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Abstract
Purpose—To construct predictive models using comprehensive tumor features for the evaluation
of tumor response to neoadjuvant chemoradiotherapy (CRT) in patients with esophageal cancer.

Methods and Materials—This study included 20 patients who underwent trimodality therapy
(CRT + surgery) and had 18F-FDG PET/CT scans both before and after CRT. Four groups of
tumor features were examined: (1) conventional PET/CT response measures (SUVmax, tumor
diameter, etc.); (2) clinical parameters (TNM stage, histology, etc.) and demographics; (3) spatial-
temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns,
geometry, and associated changes resulting from CRT; and (4) all features combined. An optimal
feature set was identified with recursive feature selection and cross-validations. Support vector
machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic
tumor response to CRT, using cross-validations to avoid model over-fitting. Prediction accuracy
was assessed via area under the receiver operating characteristic curve (AUC), and precision was
evaluated via confidence intervals (CIs) of AUC.

Results—When applied to the 4 groups of tumor features, the LR model achieved AUCs (95%
CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs
(95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). Using spatial–
temporal PET features combined with conventional PET/CT measures and clinical parameters, the
SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications),
significantly better than using conventional PET/CT measures or clinical parameters and
demographics alone. For groups with a large number of tumor features (groups 3 and 4), the SVM
model achieved significantly higher accuracy than the LR model,
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Conclusions—The SVM model using all features including spatial–temporal PET features
accurately and precisely predicted pathologic tumor response to CRT in esophageal cancer.

INTRODUCTION
Esophageal cancer remains one of the most lethal malignancies, with a 5-year relative
survival rate of only 17% (1) despite continued advances in therapy. In the United States, it
is estimated that 17,460 patients were diagnosed with esophageal cancer and 15,070 died
from the disease in 2012 (1). The preferred primary treatment strategy for locally advanced
esophageal cancer has been transitioning from surgery (esophagectomy) to trimodality
therapy, which consists of concurrent neoadjuvant chemoradiotherapy (CRT) followed by
surgery (2). Recently, it was suggested that not all patients benefit from surgery after
induction CRT and that definitive CRT (CRT alone) could also become an option (3).
Evidence suggests that surgery after CRT can significantly improve local control (4, 5).
These improvements in local control, however, have been tempered by the increased
mortality (9%–12%) and morbidity (30%) compared to CRT alone (mortality, 0.8%–3.5%).
Several studies have shown that tumor response to CRT remains an important predictor of
both local control and overall survival (3–5). Complete responders to CRT appear to have
superior outcomes, regardless of whether they undergo surgical resection. These data also
support that the addition of resection can improve outcomes for patients who are discovered
to have residual tumor following completion of CRT. Given the added mortality and
morbidity of surgery after CRT, as well as the high local failure rate for CRT alone, it is
critical to accurately identify patients who respond to CRT so that surgery may be safely
deferred. It is equally important to accurately identify patients who do not respond to CRT
so that early surgical salvage can be initiated.

Recent studies have emerged suggesting that spatial PET/CT features, including tumor
volume (6), tumor shape (7), total glycolytic volume (8), and spatial patterns (texture
features) (9), are more informative than the traditional response measure with maximum
standardized uptake values (SUVmax) in various tumors. The authors demonstrated that
comprehensive spatial–temporal 18F-FDG PET features were useful predictors of pathologic
tumor response to CRT in esophageal cancer (10). The diversity of the new features suggest
that it would be advantageous to combine multiple features in evaluation of tumor response
(11) instead of traditional PET response criteria that are based on cutoff values of a single
measure (8, 12). The objective of this study is to construct sophisticated tumor response
models using comprehensive tumor features to accurately and precisely predict pathologic
tumor response to CRT in patients with esophageal cancer.

MATERIALS AND METHODS
Patients

This retrospective study was approved by the IRB. The cohort included 20 consecutive
patients (median age, 64 years) with esophageal cancer, who underwent trimodality therapy
from 2006 to 2009 and had PET/CT scans both before and after CRT (Table 1). Staging was
according to AJCC Cancer Staging Manual sixth edition (13), where M1a is extensive local–
regional lymph node disease without distant metastasis.

