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Abstract
The exponential synchronization rate is addressed for Kuramoto oscillators in the presence of a
pacemaker. When natural frequencies are identical, we prove that synchronization can be ensured
even when the phases are not constrained in an open half-circle, which improves the existing
results in the literature. We derive a lower bound on the exponential synchronization rate, which is
proven to be an increasing function of pacemaker strength, but may be an increasing or decreasing
function of local coupling strength. A similar conclusion is obtained for phase locking when the
natural frequencies are non-identical. An approach to trapping phase differences in an arbitrary
interval is also given, which ensures synchronization in the sense that synchronization error can be
reduced to an arbitrary level.

Index Terms
Exponential synchronization rate; Kuramoto model; pacemaker; oscillator networks

I. Introduction
The Kuramoto model was first proposed in 1975 to model the synchronization of chemical
oscillators sinusoidally coupled in an all-to-all architecture [1]. Although it is elegantly
simple, the Kuramoto model is sufficiently flexible to be adapted to many different contexts,
hence it is widely used and is regarded as one the most representative models of coupled
phase oscillators [2]. Recently, the Kuramoto model has received increased attention. For
example, the authors in [3], [4], [5] discussed synchronization conditions for the Kuramoto
model. The work in [6] gave a synchronization condition for delayed Kuramoto oscillators.
Results are also obtained for Kuramoto oscillators with coupling topologies different from
the original all-to-all structure. For example, the authors in [7] and [8] considered the phase
locking of Kuramoto oscillators coupled in a ring and a chain, respectively. Using graph
theory, the authors in [9], [10], [11] discussed the synchronization of Kuramoto oscillators
with arbitrary coupling topologies. The authors in [12] proved that exponential
synchronization can be achieved for Kuramoto oscillators when phases lie in an open half-
circle.

Studying the influence of the pacemaker (also called the leader, or the pinner [13]) on
Kuramoto oscillators is not only of theoretical interest, but also of practical importance [14],
[15]. For example, in circadian systems, thousands of clock cells in the brain are entrained to
the light-dark cycle [16]. In the clock synchronization of wireless networks, time references
in individual nodes are synchronized by means of intercellular interplay and external
coordination from a time base such as GPS [17]. Hence, Kuramoto oscillators with a
pacemaker are attracting increased attention. The authors in [14] and [18] studied the
bifurcation diagram and the steady macroscopic rotation of Kuramoto oscillators forced by a
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pacemaker that acts on every node. Based on numerical methods, the authors in [19] showed
that the network depth (defined as the mean distance of nodes from the pacemaker, a term
closely related to pinning-controllability in pinning control [20]) affects the entrainment of
randomly coupled Kuramoto oscillators to a pacemaker. Using numerical methods, the
authors in [21] discovered that there may be situations in which the population field
potential is entrained to the pacemaker while individual oscillators are phase
desynchronized. But compared with the rich results on pacemaker-free Kuramoto
oscillators, analytical results are relative sparse for Kuromoto oscillators forced by a
pacemaker. And to our knowledge, there are no existing results on the synchronization rate
of arbitrarily coupled Kuramoto oscillators in the presence of a pacemaker.

The synchronization rate is crucial in many synchronized processes. For example, in the
main olfactory system, stimulus-specific ensembles of neurons synchronize their firing to
facilitate odor discrimination, and the synchronization time determines the speed of
olfactory discrimination [22]. In the clock synchronization of wireless sensor networks, the
synchronization rate is a determinant of energy consumption, which is vital for cheap
sensors [23], [24].

We consider the exponential synchronization rate of Kuramoto oscillators with an arbitrary
topology in the presence of a pacemaker. In the identical natural frequency case, we prove
that synchronization (oscillations with identical phases) can be ensured, even when phases
are not constrained in an open half-circle. In the non-identical natural frequency case where
perfect synchronization has been shown cannot be achieved [2],[25], we prove that phase
locking (oscillations with identical oscillating frequencies) can be ensured and
synchronization can be achieved in the sense that phase differences can be reduced to an
arbitrary level. In both cases, the influences of the pacemaker and local coupling strength on
the synchronization rate are analyzed.

