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Abstract
Purpose of review—To survey genetic variation contributing to variable responsiveness and
toxicity to important cardiovascular drugs and highlight recent developments in the field of
cardiovascular pharmacogenomics and personalized medicine.

Recent findings—Previously recognized pharmacogenomic associations with drug efficacy
have been further validated (e.g. with clopidogrel and warfarin) and shown to influence clinically
important outcomes. The clinical significance of variants modulating toxicity (e.g. SLCO1B1 with
simvastatin) has also been confirmed. The genetic contribution to variable efficacy and toxicity of
other important classes of cardiovascular drugs, such as beta-blockers, is becoming increasingly
recognized. Prospective trials testing whether the use of genomic information improves clinical
care are underway. Guidance based on the most well-established pharmacogenomic findings has
appeared in prescribing labeling and is in the early stages of being implemented into routine
clinical care.

Summary—Clinically validated gene variants that modulate responsiveness to cardiovascular
drugs continue to be discovered and validated. Early steps are underway to translate these
discoveries into clinical care.
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Introduction
Pharmacogenomics seeks to determine the contribution of genetic variants to drug efficacy
and toxicity. Cardiac pharmacogenomics is a rapidly growing field, offering the potential for
improved treatment outcomes and prevention of adverse drug events. Variants common in
the population have been shown to modify drug metabolism, drug transport, and drug
targets, and could be utilized to predict an individual's treatment response. We discuss recent
findings in cardiac pharmacogenetics and their translation into clinical practice for those
variants that have been comprehensively studied. Examples of genetic variants influencing
response to cardiovascular drugs and the strength of evidence supporting their translation
into clinical practice are listed in Table 1.

There are several types of common genetic variation relevant to pharmacogenomics. The
most common form, termed a single-nucleotide polymorphism (SNP), is the change of a
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single nucleotide within the genome. SNPs may occur in regions that do not encode proteins
(noncoding variants). However, SNPs also occur in protein-coding regions of the genome
(coding variants), in which they do not necessarily cause an alteration in protein
(synonymous variant), but may also lead to the incorporation of a different amino acid
(nonsynonymous variant). Additionally, a SNP may introduce a premature stop codon into
the DNA sequence and thereby cause production of a truncated protein product (nonsense
variant). Other common types of variation include the addition or removal of nucleotides,
termed insertions and deletions, respectively. Similarly, a genomic region may be copied
multiple times, referred to as duplication.

In general, identification of genomic variation can proceed by focused studies of genes or
genomic regions suspected of being related to the disease or phenotype of interest or through
unbiased, genome-wide approaches that seek association between genomic variation and
selected traits or conditions. The candidate gene approach builds on known or predicted
biologic functions, but findings have frequently been difficult to validate [1]. Genome-wide
association studies (GWAS) are not limited by biological models and have the potential to
discover associations outside current understanding. The GWAS paradigm frequently results
in identification of common variants of relatively small effect size; however, a recurrent
finding is that pharmacogenetic effect sizes are often significantly higher than those seen in
complex diseases [2].

It is interesting to note that trials demonstrating differential treatment outcomes by genotype
have generally included a placebo arm, as is seen in the case of β-blockers [3]. One
interpretation is that carriers of low-risk alleles receive less benefit from active therapy and
treatment of all patients has the effects of making the treated high-risk genotypes more
similar to the low-risk genotype (regardless of treatment) and therefore ‘equalizing’ the
outcomes. Future pharmacogenomics studies will need to take this observation into account.

Clopidogrel
The thienopyridine antiplatelet agent, clopidogrel, primarily used for the prevention of
adverse cardiac events including stent thrombosis, has become one of the most widely
prescribed medications [4]. A two-step oxidative process catalyzed by enzymes in the
cytochrome P450 system converts clopidogrel to the active thiol metabolite [5]. Response to
clopidogrel is variable and this response is in part dependent on an individual's genotype for
CYP2C19, a cytochrome P450 enzyme central to clopidogrel bioactivation. Carriers of
CYP2C19*2 and CYP2C19*3 have reduced CYP2C19 enzyme activity and are called poor
metabolizers, whereas carriers of CYP2C19*17 have increased CYP2C19 enzyme activity
and are called ultra-rapid metabolizers. Recent findings have found the CYP2C19*2
polymorphism, which is present in approximately 15% of Caucasians and Africans and
approximately 30% of Asians, to be associated with reduced clopidogrel efficacy [5–12].
This has prompted a Food and Drug Administration (FDA) black box warning for cautious
use among carriers of the reduced function alleles [13,14].