PET/CT Imaging, Chemoradiotherapy
Pre-CRT PET/CT imaging was performed 3–5 weeks before the beginning of CRT. Post-
CRT PET/CT was performed 4–6 weeks after completion of CRT but before surgery. All
PET/CT studies were acquired on the same scanner following an institutional standard
protocol (10). All patients were treated with external-beam radiotherapy to the same total
dose of 50.4 Gy with concurrent Cisplatin or Carboplatin chemotherapy (14).
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Pathologic Assessment
Surgical resection was performed 1–7 weeks after the post-CRT PET/CT, and 6–13 weeks
after CRT. The resected surgical specimen was submitted to the same pathologist for
evaluation. The specimen was microscopically examined, and semi-quantitatively
categorized into 1 of 3 groups: pathologic complete response (pCR), microscopic residual
disease (mRD), or gross residual disease (gRD), according to the amount of residual viable
carcinoma observed in relation to areas of fibrosis (15). In this study, the primary tumor
alone was considered, and both pCR and mRD were considered as “responders,” because
they have been shown to have similar survival rates (14), while gRD was considered as
“non-responder”.

Spatial–Temporal PET Features Extraction
Details of the spatial–temporal PET feature extraction have been reported (10). Post-CRT
PET/CT scans were rigidly registered to pre-CRT PET/CT scans. A tumor volume of
interest (VOI) was semi-automatically delineated on the PET image using a region-growing
method with a threshold of SUV ≥ 2.5. The result was reviewed and manually edited by a
radiologist. The resulting VOI represented the entire hypermetabolic tumor volume and was
denoted as VOI_SUV2.5. Another VOI_SUVpeak was defined as the 3×3×3-voxel cube
centered at the SUVmax point, representing the peak metabolically active part of the tumor.
Finally, comprehensive spatial–temporal PET features were extracted to characterize the
tumor SUV intensity distribution, spatial variations (texture), geometry, and their associated
changes resulting from CRT. For each image and each VOI, 9 intensity features (25), 8
Haralick texture features (26), 15 geometry features (27, 28), and 1 volume-intensity feature
were extracted (Table 2). After incorporating temporal changes and excluding quantitatively
identical features, a total of 137 features were obtained for each tumor.

Clinical Parameters and Demographic Features
Sixteen clinical parameters and demographic features were extracted from patients’ charts.
Clinical parameters included differentiation, stage, T stage, N stage, M stage, distant
metastasis, type of chemotherapy, radiotherapy dose, treatment with concomitant boost,
location of tumor, tumor involves gastroesophageal junction, histology, total extent of
disease, and extent of disease >4 cm. Demographic features included age and sex.

Feature Selection and Response Modeling
Four groups of tumor features were examined: (1) 16 conventional PET/CT response
measures (Table 3); (2) 16 clinical parameters and demographics as described above; (3)
137 spatial–temporal PET features (Table 2); and (4) all 169 combined features. Figure 1
illustrates the flow of feature selection and model construction, with cross-validations to
remove bias in feature selection and to prevent over-fitting of the model, respectively. The
pathologic tumor response of the surgical specimen was used as the ground truth. The 20
patients were randomly partitioned into a training set (for constructing the model) and a
testing set (for cross-validating the model and assessing its accuracy). 10-, 5- and 2-fold
cross-validations (randomly leaving 10%, 20%, and 50% patients out in the testing set) were
repeatedly used for both feature selection and model accuracy evaluation. Our goal was to
model pathologic tumor response to CRT as a function (f) of each of the 4 groups of tumor
features so that:

Eq.

1
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Feature Ranking and Selection—Since there are many features, to avoid model over-
fitting to the training set, a feature selection process with cross-validation (Fig. 1) was
applied first within each feature group for each model. A support vector machine–based
feature ranking (SVMFR) method (16) was used to rank all features by recursively removing
features and testing the predictive ability of the remaining features for each patient partition.
A frequency distribution of the top-ranked 20 features for each of the k partitions was
obtained. The optimal feature set was then identified as the 10% most frequently selected
features over all k partitions from the frequency distribution. In this manner, the feature
selection bias was removed.

