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  Given the CYP3A4 and CYP3A5’s impact on the efficacy of drugs, the genetic backgrounds of 
individuals and populations are regarded as an important factor to be considered in the prescription 
of personalized medicine. However, genetic studies with Korean population are relatively scarce 
compared to those with other populations. In this study, we aimed to identify CYP3A4/5 polymorphisms 
and compare the genotype distributions among five ethnicities. To identify CYP3A4/5 SNPs, we first 
performed direct sequencing with 288 DNA samples which consisted of 96 Koreans, 48 European- 
Americans, 48 African-Americans, 48 Han Chinese, and 48 Japanese. The direct sequencing identified 
15 novel SNPs, as well as 42 known polymorphisms. We defined the genotype distributions, and 
compared the allele frequencies among five ethnicities. The results showed that minor allele frequencies 
of Korean population were similar with those of the Japanese and Han Chinese populations, whereas 
there were distinct differences from European-Americans or African-Americans. Among the phar-
macogenetic markers, frequencies of CYP3A4*1B (rs2740574) and CYP3A5*3C (rs776742) in Asian 
groups were different from those in other populations. In addition, minor allele frequency of CYP3A4*18 
(rs28371759) was the highest in Korean population. Additional in silico analysis predicted that two 
novel non-synonymous SNPs in CYP3A5 (+27256C＞T, P389S and +31546T＞G, I488S) could alter 
protein structure. The frequency distributions of the identified polymorphisms in the present study 
may contribute to the expansion of pharmacogenetic knowledge.
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INTRODUCTION

  Given that genetic differences between individuals or 
populations can impact the efficacy of drugs, defining phar-
macogenetic differences is regarded as an important factor 
to consider in the treatment of diseases and conditions with 
personalized medicine. Therefore, to enhance the prediction 
of efficacy and toxicity of drugs in individuals, recent phar-
macogenetic studies have focused on phase I and phase II 
drug-metabolism related genes such as the N-acetyltrans-
ferase (NAT) family, the Cytochrome P450 (CYP) family, 
and the Uridine diphosphate glucuronosyl transferase 
(UGT) family [1-3]. 
  The CYP3A family is a well-known phase I metabolism- 

related gene family and consists of four genes, CYP3A4, 
CYP3A5, CYP3A7, and CYP3A43, all of which are located 
in the 231-kb region of chromosome 7q21.1 [4]. It has been 
demonstrated that the CYP enzymes account for approx-
imately 75% of metabolic reactions [5]. The CYP3A4 and 
CYP3A5 genes are known to perform a mono-oxygenase re-
action, which is involved in several drug-related reactions 
such as bio-activation of medicines, excretion of drug com-
pounds, and deactivation of drug compounds [6]. According 
to previous reports, approximately 30% of CYP enzymes 
showed a high expression level in the liver and intestine, 
and activities of CYP3A4 and CYP3A5 constituted approx-
imately 36% of all CYP3A activity [7-9]. It was also re-
ported that CYP3A4 and CYP3A5 polymorphisms affected 
the treatment of various diseases by changing the balance 
of drug metabolism [10-12]. In addition, it was demon-
strated that the CYP enzymes showed genetic variation 
across individuals, with deficiencies occurring in 1 to 30% 
of populations, depending on ethnicity [13]. Therefore, a 
large number of studies were conducted to validate the ef-
fect of single-nucleotide polymorphisms (SNPs) of CYP3A4 
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Gene Polymorphism Star 
nomenclature

Allele
change Position Amino acid 

change

Minor allele frequency

Korean
(n=92)

Han 
Chinese
(n=48)

Japanese
(n=48)

African-
American

(n=48)

European-
American

(n=48)

