (Maddox, et al., 2003), while full feedback selectively speeds reflective
learning but impairs reflexive learning (Maddox, et al., 2008). Based on our working
hypothesis, we predicted that feedback manipulations that targeted the reflexive learning
system (immediate or minimal feedback) will enhance learning relative to those that target
the reflective learning system (delayed or full feedback).

While dual systems models of visual category learning make specific predictions about
feedback processing, they offer no clear prediction about the impact of talker variability on
category learning success, which is argued to be important for generalization to new talkers
(Lively, Logan, & Pisoni, 1993) and association of categories with more reliable acoustic
cues (Apfelbaum & McMurray, 2011; Rost & McMurray, 2009). While most agree that
multi-talker training is advantageous, the role of the order of talker presentation, if any, has
not been systematically examined (though see, Perrachione et al., 2011, which we return to
in the discussion). Within the framework of the dual learning systems, we predicted that
systematically blocked talker presentation will promote reflective learning, whereas a
randomly mixed talker presentation will enhance reflexive learning. Our logic here is that
blocked talker presentation promotes faster hypothesis testing and validation, and is
therefore less resource intensive for the reflective system than is the mixed talker condition.
Indeed, previous neuroimaging work show that the mixed talker condition engages the
frontal working memory system more extensively than the blocked talker condition (Wong,
Nusbaum, & Small, 2004). Further, the mixed talker presentation does not allow learners to
predict the next talker in advance, disrupting the reflective generation and testing of talker-
specific rules. Therefore, learners are more likely to associate talker-invariant acoustic cues
(e.g., pitch direction) with implicit reward than talker-variant cues (e.g., pitch height). Based
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on the hypothesis that speech learning is optimally learned by the reflexive learning system,
we predicted enhanced learning in the mixed talker condition, relative to the blocked talker
condition.

To summarize, enhanced learning in the immediate feedback condition relative to delayed
feedback (Experiment 1), minimal feedback relative to full feedback (Experiment 2), and
mixed talker condition relative to blocked talker condition (Experiment 3) will be
considered as support for the dominance of the reflexive system in speech learning during
adulthood.

Methods
Participants

Undergraduate students at the University of Texas were recruited (n = 194; age range: 18-35
years) and monetarily compensated for their participation. Participants reported no history of
neurological or hearing deficits and were native speakers of American English with no prior
exposure to a tone language. Music history questionnaires were collected to match the
groups on musicianship (Wong, Perrachione, & Parrish, 2007). All participants provided
informed consent and were debriefed following the experiment. In Experiment 1,
participants were divided into immediate (n=25; 15 f) and delayed feedback (n=30; 14 f)
groups (equivalent years of musical training: p = .585; immediate: mean = 3.42, SEM = .
675; delayed: mean = 2.90, SEM = .664). In Experiment 2, participants were divided into
minimal (n=41; 20 f) and full feedback (n=40; 21 f) groups (equivalent years of musical
training: p = .979; minimal: mean = 2.20, SEM = .525; full: mean = 2.21, SEM = .393). In
Experiment 3, participants were divided into mixed (n=30; 18 f) and blocked talkers (n=28;
15 f) groups (equivalent years of musical training: p = .723; mixed: mean = 3.18, SEM = .
787; blocked: mean = 3.57, SEM = .776). Participants did not overlap between groups.

Stimuli for tone category training
Four native Mandarin Chinese speakers (2 f) originally from Beijing produced four
Mandarin tones: tone 1 (T1; high-level), tone 2 (T2; low-rising), tone 3 (T3; low-dipping),
and tone 4 (T4; high-falling; Figure 1). The tones were produced in citation form in the
context of five monosyllabic Mandarin Chinese words (bu, di, lu, ma, and mi), reflecting
variability inherent in natural language. The 80 stimuli were RMS amplitude and duration
normalized (70 dB, 0.44 s). Duration normalization was achieved using the PSOLA (Pitch
Synchronous Overlap and Add) module incorporated within the Praat software (Boersma &
Weenink, 2011). Five independent native Mandarin Chinese speakers rated the stimuli as
highly natural and accurately (>95%) identified the tone categories.

