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Abstract
The central nervous system (CNS) is comprised of numerous cell types that work in concert to
facilitate proper function and homeostasis. Disruption of these carefully orchestrated networks
results in neuronal dysfunction, manifesting itself in a variety of neurological disorders. While
neuronal dysregulation is causative of symptoms manifest in the clinic, the etiology of these
disorders is often more complex than simply a loss of neurons or intrinsic dysregulation of their
function. In the adult brain, astrocytes comprise the most abundant cell type and play key roles in
CNS physiology, therefore it stands to reason that dysregulation of normal astrocyte function
contributes to the etiology and progression of varied neurological disorders. We review here some
neurological disorders associated with an astrocyte factor and discuss how the related astrocyte
dysfunction contributes to the etiology and/or progression of these disorders.

Introduction
Our previous paper described the developmental origins of astrocytes and their diverse roles
in the maintenance of the proper functioning of the CNS. This review will focus on
neurological disorders that are linked to or associated with astrocyte dysfunction. Since
neurons do not exist in a vacuum, surrounded by a milieu of different cell populations that
subserve their functions, it follows that the root of many neurological disorders may very
well be due to defects in these other cell populations. Due to their broad and diverse roles in
CNS function, it stands to reason that a dysregulation of normal astrocyte function
contributes to the etiology and progression of neurological disorders. Several neurological
disorders are now linked with a specified astrocytic component. These include disorders
associated with injury-related reactive astrocyte elements, as well as conditions caused by
non-injury related disruptions of normal astrocytic function.

White Matter Disorders
White matter damage is often found in the preterm infant brain and is typically associated
with epilepsy, cognitive dysfunction and neurosensory impairments. Most white matter
diseases are caused by glial cell-induced inflammation or are the result of ischemic insult on
glial cells. Oligodendrocyte precusor cells (OPCs) within the periventricular white matter
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are viewed as a key target for therapeutic intervention because of the impact on
oligodendrocytes in these disorders and the capacity of precursor cells to stimulate
remyelination.

Leukodystrophies
There is increasing evidence that astrocyte-induced inflammation or ischemic insult to
astrocytes results in white matter disorders. White matter-related disorders associated with
astrocyte dysfunction include X-adrenoleukodystrophy (X-ALD), a type of leukodystrophy
resulting from an excessive amount of very long chain fatty acids (VLCFAs) in the brain
due to deficits in ABCD1 and ABCD2 gene(1, 2). Sighj et. al. demonstrated that
accumulation of VLCFAs in mouse astrocytes led to inflammatory responses which is
hypothesized to induce damage on oligodendrocytes and myelin(1). Canavan disease is
another example, where mutation in a gene encoding aspartoacylase (ASPA) hinders the
ability to metabolize N-acetyl-L-aspartate (NAA). The presence of NAA in white matter
extracellular fluid (ECF) results from metabolism of N-acetylaspartylglutamate (NAAG) by
astrocytes and the build up of NAA in white matter ECF could result in increased
hydrostatic pressure, thus compromising the myelin sheath(3).

Interestingly, while astrocytes have long been considered the “enemy” in white matter
injury, recent studies have demonstrated that the presence of astrocytes is required for the
proper remyelination of oligodendrocytes(4–6). Whether or not the presence of astrocytes in
a lesion is beneficial or detrimental for the remyelination process has become a hot topic of
debate. It has been hypothesized that astrocytes are a “double-edged sword” in this context
depending on the molecules that they secrete, the type of cells that are being modulated, and
the interaction between these cell types(7, 8). This is one area in particular where an
understanding of the cellular diversity of astrocytes could help resolve key questions in the
field.

Alexander disease
Alexander disease (ALX) was the first astrocytic genetic disorder reported and demonstrates
pathological feature of wide spread presence of Rosenthal fibers, megalencephaly, and
demyelination(9–13). ALX is a type of leukodystrophy and demyelinating disease in the
CNS white matter that is fatal and believed to occur sporadically in children under the age of
10(14). Detailed analysis revealed that the main component of Rosenthal fibers of ALX is
glial fibrillary acidic protein (GFAP) often with a missense mutation. GFAP is an astrocyte
intermediate filament and transgenic mouse models with an extra copy of the GFAP gene
also demonstrates Rosenthal fibers (15), suggesting that the GFAP allele in ALX is
behaving as a hypermorph. This raises the question of how increased GFAP activity or
function leads to the progression of ALX. It has been suggested that mutation within GFAP
increases the stability of the protein, resulting in its accumulation or alterations in its
association with other cellular components(14). In addition, it appears that accumulation of
GFAP in ALX does not lead to a loss of astrocytes, but rather creates lethal interactions
between astrocytes with oligodendrocytes and subsequent demyelination(14).