CYP3A4 rs36231117 . C＞T Promoter . - - - 0.010 -
－1887T＞C† . T＞C Promoter . 0.005 - - - -
rs28907269 . C＞T Promoter . - - - 0.021 -
－1258A＞C† . A＞C Promoter . - - - - 0.011
rs12114000 . C＞T Promoter . - - - 0.281 -
rs1851426 . C＞T Promoter . - - - 0.229 0.043
rs11773597 . C＞G Promoter . - - - - 0.062
rs28988569 . A＞G Promoter . - 0.010 - - -
rs2740574 *1B A＞G Promoter . - - - 0.271 0.042
rs4986908 . C＞T Exon6 D174N - 0.010 - - -
rs12721623 . T＞G Intron6 . - - - - 0.021
rs12721624 . C＞T Intron8 . - - - 0.01 -
rs56153749 . A＞- Intron9 . 0.021 0.021 - 0.01 -
rs28371759 *18 T＞C Exon10 L293P 0.026 - 0.010 - -
+20157A＞G† . A＞G Exon10 V318V - 0.010 - - -
rs2242480 . G＞A Intron10 . 0.219 0.271 0.260 0.219 0.083
rs4986911 . G＞C Intron10 . - - - 0.042 -
rs4986909 *13 G＞A Exon11 P416L - 0.011 - - -
rs4986910 *3 A＞G Exon12 M445T - - - - 0.021
rs4986913 *19 G＞A Exon12 P467S - 0.011 - - -
rs28988604 . C＞T 3'-UTR . - - - 0.052 0.021

Table 1. Results from direct sequencing of CYP3A4 and CYP3A5 with five different ethnic groups

and CYP3A5 on these polymorphic expressions and the risk 
of various diseases [14-16].
  Previously, 22 and 11 types of pharmacogenetic markers 
were identified in CYP3A4 and CYP3A5, respectively 
(reviewed in [17]). Also, it is well-known that frequency dif-
ferences of the genetic polymorphisms are responsible for 
diverse gene expressions which are related with various 
drug responses. For example, the high frequency of 
CYP3A5*3 allele in Caucasian led to a high area under 
curve value for cyclosporine metabolism [18]. Moreover, it 
was also demonstrated that the CYP3A5*6 and *7 alleles, 
which were responsible for loss of the protein synthesis, 
showed frequencies of 10 to 20% in African but were not 
found in other ethnicities [19].
  A number of previous studies showed that the frequencies 
of the CYP3A4 and CYP3A5 polymorphisms were different 
based on ethnicities. However, genetic studies of the two 
genes with Korean population are insufficient. Therefore, 
we performed direct sequencing of CYP3A4 and CYP3A5 
to define the genotype frequencies for known genetic poly-
morphisms and identify novel polymorphisms in a Korean 
population. Following this, we compared allele distributions 
in five different ethnic groups comprising 96 Koreans, 48 
Japanese, 48 Han Chinese, 48 African-Americans, and 48 
European-Americans. 

METHODS

Study subjects

  DNA samples were obtained from a total of 288 subjects 
consisting of 96 Koreans, 48 African-Americans, 48 Euro-
pean-Americans, 48 Japanese, and 48 Han Chinese. DNA 

samples from 96 unrelated Korean individuals were pro-
vided by the Center for Genome Science, Korea Centers for 
Disease Control and Prevention. DNA samples from other 
ethnic groups were obtained from a large panel of anony-
mous, unrelated DNA samples from the Human Variation 
Panels available at the Coriell Institute (Camden, NJ, 
USA). 

Sequencing analysis of CYP3A4/ 5 genes

  The promoter, all exons, and exon-intron boundaries (±50 
bp) were PCR-amplified and directly sequenced using the 
ABI PRISM 3730 genetic analyzer (Applied Biosystems, 
Foster City, CA, USA). Primers for the amplification and 
sequencing analysis were designed using Primer3 software 
[20] based on the GenBank sequence of respective genes 
(Ref. genome seq.: NG_008421.1 and NG_007938.1 for 
CYP3A4 and CYP3A5, respectively). The sequences of pri-
mers are displayed in Supplementary Table 1. Sequence 
variants were verified by chromatograms using SeqMan 
software (Supplementary Fig. 1).

Statistical analysis

  The χ2 tests were used to determine whether individual 
variants were in Hardy-Weinberg equilibrium (HWE) at 
each locus in each population. HaploView software was 
used for obtaining linkage disequilibrium (LD) blocks of 
each gene [21,22]. The Helical Wheel project, web-based 
software (http://cti.itc.virginia.edu/~cmg/Demo/wheel/ 
wheelApp.html), was used to predict the functional role of 
novel SNPs.
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Gene Polymorphism Star
nomenclature

Allele
change Position Amino acid 

change

Minor allele frequency

Korean
(n=92)

Han 
Chinese
(n=48)

Japanese
(n=48)

African-
American

(n=48)

European-
American

(n=48)