Procedure
In all experiments, each auditory stimulus was presented with the written prompt: “Which
category? (Press the number key)”. Participants generated a response by pressing one of four
buttons on a keyboard labeled “1”, “2”, “3”, or “4”, corresponding to T1, T2, T3, and T4,
respectively. Feedback was displayed for 1000 ms after the response depending on the
experimental condition: immediately, or delayed by 500 or 1000 ms. The content of
feedback varied depending on the accuracy of the response (“Correct/No”) and the
experimental condition, in which full feedback informed the participant of the correct
answer regardless of the accuracy. The stimulus-response-feedback sequence comprised a
single trial. One block consisted of a randomized presentation of all 80 stimuli. Six blocks
were presented, yielding in a total of 480 trials per participant. In Experiment 1, response-to-
feedback interval was immediate or delayed (1 s), always with full information. In
Experiment 2, feedback information content was minimal or full, with a fixed response-to-
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feedback interval of 500 ms. In Experiment 3, the order of presentation of talker information
was manipulated. In the Mixed Talker condition, the stimuli were presented in a random
sequence. In the Blocked Talker condition, the stimuli were only randomized in terms of
syllables and tones, but ordered in terms of talker information. The feedback in Experiment
3 was always immediate and minimal (Figure 2). In short, for all experiments, six blocks of
80 trials each were presented to the participants. The order of talkers was completely
randomized for Experiments 1 and 2. In Experiment 3, in the blocked condition, the
sequence of talkers (n=4) was randomized. Within a talker sequence, participants listened to
all stimuli (also randomized) produced by the talker (n=20).

Results
Category learning over training trials

Figure 3 shows the proportion of participants who made a correct category response (sliding
window of 80 trials) across conditions. Visually, reflexive and reflective conditions are more
equivalent in the beginning than towards the end of the experiment, where the reflexive
conditions consistently lead to improved learning progress. This inspection was corroborated
with statistical analysis detailed in the next section.

Data Analysis
For each participant, response to each trial was coded as “correct” or “incorrect.” A mixed
logit analysis was conducted to predict the log odds of producing a correct response, using
the lmer program with binomial logit link (Bates, Maechler, & Bolker, 2012). The
dependent variable was set as the “correct” or “incorrect” outcome of each response. The
fixed effects of interest were the between-subjects condition (“reflexive” vs. “reflective”),
trial number (increasing from 1 to 480; mean-centered to 0 and divided by 100), and their
interaction term. The model was corrected for by-subject and by-item random intercepts,
which was the most complex model as justified by the data, p < .05: Outcome ~ Condition *
Trial + (1 | Subject) + (1 | Item)

Experiment 1: Immediate versus Delayed Feedback
The trial effect was significant (p < .0001; each successive trial increases probability of an
accurate response). The trial by condition interaction was significant (p < .0001; each
successive trial increases probability of an accurate response, more for reflexive-immediate
than for reflective-delayed condition). The condition effect was not significant (Table 1).

Experiment 2: Full versus Minimal Feedback
The trial effect was significant (p < .0001; each successive trial increases probability of an
accurate response). The trial by condition interaction was significant (p < .0001; each
successive trial increases probability of an accurate response, more for reflexive-minimal
than for reflective-full condition). The condition effect was not significant (Table 2).

Experiment 3: Mixed vs. Blocked Talker Presentation
The trial effect was significant (p < .0001; each successive trial increases probability of an
accurate response). The trial by condition interaction was significant (p = .021; each
successive trial increases probability of an accurate response, more for reflexive-mixed than
for reflective-blocked condition). The condition effect was not significant (Table 3).
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Discussion
We hypothesized that the reflexive learning system is optimal for adult speech category
learning. The results from Experiments 1-3 strongly support our hypothesis. All three
experiments show that training manipulations that targeted the reflexive learning system
enhanced learning relative to those that targeted the reflective learning system.

In Experiments 1 and 2, we examined trial-by-trial feedback training manipulations. Both
experiments yielded significant interaction between trial and training manipulation, such that
accuracy increase over trials was greater for manipulations that targeted the reflexive
learning system. In Experiment 1, we found that immediate feedback enhances tone learning
towards the end of training, relative to delayed feedback. As per the dual systems models,
immediate feedback is a critical requirement of the dopamine-mediated reflexive learning
system, but not reflective learning. Therefore, delaying feedback even by just one second
disrupts the dopamine-mediated training signal for the reflexive learning system, allowing
control to pass to the reflective learning system. In Experiment 2, we found that minimal
feedback enhances tone learning towards the end of training, relative to full feedback. Since
the full feedback not only provides information about the correctness of the response but
also the correct category membership, interpretation of this result is counterintuitive without
the consideration of the dual systems perspective; full feedback promotes hypothesis
generation and testing, which prevents transfer of control from the reflective system to the
reflexive system. Therefore, Experiment 2 is also in support of the hypothesis that the
reflexive system is optimal for speech category learning.