Predictive Model Construction—We used 2 machine learning (ML) models, logistic
regression (LR) and SVM, to obtain function f in Eq. 1. Figure 1 illustrates the modeling
process using SVM with all tumor features as an example.

SVM with sequential minimal optimization: In our SVM, a polynomial kernel was used
to transform the input tumor features from x1, … xm space into x̃1, … x̃m space, so that the 2
classes (“responders” and “non-responders”) became linearly separable (Fig. 1). The
hyperplane (or the straight line in the simplified 2D illustration) that represents the largest
separation between the closest members (support vectors) of the two classes was
determined, providing a classification rule or model y = f (x̃1,…, x̃m), which classified a new
or testing patient as a “responder” or a “non-responder” based on its y value.

Logistic regression: For comparison, we also implemented the widely used LR model. LR
first transformed the response variable into Pr[YES | x1,…, xm], a probability variable
corresponding to the “responders” given tumor features x1,…, xm. A logit transformation,
log{Prp[YES | x1,…, xm]/(1−Pr[YES | x1,…, xm])}, was then applied so that the resulting
variable lies between negative infinity and positive infinity. The transformed variable was
approximated using a linear function of input tumor features (linear regression). The
resulting model was Pr[YES | x1,…, xm] = 1/[1+exp(−w0 −w1x1 –…– wm xm)] with weights
w. The weights were obtained by fitting the model to the training set using maximum log-
likelihood estimation.

The outputs of the ML models were the predicted pathologic response represented as a
binary variable (yes or no), which corresponded to “responder” or “non-responder”,
respectively (Fig. 1). To test over-fitting of each model, 10-, 5- and 2-fold cross-validations
were again used in model evaluation (Fig. 1). The model accuracy was calculated as the
mean accuracy over all partitions.

Statistical Analysis
The accuracy of using each feature group and each model to predict the pathologic tumor
response was quantified using the AUC, defined as the area under receiver operating
characteristic (ROC) curves. In addition, the sensitivity and specificity of each model were
calculated and compared using the unpaired t test at a significance level of 0.05. Model
precision was evaluated with the 95% confidence intervals (CI).

RESULTS
Because LR and SVM are 2 distinct models, our feature selection process resulted in
different optimal feature sets for each model (Table 4). The optimal feature set for SVM
contained the optimal feature set for LR, except when applied to clinical parameters and
demographics, where histology was the only feature selected for SVM. This was in
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agreement with a larger study of 164 patients by Koshy et al. (14) that showed histology was
the most and only predictive individual clinical parameter.

Figure 2 shows the model accuracy (AUC) and precision (95% CI) obtained from repeating
the 10-, 5-, and 2-fold cross-validations. The best prediction was obtained using the SVM
model with 17 features from all combined features (SVMall). All patients within the testing
set were correctly classified during the repetition of 10-fold cross-validations, resulting in a
mean AUC of 1.00 (100% sensitivity, 100% specificity). Table 4 indicates that SVMall
contained 1 conventional PET/CT measure, “residual metabolic tumor volume (i.e., SUV ≥
2.5) post-CRT”; 2 clinical parameters, “whether tumor involves gastroesophageal junction”
and “T stage”; and 14 spatial–temporal PET (3 intensity, 8 texture, 2 geometry, and 1
volume-intensity) features, suggesting that all 3 groups of tumor features and all 4 categories
of spatial-temporal PET features contained useful predictors of response. The model
performance was stable when leaving more patients out with 5- and 2-fold cross-validations
compared to 10-fold cross-validation. Only a small reduction in mean AUC (from 1.00 to
0.99 and 0.92) was observed.

Figure 2 also shows the sensitivity and specificity obtained from each model using different
groups of features. When the SVM model was used with 10-fold cross validation,
significantly higher sensitivity was achieved by using all features including spatial–temporal
PET features (100%) than by using conventional PET/CT measures (60%) or clinical
parameters and demographics (70%) alone (P < 0.001). Significantly higher specificity (P <
0.001) was achieved as well. Similar results were obtained when the LR model was used
(92% sensitivity, 94% specificity; both P < 0.001).