Among patients treated with clopidogrel for acute coronary syndrome (ACS) and/or
percutaneous coronary intervention (PCI), studies have consistently found carriers of at least
one loss-of-function allele to have a significantly increased risk of adverse cardiac events,
particularly stent thrombosis [11, 12, 15–18, 19•–21•]. The few studies that did not find an
associated risk among carriers of reduced function allele had lower rates of stent placement,
suggesting the greatest risk for adverse events occurs among those undergoing stent
placement [22,23]. A meta-analysis including nine studies and 9685 patients reported a
hazard ratio of 1.57 [95% confidence interval (CI) 1.13–2.16, P = 0.006] for the composite
endpoint of cardiovascular death, myocardial infarction, and ischemic stroke among
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carsriers of either one or two copies of the reduced function allele [19•]. Additionally, a
gene dose effect was observed, with carriers of two reduced function alleles having an even
greater risk (hazard ratio 1.76, 95% CI 1.24–2.50, P = 0.002) and the risk of stent
thrombosis was further increased in carriers of the reduced function allele (hazard ratio 2.81,
95% CI 1.81–4.37). Apart from CYP2C19*2, the polymorphisms *3 and *17 have had
limited study, with *3 being associated with reduced clopidogrel response and *17 being
associated with increased bleeding and possibly improved efficacy while on clopidogrel
therapy [9,17,24,25]. Notably, *3 is almost exclusively found in people of Asian descent.

Genome-wide association studies of platelet response to clopidogrel exposure has shown
that approximately 12% variability in the trait is attributable to CYP2C19*2 carrier status
[11]. The common C3435T polymorphism in ABCB1, encoding p-glycoprotein, a drug
efflux transporter, has also been associated with reduced clopidogrel efficacy and increased
adverse cardiac events while on clopidogrel therapy, but this has not been a consistent
finding [22,25–27]. Other candidate genes for clopidogrel efficacy have included CYP1A2,
CYP3A4, CYP3A5, CYP2B6, PON1, and P2YR12, all with inconclusive or negative results
[27–30, 31•, 32–39].

The Clinical Pharmacogenetics Implementation Consortium has presented a treatment
algorithm for antiplatelet agents incorporating genetic information [40••]. For those
undergoing PCI or with an ACS, these guidelines recommend placing those who are carriers
of one or two copies of the variant allele to be treated with an alternative antiplatelet agent,
including prasugrel or the recently approved agent ticagrelor [41, 42, 43•, 44–46]. Neither
agent requires extensive bioactivation by the CYP2C19 enzyme and therefore both can be
given to CYP2C19-poor metabolizers without reduced efficacy. It is unclear whether
increasing the dose of clopidogrel can over-ride resistance, with a recent study finding that
heterozygotes can have an adequate platelet response with clopidogrel 225–300 mg daily
measured in vitro; however, whether this strategy will reduce clinical events is unknown
[47–49]. Ongoing trials to test these treatment options include the Genotyping Infarct
patients to Adjust and Normalize Thienopyridine treatment study with physicianguided
therapy after CYP2C19 genotyping among patients post-PCI for ST-segment elevation
myocardial infarction (STEMI), and the RAPID STEMI study evaluating treatment with
prasugrel or high-dose clopidogrel for carriers of CYP2C19*2 and ABCB1 3435 TT.

Beta-Blockers
Beta-adrenergic receptor antagonists (β-blockers) are an important class of cardiovascular
drugs used for a range of conditions including cardiac arrhythmias, ACS, stable angina,
hypertension, and heart failure. Beta-blockers antagonize endogenous catecholamines at
beta-adrenergic receptors, of which two subtypes, β1 and β2, are most important for
cardiovascular pharmacology [50]. Important autoregulatory mechanisms include G-protein-
coupled receptor kinases (GRKs), enzymes that moderate signaling through phosphorylation
of activated b-receptors, and presynaptic α2C-adrenergic receptors (ADRA2C), which
regulate norepinephrine release via a negative feedback pathway [51].

