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Pe r spe c t i v e

The purpose of the Perspectives in General Physiology 
is to provide a forum where scientific uncertainties or 
controversies, or important problems, are discussed in 
an authoritative, yet open manner. The Perspectives are 
solicited by the editors—often based on recommenda­
tions by members of the editorial advisory board. To 
frame the issue, two or more experts are invited to pre­
sent brief points of view on the problem; these are pub­
lished consecutively in the Journal. One or more experts 
and the organizer review the contributions, but the 
comments and opinions expressed in the Perspectives 
are those of the authors and not necessarily those of the 
editors or the editorial advisory board. The Perspectives 
are accompanied by a few editorial paragraphs that  
introduce the problem and invite the submission of com­
ments, in the form of letters to the editor, which usually 
are published four months after publication of the Per­
spectives. After the letters to the editor have been pub­
lished, further responses are limited to full manuscripts.

The prototypical second messenger, cAMP, was dis­
covered in 1957 (Sutherland, 1962), and many land­
mark discoveries since then have given us a basic 
biochemical description of cellular signaling events that 
are more widespread and more amplified in terms of 
their effects than membrane-delimited events such as 
synaptic transmission (Beavo and Brunton, 2002; Conti 
and Beavo, 2007; Willoughby and Cooper, 2007). We 
have a wealth of information about the identities, struc­
tures, and functions of the different proteins involved 
in this signaling pathway. Yet, if one delves deeper than 
what the average undergraduate biology major takes for 
granted about this classic signaling pathway, we still  
lack answers to two related questions that an engineer 
would consider to be fundamental to the description of 
a communication device: (1) How is signaling specificity 
achieved? For cyclic nucleotides and other second mes­
sengers, there is much to be learned about how infor­
mation is relayed from a very large number of extracellular 
receptors for hormones, neurotransmitters, odorants, 
cytokines, etc., through a very small number of intracel­
lular signaling molecules; and (2) How is the signaling 
compartmentalized? The morphological and biochemical 
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basis for cellular microdomains that spatially segregate 
cyclic nucleotide signals remains largely a mystery.

The concept of compartmentation emerged more 
than 30 years ago in studies of cardiac myocytes to help 
explain how a variety of extracellular stimuli that pri­
marily act through cAMP can have very different down­
stream effects on the cell (Corbin et al., 1977; Brunton 
et al., 1981; Steinberg and Brunton, 2001). For example, 
isoproterenol, a -adrenergic agonist, triggers cAMP-
dependent activation of PKA and subsequent phos­
phorylation of proteins associated with excitability and 
the strength and timing of heart muscle contraction. 
Prostaglandins cause similar changes in total cellular 
cAMP and PKA activity but no changes in contractility. 
Glucagon-like peptide, also working through PKA, reg­
ulates metabolism in heart muscle cells (Bers and Ziolo, 
2001; Vila Petroff et al., 2001). Simple diffusion theory 
predicts that in the absence of any interference, cAMP 
will traverse the cytoplasm of a 20-µM cell in 0.2 s, and 
no appreciable accumulation of cAMP builds up around 
a single adenylyl cyclase molecule because it is a very 
slow enzyme (Rich et al., 2000). This is one way in which 
cAMP is very different from Ca2+, which can accumulate 
to high concentrations at the mouth of a Ca2+ channel 
because of the high throughput rate. In essence, each 
cAMP diffuses away faster than the next one is pro­
duced. Thus, to explain the above observations, either 
there must be subcellular physical barriers that restrict 
the diffusion of cAMP, or the local variations in cAMP 
concentrations result from very high synthesis and deg­
radation rates.

In the past 15 years, progress in four areas has pro­
vided more direct evidence for cAMP compartmenta­
tion and information on some of the key molecular 
processes that underlie this phenomenon: (1) the under­
standing of A kinase–anchoring proteins as molecular scaf­
folds that colocalize and organize signaling proteins has 
increased markedly (Jarnaess and Taskén, 2007; Dodge-
Kafka et al., 2008; Welch et al., 2010); (2) a series of  
intracellular sensors for cAMP and cGMP were devel­
oped that have allowed cyclic nucleotide signals to be 
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of the cell); the resistance of near-membrane cAMP sig­
nals to cellular washout in whole cell patch-clamp ex­
periments; and new data showing that total stimulated 
PDE activity in neonatal cardiac myocytes is 100-fold 
lower than the levels required to generate cAMP gradi­
ents in the absence of physical barriers. Saucerman et al. 
summarize the progress that has been made with com­
putational models of cAMP signaling over the last 13 
years and reinforce the view that a combination of phys­
ical barriers and regulated PDE activity within the re­
gions of restricted diffusion create cAMP microdomains 
and shape cAMP signals. Several different mechanisms 
can cause diffusion restrictions, including buffering, or­
ganelles and intracellular membranes, cytoskeleton, local 
properties of cytosol, and cell shape. A major challenge 
for the future will be to assess in a quantitative way how 
these different mechanisms contribute to cyclic nucleo­
tide microdomains.

Letters to the editor related to these Perspectives 
should be received no later than Monday, March 3, 2014. 
The letters may be no longer than two printed pages 
(approximately six double-spaced pages) and will be 
subject to editorial review. They may contain no more 
than one figure, no more than 15 references, and no 
significant references to unpublished work. Letters should 
be prepared according to The Journal’s Instructions and 
can be submitted electronically at http://www.jgp.org.

Olaf S. Andersen served as editor.
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