Cerebral Palsy
Cerebral Palsy (CP) is a collective term for neurological disorders originating in the cerebral
white matter, with chronic deficits in motor functions being the most obvious clinical
symptoms(16). The onset for CP ranges from infancy to early childhood and is the result of
prolonged external insults on immature white matter, though familial cases have been
reported(17). Factors that are known to trigger CP include premature birth, infection during
pregnancy, lack of blood and/or oxygen supply in developing brain and severe brain
injuries(18). Periventricular white matter is especially prone to these risk factors because the
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vascular system in this region is not mature enough to compensate for the reduction in
cerebral blood pressure resulting from ischemia (19, 20). The ischemic environment in turn
induces the death of astrocytes and OPCs, with the demise of astrocytes conspiring to
accelerate the death of OPCs due, in part, to inefficient removal of glutamate by astrocytes
(20–22). Adding the involvement of astrocytes to the etiology of this disease compounds its
complexity and illustrates how intricate and delicate glial interrelationships are during early
development. More detailed studies are certainly needed to uncover the exact role of
astrocyte in disease progression.

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic demyelinating and inflammatory disease that is caused
by the loss of myelin in the CNS. It is a disease that predominantly occurs in adults, with
childhood-onset representing 3 to 5% of total patients (23). Compared to the adult-onset MS,
the inflammatory response in Pediatric MS appeared to be stronger, with more frequent
relapses (24); nevertheless, evidence suggests similar disease mechanisms between adult and
pediatric cases. Clinical symptoms in the majority of patients with Pediatric MS includes
severe cognitive impairment, depression and fatigue(25). In the development of MS, white
matter lesion begins with the breakdown of the blood-brain-barrier (BBB) followed by the
infiltration of inflammatory cells, ultimately leading to the destruction of myelin by the
immune system (26, 27). As mentioned previously, the role of astrocytes in the disease
progression is to induce inflammation and to form glial scars which hinder remyelination (7,
28). On the other hand, it was also reported that within certain microenvironments,
astrocytes also contribute to remyelination (4–6, 8). Regardless of how they influence
remyelination in MS, astrocytes remain one of the primary drug targets for combating the
disease(29).

Neurodegenerative Diseases
Neurodegenerative disease is a generalized term for any disease that has clinical feature of
degeneration in neurons. Historically, the search for the cause of these diseases has focused
on neurons. Not surprisingly, more and more studies have reported astrocytic components in
the progression of these diseases, with much more attention being given to how reactive
astrocytes contribute to both repair and degeneration. Here, neurodegenerative diseases with
a known astrocytic contribution will be briefly discussed.

Alzheimer’s disease
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease and it is
listed in the top ten causes of death in the United States. Clinically, AD is characterized by
memory loss, difficulty in planning or solving simple problems, loss of ability in completing
familiar tasks, and motor deficits (30). The pathological features of AD on the other hand
are the accumulation of neurofibrillary tangles and Amyloid β (Aβ) (31, 32). An
overabundance of reactive astrocytes is present in tissue collected from patients in the early
stages of AD (characterized by over expression of GFAP). Reactive astrocytes in this
context bind to and endocytose neuron-derived Aβ and other proteins (33), resulting in a
toxic accumulation of these materials in astrocytes, subsequent cell lysis and formation of
astrocyte-derived amyloid plaques which is believed to be crucial in disease progression (31,
33).

Parkinson’s disease
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the
United States and it is estimated 1% of the population over 60 years of age are affected. The
clinical symptoms of PD are trembling and rigidity of different body parts, slowness of
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movement and loss of postural coordination. The exact cause of PD is unknown but the
disease is characterized by significant loss of dopaminergic neurons with soma located in the
substantia nigra (SN) and nerve terminal innervated to the striatum and the appearance of α-
synuclein and Lewy bodies in the cytoplasm of remaining neurons (31, 34, 35). Astrocytes
were found to exert a neuroprotective role in PD as evident by their release of glutathione-
peroxidase, superoxide dismutases (SODs) and antioxidant enzymes that are known to be
crucial for the survival of neurons after brain trauma (36–38). The reduction or the abnormal
expression of these enzymes by astrocytes is believed to exacerbate neuronal death in PD
progression.