Two commonly used β-blockers, metoprolol and carvedilol, are metabolized through the
CYP2D6 metabolic pathway and carry FDA labeling that polymorphisms in CYP2D6 alter
plasma drug concentrations [52]. CYP2D6 variants with a range of enzymatic activity have
been described, and the expected pharmacokinetic effects have been demonstrated
repeatedly. For example, CYP2D6 genotype has been shown to correlate with a several-fold
difference in metoprolol plasma concentrations during both short-term and long-term
therapy [53,54]. Clinical implications of CYP2D6 have been shown for a wide range of
noncardiovascular classes of drugs [55–57]. However, in regard to cardiovascular agents,
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there are few studies examining differences in response, adverse events, or survival. Some
studies have suggested differences by CYP2D6 genotype; however, the data have not been
consistent [3,58–61].

There are two common nonsynonymous SNPs in the β1 receptor gene, ADRB1, resulting in
Ser49Gly and Arg389Gly [62,63]. The Arg389 form, more common in those of European
descent, demonstrates enhanced G-protein-coupled signaling [64], and provides the
theoretical rationale for increased β-blocker responsiveness in individuals possessing this
polymorphism. Indeed, among individuals homozygous for this variant (∼50% of
Caucasians), there has been greater b-blocker-related improvements in ventricular function
have been seen in patients with heart failure [65–67], though this observation has not been
universal [66,68]. Clinical outcome studies in patients with heart failure have also been
mixed [3,69–73].

Polymorphisms in the β2 adrenergic receptor (ADRB2) have also been shown to have
functional significance. Two nonsynonymous SNPs, Arg16Gly and Gln27Glu, appear to
associate with augmented agonist-mediated down-regulation [74]. However, studies
investigating variants in ADRB2 have generally showed no association with improvements
in left ventricular ejection fraction in response to β-blockers [67,68].

Functional polymorphisms in the α2C-adrenergic receptor, ADRA2C, can theoretically
modulate response to β-blockers. The common deletion polymorphism, ADRA2C Del322–
325, resulting in the loss of four amino acids, shows decreased activity in transfected cells,
suggesting the potential for enhanced norepinephrine release, and therefore β-blocker
responsiveness [75]. Further, patients with heart failure who carry the ADRA2C Del322–
325 genotype have been found to have worse disease-related outcomes [76]. One study
indicates that individuals carrying the ADRA2C Del322–325 genotype had a greater
improvement in left-ventricular function when given metoprolol. On the contrary, no effect
was seen with bucindolol in the Beta-Blocker Evaluation of Survival Trial [77,78].

A gain-of-function Gln41Leu variant has been described in GRK5. This polymorphism is
seen much more frequently in those of African descent and was found to protect against
catecholamine-induced cardiomyopathy in a transgenic mouse model [51,79]. African
Americans with the GRK5 Gln41Gln genotype receiving β-blocker therapy have shown a
significant benefit and, interestingly, have a survival similar to untreated Leu41 carriers;
suggesting that Leu carriers may not benefit from β-blocker therapy [79]. Enrichment of the
US population, relative to European populations, with genotypes unfavorable to β-blocker
responsiveness has been proposed as a cause for apparent differences in outcome for US
patients in heart failure trials [80•].

Warfarin
Vitamin K antagonists (warfarin in the US) are anticoagulants commonly used for the
treatment and prevention of arterial and venous thromboembolism. Although effective, use
is complicated by wide inter-individual variation in drug response and a narrow therapeutic
index. Response to warfarin is affected by several patient factors, such as age, weight, and
diet; as well, a large portion of the variation is related to known common variants in
pharmacokinetic and pharmacodynamic genes, CYP2C9 and VKORC1, respectively.

CYP2C9 metabolizes S-warfarin, the more active enantiomer of warfarin, to an inactive
form. Two loss-of-function alleles, CYP2C9*2 and CYP2C9*3, have been associated with
decreased warfarin dose requirements and increased risk of hemorrhagic complications [81–
84]. These findings have been confirmed in a large meta-analysis in which, for example,
maintenance doses in the *2 and *3 homozygotes were reduced by 36 and 78.1%,
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respectively [85]. There is a considerable impact of race, with these variants being
significantly less common in those of African descent, and having a correspondingly smaller
effect at a population level [86].

Vitamin K epoxide reductase, coded by VKORC1, is critical to normal vitamin K
metabolism (and hence synthesis of vitamin K-dependent clotting factors) and represents the
pharmacologic target of warfarin. Multiple polymorphisms in the promoter region of
VKORC1 associate with variable gene expression and warfarin dose requirements in people
of European and African descent [82,87]. GWAS have identified VKORC1 and CYP2C9 as
the primary contributors to differential warfarin responsiveness, together accounting for
approximately 40% of variation, with other genes contributing only small effects [88,89].

