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Abstract: Understanding the cellular pathways that regulate angiogenesis during 
hypoxia is a necessary aspect in the development of novel treatments for 
cardiovascular disorders. Although the pathways of angiogenesis have been 
extensively studied, there is limited information on the role of miRNAs in this 
process. miRNAs or their antagomirs could be used in future therapeutic 
approaches to regulate hypoxia-induced angiogenesis, so it is critical to 
understand their role in governing angiogenesis during hypoxic conditions. 
Although hypoxia and ischemia change the expression profile of many miRNAs, 
a functional role for a limited number of so-called hypoxamiRs has been 
demonstrated in angiogenesis. Here, we discuss the best examples that illustrate 
the role of hypoxamiRs in angiogenesis. 
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INTRODUCTION 
 

Exposure of a cell or an organism to inadequate oxygen levels causes hypoxia 
and results in global cellular changes in gene expression [1]. Although hypoxia 
is an integral component of cell physiology in development [2], it is also 
associated with pathological events such as cardiovascular disorders, 
inflammation, solid tumors and ischemic disease [3-7]. These pathological 
events then lead to the restoration of oxygen homeostasis through the activation 
of repair mechanisms, such as angiogenesis, which is the process of developing 
new microvessels from pre-existing ones [8]. While post-ischemic tissue 
revascularization is crucial in neuronal tissues following stroke [9] or in the 
heart following myocardial infarction [10], the activation of angiogenesis is 
harmful in other disorders, such as macular degeneration and glaucoma [11] and 
in many types of cancer [8]. Therefore, there is great interest in using 
angiogenesis regulation as a possible therapeutic method. Recent studies [12-14] 
on the role of miRNAs during hypoxia and ischemia have provided a new and 
interesting link between hypoxia and the regulation of angiogenesis.  
miRNAs are 22- to 26-nucleotide, non-coding RNAs that regulate gene 
expression post-transcriptionally. They act as adaptors for the miRNA-induced 
silencing complex (RISC) to initiate mRNA decay and thus reduce protein 
output. Mature miRNAs recognize their target mRNAs through base-pairing 
interactions between nucleotides numbers 2 and 8 of the miRNA (the seed 
region) and the complementary nucleotides in the 3’-untranslated region 
(3’UTR) of the mRNAs [15]. It is estimated that there are more than 1,000 miRNA 
genes in the human genome, and these could regulate more than one-third of the 
mRNAs produced [16]. It should be emphasized that many miRNAs are 
expressed in tissue- and age-specific patterns, suggesting that miRNAs have cell 
type-specific functions [17, 18], see also [58]. For example, hypoxic conditions 
in proximal tubule kidney epithelial cells (HK-2) cause the induction of 17 miRNAs 
and the repression of 7 [19], while in primary fibroblasts only 3 out of 377 miRNAs 
were repressed during hypoxia [20].  
Although hypoxia and ischemia change the expression profiles of many miRNAs 
[21], a functional role for a limited number of so-called hypoxamiRs [22] in 
angiogenesis has been demonstrated. We discuss the best examples that illustrate the 
role of hypoxamiRs in angiogenesis below (Fig. 1) and summarized in Table 1. 
 
HypoxamiRs ASSOCIATED WITH ANGIOGENESIS 
 

HIF-related miRNAs: miR-20a miR-20b, miR-199a, miR-424, miR-130a, 
miR-130b, miR-155 and miR-210 
Hypoxia-inducible factor (HIF) is a key transcription factor in the cellular 
response to hypoxia HIF is a heterodimeric complex that consists of a hypoxia-
inducible, unstable α-subunit and a stable, constitutively expressed β-subunit 
(also called ARNT1) [23]. Three HIF-α isoforms have been identified in higher 
metazoans. HIF-1α and HIF-2α share some transcriptional targets and have some 
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that are unique to each subunit, while HIF-3α has a dominant-negative effect on 
HIF-dependent gene transcription [24-26]. 
 