For 10-fold cross-validation, the differences between SVM and LR models were not
significant when using any of the four groups of features (P > 0.06). However, when using
selected spatial–temporal PET features or using all features in 5- and 2-fold cross-
validations, the SVM models demonstrated significantly better results than the LR models
(P < 0.0001 and P < 0.0002, respectively).

DISCUSSION
18F-FDG PET has shown promising results in predicting pathologic response to CRT and
long-term prognosis in esophageal cancer (12, 17). Westerterp et al. (18) and Swisher et al.
(19) showed that PET had the highest accuracy (76%) among PET, endoscopic
ultrasonography, and CT for predicting pathologic response to CRT with sensitivity ranges
of 71%–100% and specificity ranges of 55%–100%. Levien et al. (20) showed that PET can
be useful for predicting pathologic response with sensitivity of 61.3% and specificity of
60.0%. Reviewing 20 studies, Kwee (12) found that the sensitivity and specificity of PET
for predicting pathologic response to neoadjuvant therapy ranged from 33% to 100% and
from 30% to 100%, respectively. Although promising, the accuracy of PET is still low and
none of these studies achieved both high sensitivity and high specificity.

Almost all published 18F-FDG PET studies quantify therapeutic response in tumors with
SUVmax (21, 22). Changes in SUVmax and sometimes SUVmax before (pre-) or after (post-)
CRT are correlated to post-CRT pathologic response or survival. However, SUVmax is a
single-point estimate, whereas most solid tumors show significant heterogeneity in both
degree and distribution of FDG uptake. Heterogeneity in FDG uptake has been associated
with important biological and physiologic parameters (9, 23) and has been shown to be a
prognostic factor in many cancers (9, 24). In our previous work, comprehensive spatial–
temporal 18F-FDG PET features were extracted and found to be useful predictors of
pathologic tumor response (10).
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In this work, a predictive model generally included multiple tumor features. The best model
achieved significantly higher accuracy (AUC 1.00) than the best individual response
measure (inertia post-CRT, AUC 0.85, (10)). Both prediction accuracy and precision were
significantly improved by using selected spatial–temporal PET features instead of
conventional PET/CT measures or clinical parameters and demographics. This was the case
for both the SVM and LR models. These results suggested that spatial–temporal PET
features provided richer information than the other feature groups.

When using the same feature group and comparing the performance of LR and SVM
models, the results varied from group to group. SVM achieved significantly higher accuracy
than LR when using spatial–temporal PET feature group. The reason is that this group
contained more candidate features, whose complimentary relationship for response
prediction is hard to identify with LR. On the other hand, SVM has been proven to be able
to extract complex relationships among a large number of features (25). Because the
candidate feature group of the conventional PET/CT measures or clinical parameters and
demographics contained only 16 features and because only 1 or 4 features were selected into
the optimal subset, LR resulted in better results than SVM. The reason is that with this small
number of selected features it would be difficult for SVM to achieve high accuracy.

When utilizing many candidate features for classification, it is important to identify an
optimal, smaller feature set to prevent model over-fitting. Our feature selection process
removed redundant features that introduce colinearity and noise into the models (26).
Furthermore, feature selection bias was eliminated by collecting frequency distribution of
the selected features over all patient partitions. The feature selection resulted in 16 features
for the SVM using spatial–temporal PET features alone. When using all combined features,
the number of selected features was 17. 1 conventional PET/CT measure and 2 clinical
parameters replaced 2 spatial-temporal PET features, resulting in increased prediction
accuracy (AUC increased from 0.94 to 1.00). This means features from conventional PET/
CT measures and clinical parameters provided some complementary information to the
spatial–temporal PET features.

Another important aspect of constructing predictive models is to avoid model over-fitting.
To test this, we used different number of patients to train and test our models, namely 10-, 5-
and 2-fold cross-validations. When leaving more patients out of training set, the prediction
accuracy decreased. However, the AUC was still above 0.90 for SVMall model suggesting
that it was not notably affected by over-fitting. LR model was not as stable as SVM model
in this case (AUC dropped from 0.90 to below 0.70).