The epoxide form of vitamin K may also be metabolized to an inactive form by the enzyme
vitamin K1 oxidase (CYP4F2). Polymorphisms in CYP4F2 have been associated with
variable warfarin dose requirements [90,91]; however, findings have been inconsistent [92].
Additional genes have been identified that affect warfarin responsiveness, including APOE,
glutamyl carboxylase (GGCX), calumenin (CALU), CYP4F2, epoxide hydrolase 1 (EPHX1),
and factor VII (F7) [63]; however, their collective contribution to warfarin dosing variability
is less than that of CYP2C9 and VKORC1. When clinical information such as age, sex, and
concomitant drug therapy are combined with VKORC1 and CYP2C9 polymorphisms, 50–
60% of variation in warfarin dose can be explained [93]. Given these compelling data, the
FDA has included the range of expected therapeutic warfarin doses based on CYP2C9 and
VKORC1 genotypes in the warfarin labeling [94]. Prospective trials are underway to
determine whether a genotype-guided dosing strategy improves patient care [95••, 96, 97].

Two novel oral anticoagulants have recently received FDA approval. Dabigatran, a
reversible direct thrombin inhibitor, was approved in 2010 for the indication stroke
prevention in atrial fibrillation, and rivaroxaban, a factor Xa inhibitor, was approved for
deep venous thrombosis prophylaxis after orthopedic surgery in 2011. Dabigatran is
administered as a pro-drug that is rapidly biotrans-formed after absorption. Both dabigatran
and rivaroxaban are substrates for the drug efflux pump P-glycoprotein, coded by the
ABCB1 gene, and dabigatran (but not rivaroxaban) undergoes metabolism by CYP450
enzymes, predominantly CYP3A4 and CYP2J2 [98–100]. To date, no data regarding
pharmacogenomic studies of these agents have been published and it is currently unknown
whether genetic variants modulate their effectiveness.

Statins
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) catalyzes the rate-limiting
step of cholesterol biosynthesis. HMGCR inhibitors, or statins, lower serum cholesterol by
blocking endogenous cholesterol synthesis, with subsequent up-regulation of the low-
density lipoprotein receptor (LDLR). Statins are very effective for the treatment and
prevention of cardiovascular disease. However, they are also associated with muscle toxicity
that is commonly mild, but can rarely present as rhabdomyolysis.

Genetic variants have also been shown to modulate statin dosing and efficacy. Atorvastatin,
simvastatin, and lovastatin are inactivated via CYP3A4 and common polymorphisms in this
gene are believed to affect dosing requirements through pharmacokinetic effects [101]. Also,
certain haplotypes, combinations of alleles (or SNPs) at adjacent locations on the
chromosome used to identify other polymorphic sites in the region, have been associated
with statin responsiveness. The H7 haplotype of HMGCR, defined by the presence of three
intronic SNPs, rs17244841, rs3846662, and rs17238540, leads to an 11–19% reduction in
statin sensitivity, and is thought to involve variable production of an HMGCR isoform
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through alternate splicing [102– 106]. In individuals of African descent, the L5 hap-lotype
of LDLR, defined by six SNPs within the LDLR 3′ untranslated region, is associated with
reduced statin responsiveness, possibly related to attenuated induction of LDLR surface
expression [101,107]. Statin efficacy for those who carry both the H7 HMGCR haplotype
and L5 LDLR haplotypeis further reduced. Other associations between genetic variants and
statin efficacy are less clear. CLMN, encoding calmin, a protein of unknown function, has
been identified through combined GWA analysis from three clinical trials [108], but the
finding requires further study. Additionally, some studies have found an association between
the Trp719Arg variant in kinesin-like protein 6 (KIF6) and coronary artery disease (CAD) as
well as an increased protective effect from events by statins [109,110]. However, the
association with CAD was not seen in a recent large replication study [111], casting
uncertainty on the relationship.

Important genetic associations have also been made with statin myotoxicity. A GWAS
including only 85 individuals with myotoxicity while taking high-dose simvastatin was
nevertheless successful in identifying the V174A variant in the drug uptake transporter
encoded by SLCO1B1 as a risk allele. Strikingly, this variant carried an odds ratio (OR) of
16.9 (95% CI 4.7–61.1) for myopathy in homozy-gotes and 4.5 (95% CI 2.6–7.7) in
heterozygotes and accounted for approximately 60% of the risk in this population [112]. The
SLCO1B1 variant has been independently validated [113,114]. SLCO1B1 genotype
information may be integrated into clinical care to inform providers regarding patient risk of
myotoxicity and help guide therapeutic decisions [115].