II. Problem formulation and Model transformation
Consider a network of N oscillators, which will henceforth be referred to as ‘nodes’. All N
nodes (or a subset) receive alignment information from a pacemaker (also called the leader,
or the pinner [13]). Denoting the phases of the pacemaker and node i as ϕ0 and ϕi,
respectively, the dynamics of the Kuramoto oscillator network can be written as

(1)

for 1 ≤ i ≤ N, where w0 and wi are the natural frequencies of the pacemaker and the ith
oscillator, respectively, ai,j sin (ϕj − ϕi) is the interplay between node i and node j with ai,j ≥
0 denoting the strength, gi sin(ϕ0 − ϕi) denotes the force of the pacemaker with gi ≥ 0
denoting its strength. If ai,j = 0 (or gi = 0), then oscillator i is not influenced by oscillator j
(or the pacemaker).

Assumption 1—We assume symmetric coupling between pairs of oscillators, i.e., ai,j =
aj,i.

Next, we study the influences of the pacemaker, gi, and local coupling, ai,j, on the rate of
exponential synchronization.
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Solving the first equation in (1) gives the dynamics of the pacemaker ϕ0 = w0t + φ0, where
the constant φ0 denotes the initial phase. To study if oscillator i is synchronized to the
pacemaker, it is convenient to study the phase deviation of oscillator i from the pacemaker.
So we introduce the following change of variables:

(2)

ξi ∈ [−2π, 2π] denotes the phase deviation of the ith oscillator from the pacemaker. Due to
the 2π-periodicity of the sine-function, we can restrict our attention to ξi ∈ [−π, π].
Substituting (2) into (1) yields the dynamics of ξi:

(3)

Since ξi is the relative phase of the ith oscillator with respect to the phase of the pacemaker,
it will be referred to as relative phase in the remainder of the paper.

By studying the properties of (3), we can obtain:

• Condition for synchronization: If all ξi converge to 0, then we have ϕ1 = ϕ2 = …=
ϕN = ϕ0 when t → ∞, meaning that all nodes are synchronized to the pacemaker.

• Exponential synchronization rate: The rate of synchronization is determined by the
rate at which ξi decays to 0, namely, it can be measured by the maximal α
satisfying

(4)

for some constant C, where ||•|| is the Euclidean norm. α measures the exponential
synchronization rate of (3): a larger α leads to a faster synchronization rate.

Remark 1—When wi and w0 are non-identical, synchronization (ξi = 0) cannot be achieved
in general. But we will prove in Sec. IV-C that the synchronization error can be made
arbitrarily small by tuning the strength of the pacemaker gi.

Assigning arbitrary orientation to each interaction, we can get the N × M incidence matrix B
(M is the number of interaction edges, i.e., non-zero ai,j (1 ≤ i ≤ N, j < i)) of the interaction
graph [26]: Bi,j = 1 if edge j enters node i, Bi,j = −1 if edge j leaves node i, and Bi,j = 0
otherwise. Then using graph theory, (3) can be recast in a matrix form:

(5)

where Ω = [w1 − w0, w2 − w0, …, wN − w0]T, G = diag(g1, g2, …, gN), and W = diag(ν1, ν2,
…, νM). Here νi (1 ≤ i ≤ M) are a permutation of non-zero ai,j (1 ≤ i ≤ N, j < i) and diag(•)
denotes a diagonal matrix.

III. The identical natural frequency case
When w1 = w2 = … = wN = w0, (5) reduces to:

(6)
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To study the exponential synchronization rate, we first give a synchronization condition:

Theorem 1—For the network in (6), denote  and sinc(x) ≜ sin(x)/x, then

1. when , the network synchronizes if at least one gi is positive and the coupling
ai,j is connected, i.e., there is a multi-hop link from each node to every other node;

2. when , the network synchronizes if the following inequality is satisfied:

(7)

where λmax(•) denotes the maximal eigenvalue, gmin and  are determined
by

(8)

Proof: We first prove that when ξ ∈ [−ε, ε] × … × [−ε, ε] = [−ε, ε]N where × denotes
Cartesian product, they will remain in the interval under conditions in Theorem 1, i.e, the n-
tuple set [−ε, ε]N is positively invariant for (6).