 
 

Fig. 1. The influence of hypoxamiRs on hypoxia-induced angiogenesis. During hypoxia, 
HIF-1α accumulates and is transported to the nucleus, where it can bind to the promoter 
region of VEGF, termed the hypoxia-response element (HRE), and thereby induce VEGF 
expression. VEGF is a pivotal angiogenic factor that binds to specialized receptors on the 
surfaces of endothelial cells and directs them to build new vessels. (▲) induced during 
hypoxia; (▼) repressed during hypoxia; (+) expression profile changed during hypoxia 
contributing to increased expression and activity of HIF-1α and/or VEGF; (-) expression 
profile changed during hypoxia with a negative effect on the expression and activity of HIF-
1α and/or VEGF; (*) indirect effects on HIF-1α and/or VEGF, gene symbol in brackets 
represents direct miRNA target. HypoxamiRs under HIF-1α transcriptional control are 
underlined. 
 

Under normal oxygen pressure (normoxia), the α-subunit is degraded by the 
proteasome. It is constitutively targeted for degradation via post-translational 
modification by proline-hydroxylase-2 (PHD-2) and by von Hippel-Lindau-
ubiquitin ligase complexes. Therefore, the HIF-1 complex does not function 
during normal oxygen pressure [27]. Another protein that contributes to HIF-1 
inactivation under normoxic conditions is factor inhibiting HIF-1 (FIH), which 
also hydroxylates HIF-1 [28]. Since PHD-2 itself is activated by HIF-1, the 
levels of the HIF-1 complex are regulated via feedback inhibition [29].  
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HIF is stable during hypoxia because the hydroxylases PHD-2, VHL, and FIH 
are all inhibited during low oxygen pressure. Once stabilized, the HIF-1 protein 
can bind to the promoter regions of its target genes, termed hypoxia-response 
elements (HREs), and thereby induce target gene expression [30, 31].  
HIF-dependent transcriptional changes regulate a broad spectrum of cellular 
functions [23], including angiogenesis. The vascular endothelial growth factor 
(VEGF) gene is a major transcriptional target [32]. Thus, miRNAs that target 
HIF are likely to have significant impact on the angiogenesis pathways. It is 
clear that increasing the vascular network is the primary mechanism for 
providing oxygen to hypoxic tissues. At present, nine hypoxamiRs that affect 
HIF expression have been identified: miR-20b, miR-199a, miR-424, miR-130a, 
miR-130b, miR-200b, miR-200c, miR-429 and miR-155. However, HIF mRNA 
is a direct target for only three of these miRNAs: miR-20a, miR-20b and miR-199a. 
Besides being a target of miRNA regulation, HIF is also responsible for the 
transcription of angiogenic hypoxamiRs such as miR-210 [33]. Each of the HIF-
related miRNAs is described in detail below. 
miR-20a is downregulated by hypoxia in human nasopharyngeal carcinoma cells 
(CNE) [34], and it directly targets the 3’UTR of HIF-1α [35]. Thus, inhibition of 
miR-20a production by hypoxia contributes to increased HIF-1α and VEGF 
protein levels. miR-20a is also upregulated by hypoxia in endometrial stromal 
cells, where it contributes to the downregulation of dual-specificity phosphatase-
2 (DUSP2), leading to prolonged extracellular signal-regulated kinase (ERK) 
phosphorylation and an increase in the expression of several angiogenic genes 
[36]. Elevation of miR-20a is upregulated by HIF-1α [36], suggesting the 
possibility of a negative feedback loop for HIF-1α activity.  
miR-20b is upregulated during chemically induced hypoxia (CoCl2) in breast 
cancer cells (MCF-7), and it targets HIF-1α mRNA [37]. miR-20b also targets 
the signal transducer and activator of transcription 3 (STAT3) mRNA, and thus 
affects VEGF expression [37]. A direct interaction between miR-20b and HIF-
1α has been also confirmed in H22 cells [35]. 
miR-199a is downregulated in cardiac myocytes during reduced oxygen pressure 
and is responsible for accumulation of HIF-1α [38]. Both direct (target site at 
3’UTR of HIF-1α mRNA) and indirect interactions were implied in miR-199a-
dependent HIF-1α accumulation [38]. To explain the latter, downregulation of 
miR-199a allows the de-repression of sirtuin (SIRi1), a class III histone 
deacetylase that downregulates PHD-2, allowing for the stabilization of the HIF-
1α protein [38].  
miR-424 is induced by hypoxia in endothelial cells, and it targets cullin 2 
(CUL2), a scaffolding protein critical to the assembly of the ubiquitin ligase 
system. Inhibition of this system stabilizes HIF-α isoforms [39]. Furthermore, 
miR-424 promotes angiogenesis in vitro and in mice [39]. The rodent homolog of 
human miR-424, mu-miR-322, is induced in parallel with HIF-1α in ischemia [39]. 
miR-130 family (miR-130a and miR-130b) levels are elevated by hypoxia in 
human kidney cells (HEK293). Their target is member six of the DEAD box 
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protein family mRNA (DDX6) [40]. Reduction of DDX6 expression by the 
miR-130 family enhances the translation of HIF-1α in an internal ribosome entry 
site element-dependent manner [40]. 
miR-155 is upregulated by hypoxia in human epithelial colorectal adenocarcinoma 
cells (Caco2) and in the mouse intestine. It contributes to a decrease in the levels 
of HIF-1α mRNA and protein, and to a decrease in transcriptional activity [41]. 
A role for HIF-1α in the induction of miR-155 during hypoxia has been 
confirmed [41]. Thus, miR-155 induction commits to an isoform-specific 
negative-feedback loop for HIF-1α activity during prolonged hypoxia [41]. 
miR-210 is the most consistently and significantly induced miRNA during 
hypoxia. It is also unique in that it is induced in almost all studied cell lines [22, 42]. 
The expression of this miRNA is regulated by both HIF-1α [43] and HIF-2α 
[44]. miR-210 targets the receptor tyrosine kinase ligand ephrin-A3 (EFNA3), 
which is important for the differentiation of human umbilical vein endothelial 
cells (HUVEC) under hypoxia and significantly increases the ability of HUVEC 
to migrate in response to VEGF [25]. However, the specific actions of EFNA3 in 
angiogenesis require further clarification. Furthermore, overexpression of miR-
210 in HUVEC enhances the expression of VEGF and vascular endothelial 
growth factor receptor-2 (VEGFR2) and thereby promotes angiogenesis [45].  
 