Angiotensin-Converting Enzyme Inhibitors
Most data regarding genomic modulators of angiotensin-converting enzyme (ACE) inhibitor
response refer to a common insertion/deletion (I/D) polymorphism in the ACE gene that is
strongly correlated with plasma enzyme levels [116,117]. In an observational study, carriers
of the DD genotype were found to have significantly higher mortality than those with the I/I
genotype, with the risk for heterozygotes being intermediate [118]. However, prospective
trials have failed to validate these findings [119,120] and, at present, there is no strong
evidence that this variant influences response to ACE inhibitors. A number of other
candidates in the renin–angiotensin–aldosterone pathway have been analyzed, including
angiotensinogen (AGT) and angiotensin II receptor types I and II (AGTR1 and AGTR2).
Signals for higher risk of adverse cardiovascular outcomes while taking ACE inhibitors have
emerged with variants in AGT[63]; however, the data are not conclusive.

Recently the Perindopril Genetic Association study (PERGENE) [121•] evaluated 12 genes
from the pharmacodynamic pathway of ACE inhibitors in 8907 patients with stable CAD
treated with perindopril or placebo. Two polymorphisms in AGTR1 and a third in the
bradykinin type I receptor were significantly associated with the combined primary outcome
of cardiovascular mortality, nonfatal myocardial infarction, and resuscitated cardiac arrest
during 4.2 years of follow-up. A pharmacogenetic score combining these SNPs
demonstrated a stepwise decrease in treatment benefit of perindopril with an increasing
score and identified a subgroup of 26.5% of the population that did not benefit from therapy
[121•]. This finding requires independent replication, but represents a potential advance
toward understanding variable response to ACE inhibitors.

Arrhythmia-Related Drugs
Cardiac arrhythmias are a heterogeneous and complex collection of clinical entities
associated with substantial morbidity and mortality. Atrial fibrillation, for example, is the
commonest sustained arrhythmia encountered in clinical practice and affects more than 2
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million Americans [122]. Treatment of atrial fibrillation may be directed at maintenance of
normal sinus rhythm or focus on control of ventricular rate. In either case, management is
characterized by variable drug response and high recurrence rates. Functional variants
influencing drug response in atrial fibrillation have recently been described. The ADRB1
Arg389Gly polymorphism has been associated with improved rate control in patients with
atrial fibrillation [123]. A SNP (rs10033464) at the 4q25 locus near the PITX2 gene, which
has been associated with increased risk of atrial fibrillation, appears to modulate response to
antiarrhythmic drugs and predicts successful rhythm control [124].

Life-threatening arrhythmias, such as Torsade de Pointes (TdP), may also arise as a
complication of drug treatment. This adverse event occurs in association with an
exaggerated prolongation of the QT interval, most commonly, though not exclusively, due to
certain antiarrhythmic agents [125– 127]. Small cohort studies in which known long-QT
disease genes were genotyped identified variants in these ion channel genes in up to 15% of
affected patients [128,129]. Using a candidate approach in which nearly 1500 SNPs in 18
key genes related to cardiac electrical properties were genotyped, the nonsynonymous SNP
KCNE1-D85N (rs1805128) was significantly associated with increased risk of TdP with an
OR of 9.0 [130••]. This SNP, which codes a potassium channel known to modulate an
important cardiac current, had also been identified in prior candidate gene studies and is
relatively common in the population: minor allele frequency 1–2% [128,131].

Conclusion
Despite improvements in the efficacy and safety of pharmacologic therapies for
cardiovascular disease, patients vary considerably in their benefit from therapy and
propensity for adverse drug events. There is an increasing appreciation that genetic variation
is an important contributor to this variability, and understanding these pharmacogenomic
relationships has provided key insights into mechanisms of disease and drug response. The
field is in an exciting stage of rapid discovery, and the most robust findings are undergoing
translation into clinical practice. Understanding the genomic basis of variable drug response
is a key step in making personalized medicine a reality.
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Key Points

• Genetic variation within individuals and populations contributes to the variable
efficacy and toxicity of many important cardiovascular drugs.

• A number of pharmacogenomic associations have shown clinical relevance and
are included in FDA labels.

• Prospective trials evaluating genomic data care are underway.

• Translation of pharmacogenomic findings into routine clinical care will be
challenging, but early efforts have begun.
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