To prove the positive invariance of [−ε, ε]N, we only need to check the direction of vector
field on the boundaries. When , if ξi = ε, we have −π < −2ε ≤ ξj − ξi ≤ 0 for 1 ≤ j ≤ N.
So in (3), sin(ξj − ξi) ≤ 0 and sin(ξi) > 0 hold, and hence ξ̇i < 0 holds (Note that wi − w0 =
0). Hence the vector field is pointing inward in the set, and no trajectory can escape to
values larger than ε. Similarly, we can prove that when ξi = −ε, ξ̇i > 0 holds. Thus no
trajectory can escape to values smaller than −ε. Therefore [−ε, ε]N is positively invariant
when . When , if ξi = ε, we have sin ξi = sin ε > 0 and sin(ξj − ξi) ≤ 1 for 1 ≤ j
≤ N. So when wi = w0, if (7) is satisfied, the right hand side of (3) is negative, i.e., ξ̇i < 0
holds. Therefore the vector field is pointing inward in the set and no trajectory can escape to
values larger than ε. Similarly, we can prove that if ξi = −ε, ξ̇i > 0 holds under condition (7).
Thus no trajectory can escape to values smaller than −ε. Therefore [−ε, ε]N is also positively
invariant for  if (7) is satisfied.

Next we proceed to prove synchronization. Define a Lyapunov function as . V ≥ 0
is zero iff all ξi are zero, meaning the synchronization of all nodes to the pacemaker.

Differentiating V along the trajectories of (6) yields

(9)

where S1 ∈  and S2 ∈  are given by

(10)

with (BTξ)i denoting the ith element of the M ×1 dimensional vector BTξ.
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From dynamic systems theory, if GS1 +BWS2BT in (9) is positive definite when ξ ≠ 0, then V̇

is negative when ξ ≠ 0 and V will decay to zero, meaning that ξ will decay to zero and all
nodes are synchronized to the pacemaker.

1. When all ξi are within [−ε, ε] with , (BTξ)i is in the form of ξm − ξn (1 ≤ m,
n ≤ N), and hence is restricted to (−π, π). Given that in (−π, π), sinc(x) > 0 holds, it
follows that S1 and S2 satisfy the following inequalities:

(11)

So we have GS1 + BWS2BT ≥ σ1G + σ2BWBT, which in combination with (9)
produces

(12)

It can be verified that σ1G + σ2BWBT is of form:

(13)

with L ∈  given as follows: for i ≠ j, its (i, j)th element is −ai,j, for i = j, its (i,

j)th element is . Since σ1 and σ2 are positive, gi and ai,j are non-
negative, it follows from the Gershgorin Circle Theorem that σ1G + σ2BWBT only
has non-negative eigenvalues [27]. Next we prove its positive definiteness by
excluding 0 as an eigenvalue.

Since the topology of ai,j is connected, σ1G + σ2BWBT is irreducible from graph
theory [27]. This in combination with the assumption of at least one gi > 0
guarantees that σ1G + σ2BWBT is irreducibly diagonally dominant. So from
Corollary 6.2.27 of [27], we know its determinant is non-zero, and hence 0 is not its
eigenvalue. Therefore σ1G + σ2BWBT is positive definite, and hence V will
converge to 0, meaning that the nodes will synchronize to the pacemaker.

2. When ξi ∈ [−ε, ε] (1 ≤ i ≤ N) with , S1 is positive definite but S2 is not
since (BTξ)i is in [−2ε, 2ε], and thus sinc(BTξ)i may be negative. It can be proven
that sinc(x) is monotonically decreasing on [0, 2ε0] and monotonically increasing
on [2ε0, 2π] (using the first derivative test), where  is determined by (8).
Hence we have S1 ≥ sinc(ε)I and S2 ≥ sinc(2ε0)I where sinc(2ε0) < 0. Therefore (9)
reduces to

(14)

Thus ξ → 0 if gminsinc(ε) + sinc(2ε0)λmax(BWBT) > 0 holds.

Remark 2—It is already known that for general Kuramoto oscillators without a pacemaker,

synchronization can only be ensured when  is less than π, i.e., the initial
phases lie in an open half-circle [9], [10], [11], [12], [28], [29] (although when phases are
lying outside a half-circle, almost global synchronization is possible by replacing the
sinusoidal interaction function with elaborately designed periodic functions [30], [31], it
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may introduce numerous unstable equilibria [31]). Here, synchronization is ensured even
when ξi is outside ( ), i.e., when phase difference ϕi − ϕj = ξi − ξj is larger than π,
meaning that the phases can lie outside a half-circle. This shows the advantages of
introducing a pacemaker.

Remark 3—Theorem 1 indicates that when ξi is outside ( ), i.e., when phases cannot
be constrained in one open half-circle, all nodes have to be connected to the pacemaker to
ensure synchronization. In fact, when some oscillators are not connected to the pacemaker,
the relative phases may not converge to 0. For example, consider two connected oscillators,
1 and 2, with coupling strength a1,2 = a2,1 = κ. If the pacemaker only acts on oscillator 1
with strength g1 = κ and the phases of the pacemaker, oscillator 1 and 2 are π, 0.4π, and
1.6π, respectively, though ξ1 = −0.6π and ξ2 = 0.6π are all within [−0.6π, 0.6π], numerical
simulation shows that ξ2 will not converge to 0 no matter how large κ is.