The authors provided an explanation as to why spatial–temporal PET features were useful
predictors of tumor response (10). In addition to the spatial–temporal PET features, 1
conventional PET/CT measure (residual metabolic tumor volume) and 2 clinic parameters
(whether tumor involves gastroesophageal junction and T stage) were included in the
optimal feature set for the SVMall model. Evidence suggests that smaller residual metabolic
tumor volume (27) and lower T stage (13) are associated with better tumor response. The
effects of tumor involvement of the gastroesophageal junction, however, are not yet clear
and are under investigation at our institution using a larger dataset.

There were variations in the interval between CRT and surgery (6–13 weeks) and the
interval between post-CRT PET/CT and surgery (1–7 weeks). Several studies suggest that in
rectal cancer delaying surgery after CRT may increase the pCR rate. However, based on our
knowledge, three studies in esophageal cancer suggest that the timing of surgery did not
affect the pCR rate (28–30). Examination of our data using Z-test suggested that neither
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interval affected the pCR rate (both P = 0.09). The results were not affected by variations in
the intervals.

One limitation of this proof-of-principle study is that pathologic response in the primary
tumor alone was examined. A pCR on the primary tumor site may not completely exclude
lymph node invasion. An extension of the study to lymph node is under investigation.
Another limitation is that it is a retrospective analysis of a small patient cohort. Although
10-, 5- and 2-fold cross-validations showed that the model was not notably affected by over-
fitting, the predictive accuracy and stability of the models should be validated in a larger,
independent patient cohort as shown in Fig. 1. Validation is also needed to confirm that the
selected features are indeed meaningful measures and important for response evaluation in
esophageal cancer. When the model is validated, it can be used to more appropriately select
patients for surgery, thus avoiding the mortality and morbidity of surgery in responders for
whom surgery can be safely deferred. The methodology can also be applied to evaluate
response during CRT, which will provide the opportunity for early adjustments on treatment
strategies including: giving a higher dose in definitive CRT to responders, changing the type
of chemotherapy or performing surgery earlier to non-responders.

CONCLUSION
The SVM model using all features including spatial–temporal PET features accurately and
precisely predicted pathologic tumor response to CRT in 20 patients with esophageal cancer.
It has the potential to be used to safely defer surgery or to give a higher dose in definitive
CRT for patients who respond to CRT. This will ultimately improve patient’s quality of life
while reducing costs.
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Summary

This work constructed sophisticated predictive models using multiple, comprehensive
tumor response measures, including conventional PET/CT measures, clinical parameters
and demographics, and spatial–temporal PET features. The models achieved very high
accuracy (100% sensitivity, 100% specificity) for prediction of pathologic tumor
response to chemoradiotherapy in 20 patients with esophageal cancer.
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FIGURE 1.
Workflow diagram illustrating feature selection and model construction with cross-
validations for prediction of tumor response.
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FIGURE 2.
Response modeling accuracy and reliability: mean AUC, sensitivity, and specificity of 10-,
5-, 2-fold cross-validations. Error bars indicate 95% confidence intervals.
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TABLE 1

Patient Characteristics (n = 20)

Characteristic No. of patients

Sex

 Male 18

 Female 2

Primary site

 Proximal 0

 Distal 20

 Mid 0

 Throughout 0

Histology

 Squamous cell carcinoma 3

 Adenocarcinoma 17

Histologic grade

 Well differentiated 3

 Moderately differentiated 10

 Poorly differentiated 5

 Unknown 2

TNM stage

 T1 0

 T2 2

 T3 18

 T4 0

 N0 6

 N1 14

 M0 18

 M1a 2

Pathologic response

 Pathologic complete response 5

 Microscopic residual disease 4

 Gross residual disease 11
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TABLE 2

Spatial-Temporal 18F FDG-PET Features

Intensity features

 Minimum

 Maximum

 Mean

 Standard deviation

 Sum

 Median

 Skewness

 Kurtosis

 Variance

Texture features

 Energy

 Entropy

 Correlation

 Inverse difference moment

 Inertia

 Cluster shade

 Cluster prominence

 Haralick correlation

Geometry features

 Volume

 Major diameter

 Minor diameter

 Eccentricity

 Elongation

 Oriented bounding box volume

 Bounding box volume

 Roundness

 Region ratio

 Orientation

 Feret diameter

 Number of lines

 Perimeter

 Physical size

 Flatness

Geometry–intensity feature

 Total glycolytic volume
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TABLE 3