Huntington’s disease
Huntington’s disease (HD) is the most common familial inherited neurodegenerative
disease. HD is generally an adult onset disease with symptoms of chorea, psychiatric
disturbance and dementia(39). It is a fatal autosomal dominant disease caused by
trinucleotide CAG repeat in the exon 1 of the huntingtin (Htt) gene and once the repeats
exceed 36, it forms aggregates within neurons which engulfs other proteins and leads to
neuronal degeneration(40–43). Astrocytic contribution to HD involves their role in
maintaining the proper level of glutamate in the synapse, which is critical in preventing
neuronal excitotoxicity. Astrocyte regulation of glutamate up-take and metabolism is
mediated by glutamate transporters GLAST or/and GLT-1 and glutamine synthetase (GS)
respectively (22). In the HD mouse model, the astrocytic GLT-1 was found to have lower
expression level compared to the wild type control which hinders the glutamate uptake
function of astrocytes(44). In addition to neurons, astrocytes also express Htt and Shin et. al.
demonstrated through neuron-astrocyte co-culture that mutant Htt expressing astrocytes lost
their ability to uptake excess glutamate(45).

Amyotrophic Lateral Sclerosis
Amyotrophic Lateral Sclerosis (ALS) is the most prevalent motor neuron degeneration
disease which affects about 4 out of every 100,000 people each year(46). It is an adult onset
disease characterized by selective and progressive degeneration of motor neurons in the
brain stem and spinal cord. The majority of ALS is sporadic, with familial cases
representing ~10% of reported cases; nonetheless, all ALS patients demonstrate marked
reduction in the expression level of astrocytic glutamate transporter (EAAT2) (31, 47). In
addition to the glutamate transporter, the expression of mutant antioxidant enzyme
superoxide dismutase 1 (SOD1) by astrocytes was also reported in some patients with
familial ALS(46, 48). Moreover, co-culture of motor neurons with astrocytes expressing
mutant SOD1 demonstrated low neuronal survival rate(49, 50) and surprisingly, the toxic
effect is specific to motor neurons (50).

Autism Spectrum Disorders
Autism spectrum disorders (ASDs) represent a range of developmental disabilities that are
characterized by difficulties in social interactions, communication and repetitive behaviors.
The cellular and molecular determinants of ASD’s are varied and not well defined. Below
are examples of those with a defined genetic basis and astrocytic component.

Rett syndrome
Rett syndrome (RTT) is a neurodevelopmental disorder that has an array of clinical
symptoms ranging from microcephaly, autism, seizure, autonomic dysfunction and anxiety,
which occur at different stages of disease progression(51, 52). It is an X-linked disease and
thus more prevalent among young females with age of onset between 6 to 18 months(51).
RTT is characterized by mutation of the Methyl-CpG binding protein 2 (MeCP2) (52, 53)
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gene, which functions as a transcriptional repressor throughout the CNS, where it is
expressed in neurons, astrocytes, and oligodendrocytes (54–56). The first evidence for
astrocytic contribution to RTT was demonstrated by a co-culture of astrocytes from Mecp2-
null mice with wild-type neurons, which resulted in severely impaired neuronal growth and
synapse formation(54). Subsequently, it was demonstrated in vivo that re-expression of
Mecp2 in astrocytes in a Mecp2-null background mouse significantly rescued their
characteristic Rett syndrome-like phenotypes(57). Consequently, if the same cellular
mechanism is found in human RTT patients, developing methods that can manipulate
astrocytic Mecp2 expression could represent a new therapeutic approach. Use of iPS-stem
cell technology on tissue from RTT patients could help address these and other questions
concerning the cellular basis of RTT.

Fragile X
Fragile X syndrome (FXS) is a form of mental retardation caused by the trinucleotide CGG
repeat in the 5′-untranslated region of the FMR1, which encodes the protein FMRP(58).
Children with FXS demonstrate defects at birth and both genders are equally susceptible to
the mutation and disease with the incident rate of approximately 1/2500(59). Patients with
FXS have abnormalities in both physical appearance (i.e. longer facial structure and large
protruding ears) and cognitive function (i.e. attention deficit, anxiety and autism-liked
behaviours)(58, 60). FMRP is widely expressed in the brain and its expression in neurons
has been suggested to regulate synaptic plasticity(61). Nonetheless, astrocytes from FMR1-
deficient mice play a crucial role in the maintenance of dendritic morphology and reduction
of pre-synaptic and post-synaptic proteins clusters in a co-culture system(62). Based on this,
one can speculate that the dendritic abnormality found in FXS patients might be a result of
aberrant interactions between neurons and astrocytes during development.