Remark 4—Since the eigenvalues of BWBT are nonnegative [26], λmax(BWBT) > 0.

Based on a similar derivation, we can get a bound on the exponential synchronization rate:

Theorem 2—For the network in (6), denote 

. If the conditions in Theorem 1 are satisfied, then the exponential synchronization rate can
be bounded as follows:

1. when  holds, the exponential synchronization rate is no worse than

(15)

with σ1G + σ2BWBT given in (13);

2. when  holds, the exponential synchronization rate is no worse than

(16)

Proof: From the proof in Theorem 1, when , we have V̇ ≤ −2α1V, which means V
(t) ≤ C2e−2α1tV(0) ⇒ ||ξ(t)|| ≤ Ce−α1t||ξ(0)|| for some positive constant C. Thus the
synchronization rate is no less than α1.

Similarly, when  holds, we have V̇ ≤ −2α2V. Hence the exponential synchronization
rate is no less than α2, which completes the proof.

Remark 5—When  holds and there is no pacemaker, i.e., G = 0, using the average

phase  as reference, we can define the relative phase as ξi = ϕi − ϕ̄. Since ξT1 = 0
with 1 = [1,1, …, 1]T, the constraint ξT1 = 0 is added to the optimization

 in (15). Given that G = 0 and BWBT is the Laplacian
matrix of interaction graph and hence has eigenvector 1 with associated eigenvalue 0 [27],
λmin in (15) reduces to the second smallest eigenvalue, which is the same as the convergence
rate in section IV of [32] obtained using contraction analysis.
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Eqn. (16) shows that when , a stronger pacemaker, i.e., a larger gmin leads to

a larger α2, but the relation between α1 and gi when  is not clear. (In this case,
gmin may be zero.) We can prove that in this case α1 also increases with gi for any i = 1, 2,
…, N:

Theorem 3—Both α1 in (15) and α2 in (16) increase with an increase in pacemaker
strength.

Proof: As analyzed in the paragraph above Theorem 3, we only need to prove Theorem 3
when  holds, i.e., α1 is an increasing function of gi. Recall from (13) that σ1G +
σ2BWBT is an irreducible matrix with non-positive off-diagonal elements, so there exists a
positive μ such that μI − (σ1G + σ2BWBT) is an irreducible non-negative matrix. Therefore,
λmax (μI − (σ1G + σ2BWBT)) is the Perron-Frobenius eigenvalue of μI − (σ1G + σ2BWBT)
and is positive [27]. Given that for any 1 ≤ i ≤ N, μ − λi(σ1G + σ2BWBT) is an eigenvalue of
μI − (σ1G + σ2BWBT) where λi denotes the ith eigenvalue, we have μ − λmin(σ1G +
σ2BWBT) = λmax (μI − (σ1G + σ2BWBT)), i.e., α1 = λmin(σ1G + σ2BWBT) = μ − λmax (μI −
(σ1G + σ2BWBT)).

Since the Perron-Frobenius eigenvalue of μI − (σ1G + σ2BWBT) is an increasing function of
its diagonal elements [27], which are decreasing functions of all gi, it follows that λmax (μI −
(σ1G + σ2BWBT)) is a decreasing function of gi, meaning that α1 is an increasing function of
all gi.

Remark 6—When all ξi are in ( ), since S2 in (10) is positive definite, which leads to

−ξT BWS2BT ξ < 0, the local coupling will increase α1 in (15). But when  is larger
than , S2 can be indefinite, hence −ξT BWS2BT ξ can be positive, negative or zero, thus the
local coupling may increase, decrease or have no influence on the synchronization rate. This
conclusion is confirmed by simulations in Sec. V.

IV. The non-identical natural frequency case
When natural frequencies are non-identical, Kuramoto oscillators cannot be fully
synchronized [2], [25]. Next, we will prove that synchronization can be achieved in the
sense that the synchronization error (defined as the maximal relative phase) can be made
arbitrarily small. This is done in two steps: first we show that under some conditions, the
oscillators can be phase-locked, then we prove that the relative phases can be trapped in [−δ,
δ] for an arbitrary δ > 0 if the pacemaker is strong enough. The role played by the phase
trapping approach is twofold: on the one hand, it makes the conditions required in phase
locking achievable, and on the other hand, in combination with the phase locking, it can
reduce the phase synchronization error to an arbitrary level.