In Experiment 3, we manipulated the order of talker presentation: randomly mixed or
systematically blocked. This experiment yielded an interaction between trial and training
manipulation, such that accuracy increase over trials was greater for the mixed talker
condition, relative to the blocked talker condition. This is consistent with our prediction that
the mixed condition targets the reflexive learning system by preventing talker-dependent
hypothesis generation and testing by the reflective system. As a result, participants in the
mixed talker condition are led to rely more on relatively talker-invariant acoustic cues (e.g.,
pitch direction) than on talker-variant cues (e.g., pitch height). These results are consistent
with L1 speech acquisition literature that show that high variability can guide category
learning by allowing associations between more invariant cues and the category structure
(Apfelbaum & McMurray, 2011; Rost & McMurray, 2009), but not consistent with a
previous study that had found greater Mandarin tone learning in the blocked talker condition
than in the mixed talker condition (Perrachione, Lee, Ha, & Wong, 2011). These
contradictory findings, we believe may be due to methodological differences. The high
degree of variability in natural Mandarin tone categories was somewhat reduced in the
previous study, where only three of the categories (T1, T2, and T4) were presented and the
tone contours interpolated linearly. In contrast, our study utilized the full category structure
with the natural tone contours retained (Figure 1). We have argued earlier that the
multidimensionality is what makes speech categories hard to verbalize and therefore
optimally learned through the reflexive system. In contrast, the reflective system is more
likely to suffice as the complexity of the category structure is reduced.

In adult speech learning studies, significant category learning is evidenced without feedback,
consistent with unsupervised learning models. The current study did not include a no-
feedback condition that could help tease apart the relative contribution of unsupervised
implicit learning in mediating category learning success. However, category learning is
substantially more efficient with feedback (Goudbeek, et al., 2008; McClelland, et al.,
2002). Our theoretical approach does not rule out the statistical learning processes operative
within the primary and secondary auditory cortices. Rather, our results demonstrate the
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operational specifics of the domain-general feedback-based learning system that is optimal
for learning speech categories. Although neuroimaging studies have implicated the
neostriatum in speech category learning tasks, the role of the reflexive system, has not been
systematically examined. This is despite that fact that animal models clearly demonstrate
direct, extensive, and many-to-one connectivity between the primary/secondary auditory
cortex and the reflexive systems, suggesting a distinct neurobiological plausibility for a
substantial role for this circuitry (Petrides & Pandya, 1988; Yeterian & Pandya, 1998).
Future research should systematically examine the relative contribution of various forms of
perceptual and learning processes to speech category learning, as well as use other
perceptual forms.

In summary, our results demonstrate that speech category learning is optimally learned by
the reflexive system. Our results offer practical implications for the development of
optimized training approaches that can target the reflexive learning system. Specifically, we
hypothesize that for speech categories, learning can be optimized by including minimal and
immediate feedback and high trial-by-trial talker variability.
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Figure 1.
Example of multiple-talker stimuli used in the category training study. Fundamental
frequency contours of the four tones (T1 = high-level; T2 = low-rising; T3 = low-dipping;
T4 = falling) produced by four native Mandarin speakers (2 f). Tone contours were obtained
using Praat (Boersma & Weenink, 2011).
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Figure 2.
Experimental procedures. In Experiments 1-3 we examined the effects of reflexive (top) or
reflective (bottom) training manipulations on tone category learning success.
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Figure 3.
Category learning curves across reflexive vs. reflective conditions in all three experiments:
(a) Experiment 1: feedback delay (immediate vs. delayed); (b) Experiment 2: feedback
information (minimal vs. full); (c) Experiment 3: talker variability (mixed vs. blocked).
Plotted in solid bold lines are the proportions of correct responses across participants within
each condition over the course of learning. The black lines denote the reflexive conditions
and the red, the reflective conditions. For purposes of visualization of trial-by-trial data,
each point in the line denotes the average number of correct responses in a sliding 80-trial
window. For trials preceding the 80th trial, cumulative averages were used. Plotted in thin
lines are the ranges of standard error of the averages used in the sliding windows. Visual
assessment of the learning curves suggest that both conditions result in equivalent degrees of
category learning towards the earlier phase of experiment, but the reflexive condition leads
to greater learning than does the reflective condition towards the later phase of the
experiment. This pattern is consistent across all three experiments.
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Table 1

Effects of Feedback Delay on Category Learning

Fixed Effect Coefficient SE z P

Intercept .23888 .21921 1.090 .276

Trial .25127 .01380 18.211 < 2e−16

Condition .29577 .31519 .0938 .348

Trial*Condition .08729 .02114 4.129 3.64e−5

Note. Coefficients express log odds.
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Table 2

Effects of Feedback Information on Category Learning

Fixed Effect Coefficient SE z P

Intercept .03810 .18865 .202 .840

Trial .24091 .01223 19.695 < 2e−16

Condition .34199 .25305 1.351 .177

Trial*Condition .10610 .01736 6.111 9.92e−10

Note. Coefficients express log odds.
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Table 3

Effects of Talker Variability on Category Learning

Fixed Effect Coefficient SE z P

Intercept .20323 .21452 .947 .343457

Trial .36940 .01477 25.012 < 2e−16

Condition .45136 .28765 1.569 .116612

Trial*Condition .07834 .02113 3.708 .000209

Note. Coefficients express log odds.
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