Other Neurological Conditions
Epilepsy

Epilepsy is a seizure syndrome, diagnosed in about 1% of children in the United States who
have recurring, unprovoked seizures (63). Seizure occurs upon spontaneous and
synchronous firing of neurons. Symptoms vary widely and in the most extreme cases, the
severity and abundance of seizures can damage the developing brain (63). The causes of
epilepsy are diverse and include brain damage (trauma or prenatal injury), infectious
disease, developmental disorders or even genetic mutations (64, 65). While neurons are
responsible for the ictal state, increasing evidences points towards a role for astrocytes in
epilepsy. Reactive gliosis has been observed in epileptic brains of both humans and animal
models, suggesting that changes in the astrocyte constituency may be linked to chronic
epileptic episodes (66). Astrocytes also express receptors that allow them to control the
extracellular milieu, which can directly influence neuronal activity and physiology(67–69).
During seizures, decreased extracellular Ca2+ and increased K+ are observed at the site of
the seizure focus. Astrocytes sense changes in extracellular Ca2+ concentration, leading to
intracellular Ca2+ oscillations and release of glutamate, which is believed to contribute to the
generation of seizures (66, 70). In epileptic brains Kir channels are downregulated and
aquaporins are dislocated from the membrane, leading to an impaired K+ buffering in the
milieu (66, 70). Glutamate regulation, specifically performed by astrocytes through
glutamate transporters and glutamine synthase (71, 72), has been involved in epileptic
seizure. While there are conflicting reports concerning the deregulation of glutamate uptake
during an epileptic seizure, most agree that the glutamate recycling is altered in some way
(70, 73). Most of our knowledge on epilepsy is based on adult seizures, which does not take
into account the fact that childhood epilepsy occurs in an immature brain. While many
studies have shown a strong association of astrocytes with the generation of seizures, a
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better understanding of astrocyte development might prove essential in better characterizing
its exact components in the generation of an epileptic seizure especially in children

Metabolic disorders
Metabolic disorders are a broad class of diseases in which enzymes involved in metabolic or
catabolic pathways are mutated (74), causing either loss of an essential metabolite or
accumulation of a toxic by-product. Neurological symptoms, ranging from mental
retardation, seizures or even coma, are secondary to the metabolic defects manifest in other
organ systems, but are rarely reversible (74), stressing the importance of better
understanding the causes underlying these symptoms. In the CNS, astrocytes express most
metabolic enzymes and as such are on the front line in the detoxification of the CNS milieu
(72), suggesting they may be responsible for many of the neurological symptoms observed
in metabolic disorders.

In Menkes disease, ATP7A, a copper transporter expressed by astrocytes, is mutated,
resulting in low copper level, neurodegenerartion and possible death (74–78). Urea cycle
disorders, hyperammonemia occurs throughout the body and in the CNS resulting in
neurological symptoms(74). Astrocytes are the only cells capable of removing ammonia
through glutamine synthesis and data suggest that hyperammonemia causes cellular and
molecular changes in astrocytes which may be key to brain edema (79). These examples
illustrate the potential role of astrocytes in many neurological symptoms observed in
metabolic disorders and urge the scientific community to further investigate the link
between metabolic disorders and astrocytes to help alleviate debilitating symptoms or even
prevent death.

Conclusion/Perspective
In a little over a century, our view of astrocytes has evolved from insignificant “glue” to
vital constituents of the CNS. Astrocytes play an essential role in several aspects of CNS
physiology and their dysregulation directly contributes to several neurological disorders. In
this review, we’ve summarized the current knowledge on astrocytes and their role in
neurological and especially neurodevelopmental disorders.

Research in the astrocyte field from the last few decades has significantly altered our view
of neurological disorders. Pediatric disorders are developmental in nature and therapeutic
goals would benefit from a better understanding of astrocyte development. A more
comprehensive understanding of astrocyte development will likely shed light on some of
these disorders and point the way for new therapeutic approaches. Importantly, the fact that
astrocytes mature postnatally offers a unique therapeutic window where intervention may
influence cellular, functional, and, ultimately, neurological outcomes. Another significant
aspect of astrocyte biology is their diversity. Morphological and functional heterogeneity
has been reported for years, however a clear definition of whether these functions are
mediated by subpopulations of astrocytes remains a key question. Application of these
paradigms to CNS injury and disease might come in the form of distinct astrocyte
subpopulations promoting network and circuit plasticity or simply neuronal repair after
insult. Indeed, recent studies suggest that different form of CNS injury result in reactive
astrocytes with vastly different properties [80]. Deciphering the who, where, what, and why
of such disease-related heterogeneity will be crucial in determining whether an astrocytic
intervention for these disorders is possible. Astrocytes could very well be the missing link in
our fuller understanding of normal CNS function. Appreciating diverse astrocytic functions
may very well be the key to unlocking the mysteries underlying the origins of many varied
neurological disorders, better guiding treatments and rehabilitative efforts in managing these
disorders.
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