A. Conditions for phase locking
When the natural frequencies are non-identical, the dynamics of the oscillator network are
given in (5). As in previous studies, we assume that the natural frequencies are constant with
respect to time. The results are summarized below:

Theorem 4—Denote , then the network in (5) can achieve phase locking if

1.  holds, at least one gi is positive, and the coupling ai,j is connected;
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2.

 and 
hold.

Proof: To prove phase locking, i.e., all oscillators oscillate at the same frequency, we need
to prove that the oscillating frequencies ϕ̇i are identical. From (2), we have ϕ̇i = w0 + ξ̇i, so if
ζ ≜ ξ̇ converges to zero, then phase locking is achieved.

Differentiating (5) yields

(17)

where

(18)

Following the line of reasoning of the proof of Theorem 1, we can prove that ζ is positively
invariant under conditions in Theorem 4. Next we proceed to prove the convergence of ζ.

Define a Lyapunov function as . Differentiating V along the trajectory of (17)
yields

(19)

Following the line of reasoning of Theorem 1, when ζ ≠ 0, we can obtain V̇ < 0 under the
conditions in Theorem 4. So V, and hence ζ will converge to 0. Thus oscillating frequencies
become identical and phase locking is achieved.

Remark 7—In the absence of a pacemaker, the authors in [3] proved that if the phase
difference between any two oscillators, i.e., ϕi − ϕj, ∀i, j, is within [ ], then phase
locking can be achieved. Given ϕi−ϕj = ξi−ξj, ∀i, j, the condition in [3] only applies to

 in our formulation framework.

B. A bound on the exponential rate of phase locking

Theorem 5—For the network in (5), denote . If the conditions in Theorem 4 are
satisfied, then

1. when  holds, the exponential phase-locking rate is no worse than

(20)

with σ3 ≜ cosε and σ4 ≜ cos 2ε;

2. when  holds, the exponential phase-locking rate is no worse than

(21)
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Proof: Theorem 5 can be derived following the line of reasoning of Theorem 2 and thus is
omitted.

Remark 8—Following Theorem 3, we can prove that a stronger pacemaker always
increases α3 (and α4). But a stronger local coupling can have different impacts: when

, S4 in (18) is positive definite, −ζTBWS4BT ζ is negative, so the local coupling will
increase α3. However, when , since S4 in (18) can be indefinite, −ζTBWS4BT ζ can
be positive or negative. Thus the local coupling may increase or decrease the rate of phase
locking. The conclusion will be confirmed by simulations in Sec. V.

C. Method for trapping relative phases
In this section, we will give a method such that the relative phases are trapped in any
interval [−δ, δ] with an arbitrary 0 < δ < π.

Theorem 6—For (5) with frequency differences Ω, denote  and ,
then the relative phases can be trapped in a compact set [−δ, δ] for an arbitrary 0 < δ < π

1. if  and the following condition is satisfied:

(22)

2. if  and the following condition is satisfied:

(23)

where ε0 is defined in (8).

Proof: Differentiating Lyapunov function  along the trajectory of (5) yields

(24)

with S1 and S2 defined in (10).

1. When  holds, we have S1 ≥ sinc(ε)I > 0 and S2 ≥ 0 from previous analysis.
Using (24), (10), and the fact λmin(G) = gmin, we have

(25)

If ξi is outside [−δ, δ] for some i, we have , which in
combination with (22) leads to V̇ < 0. Therefore all ξi will converge to [−δ, δ].

2. When  holds, from the analysis in Theorem 1, we have S1 ≥ sinc(ε)I > 0
and S2 ≥ sinc(2ε0)I. Then using (24) and the fact λmin(G) = gmin, we have

(26)
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If ξi is outside [−δ, δ] for some i, we have ||ξ|| > δ, which in combination with (23)
leads to V̇ < 0. Thus all ξi will converge to the interval [−δ, δ].

Remark 9—Theorem 6 used the important fact that if  is restricted to the
interval [0, δ], then all ξi are restricted to the interval [−δ, δ].

Remark 10—When ||ξ|| < π, [3] gives a condition under which ξi can be trapped in an

arbitrary compact set. Since for a large number of oscillators N,  is
difficult to satisfy, our result is more general.