VEGEF-related miRNAs: miR-20a, miR-20b, miR-15b and miR-16 
Vascular endothelial growth factor (VEGF) is a pivotal angiogenic factor that 
binds to specialized receptors on the surfaces of endothelial cells and directs 
them to build new vessels [46]. Although VEGF expression can be modulated by 
many factors [47], HIF-dependent VEGF upregulation is accompanied by an 
increase in VEGF mRNA stability and translation, which are essential for 
hypoxia-related angiogenesis [48-50]. In spite of the indirect impact of miR-20a 
and miR-20b on VEGF levels (through HIF-1α) [35, 37], their functional target 
sequence on the 3’UTR of VEGF mRNA has been confirmed [34, 35]. miR-15b 
and miR-16 are sharply downregulated in CNE cells during hypoxia. They also 
target the 3’UTR of VEGF. However, the direct effect of these miRNAs on 
endothelial cells has not been determined [34]. 
Since some miRNAs that have been identified as VEGF regulators (miR-20a and 
miR-20b) also regulate the expression of other angiogenic factors [34], additional 
studies are needed to evaluate the significance of the discussed direct and indirect 
effects on VEGF levels. Recent studies have also established that heterogeneous 
nuclear ribonucleoprotein L (hnRNP L), which also binds the VEGFA mRNA 
3’UTR CA-rich element, prevents miRNA silencing activity during hypoxia [51].  
 