CYP3A5 rs115450823 　. T＞A Promoter . - - - 0.094 -
－1308C＞T†

　. C＞T Promoter . - - - 0.094 -
rs36231118 　. A＞C Promoter . - - - 0.115 0.010
rs3823812 　. T＞A Promoter . 0.237 0.312 0.229 0.052 0.010
rs28365073 　. T＞C Promoter . - - - 0.021 -
rs28365079 　. C＞A Promoter . - - - 0.117 0.010
－352A＞G† 　. A＞G Promoter . - 0.010 - - -
－344A＞G†

　. A＞G Promoter . - 0.010 - - -
rs28365095 *1B G＞A 5’UTR . - - - - 0.031
rs28371764 *1C C＞T 5’UTR . - 0.010 - 0.01 0.062
+3626T＞A†

　. T＞A Intron1 . 0.010 - - - -
rs28365067 　. C＞T Intron2 . 0.021 0.021 0.032 - 0.062
rs41301652 　. G＞A Intron2 . - - - 0.01 -
rs28969392 　. T＞A Intron3 . - - - 0.011 -
rs776746 *3C T＞C Intron3 . 0.255 0.344 0.260 0.198 0.085
+7070T＞A† 　. T＞A Intron3 . - 0.011 - - 0.010
+7074G＞A†

　. G＞A Intron3 . - - 0.022 - -
+7078T＞A† 　. T＞A Intron3 . - - - 0.01 -
+7080G＞A† 　. G＞A Intron3 . - 0.032 - - -
rs28365078 　. C＞A Intron3 . - - 0.011 - -
rs8175345 　. C＞T Intron3 . - - - 0.042 0.010
+7355T＞C† 　. T＞C Intron4 . - - - 0.010 -
+12801T＞C†

　. T＞C Intron4 . - - - - 0.010
rs55965422 　. T＞C Intron5 . 0.016 0.011 - - -
rs10264272 *6 C＞T Exon7 K208K -   0.010 - 0.188 -
rs28383472 　. A＞G Exon7 P218P - - - 0.073 -
rs41303322 　. A＞G Intron7 . - - - 0.100 -
rs28383478 　. C＞T Intron9 . - - - - 0.010
rs4646453 　. G＞T Intron9 . 0.234 0.302 0.240 0.042 0.010
rs28383479 *9 G＞A Exon10 A337T - - - - 0.010
rs28365094 　. A＞G Intron10 . - - 0.010 0.011 0.083
rs41303343 *7 A＞- Exon11 . - - - 0.146 -
+27256C＞T† 　. C＞T Exon11 P389S 0.005 - - - -
rs28365069 　. T＞C Intron12 . - - - 0.031 -
+31546T＞G†

　. T＞G Exon13 I488S 0.005 0.021 - - -
rs15524 　. T＞C 3'UTR . 0.247 0.323 0.281 0.365 0.031

Variants which are monomorphic in all ethnicities are not shown in the Table. A hyphen (-) indicates that the variant was mono-
morphic in the particular ethnicity. Data not applicable are marked with a dot (.).
†These polymorphisms were newly identified in this study.

Table 1. Continued

RESULTS

  In the present study, we identified the CYP3A4/5 poly-
morphisms in five ethnicities using direct sequencing, and 
compared the genotype distributions among ethnicities. 
The direct sequencing of CYP3A4/5 was performed in a to-
tal of 288 healthy subjects consisting of 96 Koreans, 48 
European-Americans, 48 African-Americans, 48 Han Chi-
nese, and 48 Japanese. 
  From the direct sequencing, we obtained a total of 15 nov-
el polymorphisms which consist of 3 CYP3A4 SNPs (－1887T 
＞C, －1258A＞C, and +20157A＞G (V318V) and 12 
CYP3A5 variants (－1308C＞T, －352A＞G, －344A＞G, 
+3626T＞A, +7070T＞A, +7074G＞A, +7078T＞A, +7080G 
＞A, +7355T＞C, +12801T＞C, +27256C＞T (P389S), and 