V. Simulation results
We consider a network composed of N = 9 oscillators. The coupling strengths ai,j are
randomly chosen from the interval [0, 0.1]. They were found to form a connected interaction

graph. As in previous studies, we use the modulus of the order parameter 
to measure the degree of synchrony [25]. The value of r (r ∈ [0, 1]) will approach 1 as the
network is perfectly synchronized, and 0 if the phases are randomly distributed [25].
According to [25], we have r ≈ 1 when the oscillators are synchronized. So we define
synchronization to be achieved when r exceeds 0.99.

When the natural frequencies are identical, we set the phase of the pacemaker ϕ0 to ϕ0 = w0t
with w0 = 1 and simulated the network using initial phases ϕi = ϕ0 + ξi with 
and initial phases ϕi = ϕ0 + ξi with ξi ∈ (−π, π), respectively. In the former case, we
connected the first oscillator to the pacemaker and set g1 = g, g2 = g3 = … = g9 = 0. In the
latter case, we connected all oscillators to the pacemaker and set g1 = g2 = … = g9 = g. In
both cases, we set g = 1. To show the influences of the pacemaker on the synchronization
rate, we fixed ai,j and simulated the network under different pacemaker strengths m × g,
where m = 1, 2, …, 10. To show the influences of local coupling on the synchronization rate,
we fixed the strength of the pacemaker to 3g and simulated the network under different local
coupling strengths m × ai,j for all ai,j, where m = 1, 2, …, 10. All the synchronization times
are averaged over 100 runs with initial ξi in each run randomly chosen from a uniform
distribution on ( ) (in the former case) or on (−π, π) (in the latter case). The results are
given in Fig. 1. It is clear that a stronger pacemaker always increases the synchronization
rate, whereas the local coupling increases the synchronization rate when all ξi are within
( ), and it may increase or decrease the synchronization rate when the maximal/
minimal ξi is outside ( ).

When the natural frequencies are non-identical, we simulated the network using initial
phases ϕi = ϕ0 + ξi with  and initial phases ϕi = ϕ0 + ξi with  ,
respectively. In the former case, we connected the first oscillator to the pacemaker and set g1
= g. In the latter case, we connected all the oscillators to the pacemaker and set g1 = g2 = …
= g9 = g. The natural frequencies were randomly chosen from (0, 1). Tuning the strengths in
the same way as in the identical natural frequency case, we simulated the network under
different strengths of the pacemaker and local coupling. All of the times to phase locking are
averaged over 100 runs with initial ξi randomly chosen from a uniform distribution on
( ) (in the former case) or on ( ) (in the latter case). The results are given in Fig.
2. It is clear that a stronger pacemaker always increases the rate to phase locking, whereas
the local coupling increases the rate to phase locking when all ξi are within ( ), and it
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may increase or decrease the rate to phase locking when the maximal/minimal ξi is outside
( ).

To confirm the prediction that ξi can be made smaller by making the pacemaker strength
stronger, we set g1 = … = g9 = g and simulated the network under initial phases ϕi = ϕ0 + ξi
with ξi ∈ (−π, π). Using the same ξi, the maximal final relative phase when the strength of
the pacemaker g is made m (m = 1, 2, …, 10) times greater is recorded and given in Fig. 3. It
can be seen that the maximal final relative phase (i.e., synchronization error) decreases with
the strength of the pacemaker, confirming the prediction in Theorem 6.

VI. Conclusions
The exponential synchronization rate of Kuramoto oscillators is analyzed in the presence of
a pacemaker. In the identical natural frequency case, we prove that synchronization to the
pacemaker can be ensured even when the initial phases are not constrained in an open half-
circle, which improves the existing results in the literature. Then we derive a lower bound on
the exponential synchronization rate, which is proven an increasing function of the
pacemaker strength, but may be an increasing or decreasing function of the local coupling
strength. In the non-identical natural frequency case, a similar conclusion is obtained on
phase locking. In this case, we also prove that relative phases (synchronization error) can be
made arbitrarily small by making the pacemaker strength strong enough. The results are
independent of oscillator numbers in the network and are confirmed by numerical
simulations.
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Fig. 1.
Times to synchronization under different strengths of pacemaker/local coupling (with all
oscillators having identical natural frequencies).
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Fig. 2.
Times to phase locking under different strengths of pacemaker/local coupling (with
oscillators having non-identical natural frequencies).
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Fig. 3.
The maximal final relative phase (phase synchronization error) under different strengths of
the pacemaker when oscillators have non-identical natural frequencies (which are randomly
chosen from the interval (0, 1)).
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