PHD-2 related miRNA: miR-200b, miR-200c, and miR-429  
Prolyl hydroxylases (PHDs) catalyze the prolyl hydroxylation of HIF-α subunits, 
which constitutively targets them for VHL-dependent 26S proteasomal 
degradation to control HIF levels [52]. PHD enzymes are inhibited during 
hypoxic conditions, allowing for HIF accumulation and subsequent induction of 
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angiogenesis [52]. PHD-2 is believed to be the key propyl hydroxylase in 
controlling HIF-1α during hypoxia [53]. Under normoxic conditions, molecular 
oxygen, 2-oxoglutarate, iron ions (Fe2+) and ascorbic acid are required to fully 
activate these enzymes [54]. Additionally, HIF-1 inactivates PHD-2 in  
a negative feedback manner [29]. Although PHD-2 is inactive during hypoxia, 
PHD-2 levels are also increased by hypoxia, providing a HIF-1-dependent auto-
regulatory mechanism driven by oxygen pressure [55].  
miR-200b, miR-200c and miR-429 levels increase during ischemic 
preconditioning. These miRNAs target PHD-2 leading to accumulation of HIF-1α 
and induction of angiogenesis [56]. However, a recent study demonstrated that 
miR-200b overexpression in human microvascular endothelial cells (HMECs) 
suppressed the angiogenic response, whereas miR-200b-depleted HMECs 
exhibited elevated angiogenesis [57]. In HMECs, miR-200b levels were 
inhibited by hypoxia, and the direct target for this miRNA was v-ets 
erythroblastosis virus E26 oncogene homolog 1 (Ets-1) mRNA, a crucial 
angiogenesis-related transcription factor [57]. Thus, hypoxia-induced miR-200b 
inhibition allows Ets-1 accumulation to promote angiogenesis [57]. 
 
CONCLUDING REMARKS 
 

It is clear that understanding the cellular pathways that regulate angiogenesis during 
hypoxia is necessary in order to develop novel treatments for cardiovascular 
disorders. Although the pathways of angiogenesis have been extensively studied, 
there is limited information regarding the role of miRNAs in this process. 
Considering the fact that miRNAs or their antagomirs could be used in future 
therapeutic approaches to regulate hypoxia-induced angiogenesis, it is critical to 
understand the role of miRNAs in governing angiogenesis during hypoxia. Given 
that tumor growth is critically dependent on the induction of angiogenesis, the 
therapeutic use of miRNAs and antagomirs to regulate this process is clearly 
important. That said, this process is complicated and careful consideration should be 
given to any therapeutic intervention. For example, miRNAs can bind multiple 
targets and potentially be both positive and negative regulators of gene expression. 
Thus, miRNAs could cause the opposite biological effect depending on the context, 
as exemplified by miR-200b [56, 57]. Furthermore, some of the miRNA targets are 
at the same time miRNA transcriptional activators, e.g. miR-20b, and therefore 
create complicated regulatory loops that need to be carefully considered [36]. 
Finally, one has to be aware of the cell- and tissue-specific differences in miRNA 
expression during hypoxia. Despite these concerns, the very promising reports of 
hypoxamiRs regulating angiogenic processes show the potential for future 
therapeutic endeavors. Understanding the role of miRNAs in angiogenesis will 
remain an active area of research.  
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Table 1. HypoxamiRs associated with angiogenesis 
 

miRNA Cell type 
Impact of hypoxia 

on miRNA 
expression 

miRNA 
target(s) (direct 

or indirect*) 

Putative impact 
on angiogenesis 

References 

miR-20a CNE Downregulated 
HIF-1α 
VEGF 

Antiangiogenic [34, 35] 

miR-20a 
Endometriotic 
stromal cells 

Upregulated DUSP2 Proangiogenic [36] 

miR-20b 
Mcf-7 
H22 

Upregulated 
HIF-1α 
STAT3 
VEGF 

Antiangiogenic [34] 

miR-199a Cardiac myocytes Downregulated 
HIF-1α 

SIRi1/PHD-2* 
Antiangiogenic [38] 

miR-424 
HUVEC 
MVEC 

Upregulated CUL2/ HIF-1α* Proangiogenic [39] 

miR-130a 
and miR-

130b 
HEK293 Upregulated DDX6/ HIF-1α* Proangiogenic [40] 

miR-155 Caco2 Upregulated HIF-1α Antiangiogenic [41] 

miR-210 
HUVEC  

and the majority of 
the studied cell lines 

Upregulated EFNA3 Proangiogenic [22, 42] 

miR-15b CNE Downregulated VEGF Antiangiogenic [34] 

miR-16 CNE Downregulated VEGF Antiangiogenic [34] 

miR-200b HMEC Downregulated Ets-1 Antiangiogenic [57] 

miR-200b Neuro-2a Upregulated PHD2 Proangiogenic [56] 

miR-200c Neuro-2a Upregulated PHD2 Proangiogenic [56] 

miR-429 Neuro-2a Upregulated PHD2 Proangiogenic [56] 
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