+31546T＞G (I488S) (Table 1). Also, we observed 18 and 
24 previously reported SNPs in CYP3A4/5 genes, re-
spectively (Table 1). Locations of the polymorphisms are 
shown in each physical gene map along with their minor 
allele frequencies (MAFs) (Fig. 1). 
  Most of the CYP3A4 and CYP3A5 polymorphisms showed 
low frequencies or monomorphic genotypes. In general, the 
MAFs of CYP3A4 polymorphisms were similar across the 
Asian populations, whereas MAFs of African-American and 
European-American populations differed from those of 
Asians. Among the pharmacogenetic markers, MAFs of 
CYP3A4*1B (rs2740574) were detected in European- 
Americans (0.042) and African-Americans (0.271), whereas 
the polymorphism was not detected in any Asian popu-
lations. On the other hand, rs2242480 was identified with 
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Fig. 1. (A) A physical map of 
CYP3A4 with minor allele frequen-
cies using results from Korean, Afri-
can-American, European-American, 
Han Chinese, and Japanese popu-
lations. Novel SNPs are labeled with 
their locations and allele changes. 
(B) A physical map of CYP3A5 with 
minor allele frequencies using re-
sults from Korean, African-Ame-
rican, European-American, Han Chi-
nese, and Japanese populations. No-
vel SNPs are labeled with their 
locations and allele changes.

a low frequency in the European-American population 
(0.083) compared to other ethnicities (＞0.200), and three 
SNPs (rs12114000, rs1851426, and rs2740574) were identi-
fied as having high frequencies among African-Americans 
(0.281, 0.229, and 0.271, respectively), but was almost mon-
omorphic in other populations. Detailed information re-
garding SNPs in CYP3A4 is displayed in Table 1.
  In CYP3A5, CYP3A5*3C (rs776746) showed higher MAFs 
in Asian populations (0.255, Korean; 0.344, Han Chinese; 
0.260, Japanese) than in other ethnic groups (0.198, 
African-American; 0.085, European-American). Other two 
polymorphisms (rs3823812 and rs4646453) were also de-
tected that had higher MAFs among Asians (＞0.200) com-
pared to other populations (＜0.060). On the other hand, 
the MAF of rs15524 was lowest in European-Americans 
(0.031), while the frequencies in other populations were 
higher than 0.200. CYP3A5*6 (rs10264272) and CYP3A5*7 
(rs41303343) were detected with high as having MAFs in 
African-Americans (0.188 and 0.146, respectively), but was 
almost monomorphic in other populations. Detailed in-
formation regarding SNPs in CYP3A5 is displayed in Table 
1.
  p-values for Hardy-Weinberg equilibrium of each poly-
morphism were calculated for the five ethnic groups 
(Supplementary Table 2). All of CYP3A4 alleles were in 
Hardy-Weinberg equilibrium. However, in CYP3A5, p-val-
ues of rs28365067 in Japanese and +7080G＞A in Han 
Chinese were not in Hardy-Weinberg equilibrium.
  LD structures of CYP3A4 and CYP4A5 in five ethnicities 
were calculated by using SNPs which were identified in 
more than two ethnicities, and the results were displayed 
in Supplementary Fig. 2. However, LD structures were not 
clearly constructed due to the SNPs with low or mono-

morphic frequencies.