Conventional PET/CT Measures Used in Tumor Response Evaluation*

SUV features

 SUVmean (post, VOI_SUVpeak)

 SUVmax (post, VOI_SUV2.5)

 SUVmean Decrease (VOI_SUVpeak)

 SUVmean (pre, VOI_SUVpeak)

 SUVmax (pre, VOI_SUV2.5)

 SUVmean ratio (pre, post, VOI_SUVpeak)

 SUVmax decrease (pre, post, VOI_SUV2.5)

 SUVmax ratio (pre, post, VOI_SUV2.5)

Volume and length features

 Major diameter (post, VOI_SUV2.5)

 Major diameter Ratio (pre, post, VOI_SUV2.5)

 Volume (post, VOI_SUV2.5)

 Volume ratio (pre, post, VOI_SUV2.5)

 Major diameter (pre, VOI_SUV2.5)

 Major diameter decrease (pre, post, VOI_SUV2.5)

 Volume (pre, VOI_SUV2.5)

 Volume decrease (pre, post, VOI_SUV2.5)

*
Parentheses denote VOI and images from which a feature was extracted.

pre = Pre-CRT SUV, post = Post-CRT SUV, diff = pre-CRT SUV – post-CRT SUV.
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TABLE 4

Optimal Feature Set Resulting from Feature Selection*

Metrics/Features Logistic regression Support vector machine

Conventional PET/CT measures Major diameter (pre, VOI_SUV2.5) Major diameter (pre, VOI_SUV2.5)
Volume (pre, VOI_SUV2.5)
SUVmax Decline (pre, post, VOI_SUV2.5)
SUVmax Ratio (pre, post, VOI_SUV2.5)

Clinical parameters and demographics Histology
Tumor involves gastroesophageal junction
Sex
T stage

Histology

Spatial–temporal PET features Inertia (diff, VOI_SUVpeak)
Orientation (post, VOI_SUV2.5)
Variance (post, VOI_SUVpeak)
Cluster prominence (post, VOI_SUVpeak)
Inverse difference moment (post, VOI_SUV2.5)

Inertia (diff, VOI_SUVpeak)
Orientation (post, VOI_SUV2.5)
Variance (post, VOI_SUVpeak)
Cluster prominence (post, VOI_SUVpeak)
Inverse difference moment (post, VOI_SUV2.5)
Energy (post, VOI_SUV2.5)
Entropy (post, VOI_SUV2.5)
Haralick correlation (pre, VOI_SUV2.5)
Median (post, VOI_SUV2.5)
Inverse difference moment (Diff, VOI_SUVpeak)
Median (post, VOI_SUVpeak)
Entropy (diff, VOI_SUVpeak)
Roundness (post, VOI_SUV2.5)
Mean (post, VOI_SUV2.5)
Elongation (pre, VOI_SUVpeak)
Total glycolytic volume (diff, VOI_SUV2.5)

All features Orientation (post, VOI_SUV2.5)
Tumor involves gastroesophageal junction
Inertia (diff, VOI_SUVpeak)
Energy (post, VOI_SUV2.5)
Entropy (post, VOI_SUV2.5)
Skewness (diff, VOI_SUVpeak)

Orientation (post, VOI_SUV2.5)
Tumor involves gastroesophageal junction
Inertia (diff, VOI_SUVpeak)
Energy (post, VOI_SUV2.5)
Entropy (post, VOI_SUV2.5)
Skewness (diff, VOI_SUVpeak)
Inverse difference moment (post, VOI_SUV2.5)
Cluster prominence (post, VOI_SUVpeak)
Inverse difference moment (diff, VOI_SUVpeak)
Inertia (post, VOI_SUV2.5)
Volume (post, VOI_SUV2.5)
Elongation (pre, VOI_SUVpeak)
T stage
Variance (post, VOI_SUVpeak)
Haralick correlation (pre, VOI_SUV2.5)
Median (post, VOI_SUV2.5)
Total glycolytic volume (diff, VOI_SUV2.5)

*
Parentheses denote VOI and images from which a feature was extracted.

pre = Pre-CRT SUV, post = Post-CRT SUV, diff = pre-CRT SUV – post-CRT SUV.
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