DISCUSSION

  CYP3A4 and CYP3A5 enzymes are regarded as im-
portant markers in the development of the personalized 
medicine due to the enzymes’ impact on efficacy of drugs 
based on genetic background of individuals or populations. 
Therefore, we conducted the present study to compare ge-
netic differences in the CYP3A4 and CYP3A5 genes among 
five ethnicities. The sequencing results showed that many 
pharmacogenetic markers in CYP3A4 and CYP3A5 were ei-
ther monomorphic or had low frequencies. This trend was 
consistent with previous observations in which a large 
number of CYP3A polymorphisms exhibited low frequencies 
(reviewed in [23]). This indicates that a larger sample size 
may be needed to detect the polymorphisms.
  Among the pharmacogenetic markers in CYP3A4, CYP3A4* 
1B (rs2740574) is known to be the polymorphism that in-
creases expression by changing the transcription factor 
binding affinity [24]. Recently, it was demonstrated that 
CYP3A4*1B carriers showed higher drug clearance for an-
ti-cancer agents, such as docetaxel and cyclophosphamide, 
than wild type subjects [25-27]. However, although CYP3A4* 
1B plays an important role in the enzyme activity, the 
marker has not been detected in Asian populations in pre-
vious studies [28-30]. Our results also showed that 
CYP3A4*1B was not detected in Asians, including a Korean 
population. These observations suggest that the alteration 
of metabolism of docetaxel and cyclophosphamide by 
CYP3A4*1B might be difficult to find in Asian populations. 
  The other pharmacogenetic marker, CYP3A4*18 (rs28371759) 
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has been reported as the polymorphism that accounts for 
bidirectional enzyme activity. Previous studies showed that 
the polymorphism increased the turnover rate of testoster-
one and chlorpyrifos, but decreased the metabolic turnover 
rate of midazolam and nifedipine [31-35]. In addition, pre-
vious studies reported that CYP3A4*18 was frequently 
identified in Asian populations such as Chinese (frequency, 
0.008∼0.01), Japanese (frequency, 0.013), Koreans (fre-
quency, 0.012∼0.017) and Malaysians (frequency, 0.021) 
[33,36-40]. The result of the present study also showed that 
the polymorphism was detected in two Asian populations 
(Korean, 0.021 and Japanese, 0.010), while other pop-
ulations showed monomorphic genotypes. Therefore, Asian 
populations may have more genetic protection against tox-
icity of chlorpyrifos than other populations. Moreover, 
Asian populations tend to experience an effective dose with 
lower amounts of midazolam and nifedipine for treatment 
of seizure and cardiac/circulatory disorders.
  A recent study reported that the CYP3A4*22 (rs35599367) 
allele played an important role in the hepatic CYP3A4 ex-
pression and CYP3A4 activity, as well as alteration of sta-
tin, tacrolimus and cyclosporine metabolism [17]. This SNP 
was not found in our subjects. According to the NCBI data-
base, the polymorphism had a frequency of around 0.025 
in only Caucasian population. Therefore, no detection of the 
polymorphisms in the present study may occur due to the 
low frequency of the allele.
  In CYP3A5, CYP3A5*3C (rs776746) is well known as the 
polymorphism that causes severe decrease of enzyme activ-
ity by a splicing defect [41]. It has been reported that in-
dividuals with CYP3A5*3C show a lower clearance rate of 
drugs such as carbamazepine, vincristine, and ifosfamide, 
which are used for treatment using anticonvulsants, mood- 
stabilizers, and anti-cancer agents [42-45]. In the present 
study, we observed that the frequency of the CYP3A5*3C 
polymorphism was relatively higher in Asian populations 
than in other populations (Korean, 0.255; Han Chinese, 
0.344; Japanese, 0.260 vs. African-American, 0.198; Euro-
pean-American, 0.085). Therefore, identifying the CYP3A5* 
3C genotype could be important for application of carbama-
zepine, vincristine, and ifosfamide in treating Asian epi-
lepsy, bipolar disorder, trigeminal neuralgia, and cancer 
patients. 
  Due to the important roles of non-synonymous SNPs in 
protein functions, we selected exonic variants that cause 
amino acid change (+27256C＞T, P389S and +31546T＞G, 
I488S in CYP3A5) so as to predict the functional role of 
the SNPs using web-based software. Results from the anal-
ysis showed that the amino acid substitutions by the poly-
morphisms could change the charge of residues from non- 
polar to polar. These alterations of amino acid properties 
can cause a change in protein structure [46]. Therefore, the 
two polymorphisms may affect enzyme activity through the 
modification of protein structure, although further func-
tional studies would be required to confirm the result.
  Conclusively, we performed direct sequencing of the 
CYP3A4/5 in five ethnicities to identify SNPs, and com-
pared the frequency differences of the polymorphisms 
among ethnicities. From the analysis, we obtained a total 
of 57 SNPs composed of 15 novel polymorphisms and 42 
known variants. Our results indicated that genotype fre-
quencies of Asian populations were different from those of 
other ethnic groups. Additional in silico analysis revealed 
that two novel non-synonymous SNPs could cause alter-
ation of protein folding. Although our LD structures were 

not accurately calculated due to the low frequencies of the 
SNPs, there appears to be no linkage between novel poly-
morphisms and known pharmacogenetic marker. Further 
studies with large scale sample may be required to obtain 
reliable results, as well as exact p-values for Hardy- 
Weinberg equilibrium. The results of the present study may 
be helpful for further understanding of pharmacogenetics.

SUPPLEMENTARY MATERIALS

  Supplementary data including one figure can be found 
with this article online at http://pdf.medrang.co.kr/paper/ 
pdf/Kjpp/Kjpp017-06-01-s001.pdf.
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