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Abstract

To study growth and development of ocular tissues, gene expression patterns in normal human
fetal versus adult eyes were compared. Human retina/retinal pigment epithelium, choroid, sclera,
optic nerve* and cornea* tissues were dissected from fetal (24 week gestational age) (N=9; *N =
6), and adult (N = 6) normal donor eyes. The Illumina® whole genome expression microarray
platform was used to assess differential expression. Statistical significance for all comparisons was
determined using the Benjamin and Hochberg False Discovery Rate (FDR, 5%). Significant gene
expression fold changes > 1.5 were found in adult versus fetal retina/RPE (N = 1185), choroid (N
= 6446), sclera (N = 1349), and cornea (N = 3872), but not optic nerve. Genes showing differential
expression were assessed using Ingenuity Pathway Analysis (IPA) for enriched functions and
canonical pathways. In all tissues, development, cell death/growth, cancer functions, and signaling
canonical pathways were enriched. There was also a general trend of down-regulation of collagen
genes in adult tissues.
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1. Introduction

The human visual system is complex and requires numerous tissue and cell types to
communicate with each other and the brain throughout the process of development (Kolb et
al., 2011). In humans, rapid axial growth of the eye globe is seen in fetal development with
slowing toward the end of gestation (Fledelius and Christensen, 1996). However, despite
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this rapid fetal growth, the human eye is not full sized at birth nor is the visual system fully
developed; visual signals and nutritional factors contribute to postnatal ocular development
in the early years of life (Bremond-Gignac et al., 2011). During childhood development, an
active regulatory process of ocular growth, emmetropization, aims to match the optical
power of the cornea and lens to the axial length of the eye (Gordon and Donzis, 1985).
Failure of emmetropization in postnatal ocular development commonly results in either
myopic or hyperopic refractive error, or blurred vision (Gordon and Donzis, 1985).

Given the impracticality of human sample collection, researchers have utilized animal
models to study developmental and late-onset ocular diseases. These animal models have
demonstrated that visual cues interpreted by the retina and signaled through the choroid and
sclera locally control the shape and size of the eye through unknown mechanisms (Faulkner
et al., 2007; Tkatchenko et al., 2009; Wallman and Winawer, 2004; Wildsoet and Wallman,
1995). Human eyes with high degrees of refractive error have distinct clinical phenotypes
including changes to their size, shape and tissue structure (Xu et al., 2007). Highly myopic
eyes tend to be larger than their emmetropic counterparts, with the elongation primarily
localized axially (Atchison et al., 2004), suggesting that changes in any or all of those
tissues (central retinal, retinal pigment epithelium [RPE] and sclera) may be responsible for
failed emmetropization and myopic development.

A better understanding of the tissue-specific expression differences during normal growth
and development is key to identify ocular growth and development mechanisms in human
tissues. As collection of postnatal eyes undergoing emmetropization is impractical, fetal
ocular tissue types of central retina/RPE, choroid, sclera, optic nerve and cornea were
compared to their adult counterparts from normal donor eyes to study patterns of ocular
growth during development. Although it is unclear to what extent the mechanisms
controlling postnatal emmetropization are active in prenatal development, one gene
identified in a study of extreme hyperopic refractive error, MFRP (MIM 606227), has been
demonstrated to be necessary for both prenatal ocular growth and postnatal emmetropization
(Sundin et al., 2008). To our knowledge this is the first whole genome expression analysis
comparing human adult versus fetal ocular tissues. This data can provide an understanding
of normal changes these tissues undergo during prenatal growth and development in humans
and it also may contain clues to understand how diseases such as myopia may result from
disruptions to normal growth processes.

2. Materials and methods

2.1. Ocular sample selection

The tissues selected for this study were central retina/RPE, choroid, sclera, optic nerve and
cornea. Selection of tissues was based on relevance to disorders studied in our lab such as
micro-phthalmia and myopic exaggerated eye growth, and feasibility of collection. The
posterior wall tissues were selected and prioritized for larger sample sizes based on their
relation to a focal disease studied in our lab, high myopia. Additionally, the cornea and optic
nerve tissues were selected due to their relations with other diseases under study in our lab
including glaucoma and corneal abnormalities.

To compare growth and development gene expression in ocular tissue types, normal samples
from two age groups were used: fetal eyes and adult eyes. The fetal donor eyes were
obtained from Advanced Biosciences Resources (Alameda, CA, USA), while the adult eyes
were obtained from the North Carolina Eye Bank (Winston—-Salem, North Carolina, USA).
Fetal gestational age was determined by most recent menstruation in addition to fetal foot
measurements. The group of fetal eyes consisted of late prenatal fetal eyes of approximately
24-weeks gestational age from elective abortions with no known defects or abnormalities.
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24-weeks gestational eyes are the oldest prenatal eyes readily available and are undergoing
rapid growth and axial elongation (Fledelius and Christensen, 1996). Nine fetal donor eyes
(four male and five female samples), and six fully grown adult donor eyes (three of each
gender) were used for microarray analyses. Space and cost limitations required that optic
nerve and cornea sample sizes were reduced to six adult and six fetal samples each. All adult
donors were Caucasian, and donors with known ocular disorders were excluded (Table 1).
Ethnic and health information was not available for fetal donors. The study was approved by
Duke University's Institutional Review Board and adhered to the tenets of the Declaration of
Helsinki guidelines.

2.2. Ocular dissection

All adult whole globes were immersed in RNAlater® (Qiagen, Hilden, Germany) within 6.5
h (Table 1) of collection, and shipped overnight on ice. Several studies have shown that the
postmortem delay in preservation of samples within this time frame have limited effects on
RNA integrity from brain tissue (Durrenberger et al., 2010; Ervin et al., 2007). Fetal whole
globes were collected and preserved in RNAlater® within minutes of collection and shipped
overnight on ice. Prior to immersion in RNAlater®, a 2 mm incision was cut equatorially
into all whole globes to allow permeation of the solution to the inner tissues while
minimizing unwanted physical changes to the tissue, such as retinal tearing. All whole
globes were dissected on the same day as arrival. The retina, RPE, choroid and scleral
tissues were isolated at the posterior pole using a circular, double embedded technique using
round 7 mm and 5 mm biopsy punches. To reduce contamination of retina to the other
tissues samples, the second biopsy punch of 5 mm was used in the center of the 7 mm punch
after retinal removal. The adult RPE was collected in RNAlater® by gentle brushing from
the choroid, pipetting the solution, and centrifuging at 4°C to remove the RNAlater®. Fetal
eye samples proved difficult to separate the RPE from the retina. Consequently, the retina
and RPE were collected in total. Additionally, optic nerve and corneal samples were isolated
from each eye in each age group. Central corneal samples were isolated using a clean 5 mm
biopsy punch. The whole optic nerve was collected using clean dissection scissors. The
fibrous sclera, optic nerve, and cornea samples were cut into smaller portions (about 1 mm?)
using a scalpel to aid in subsequent homogenization. After dissection all tissues were
immediately frozen in liquid nitrogen for storage at —80°C until RNA extraction.

2.3. RNA extraction and whole genome expression processing

RNA was extracted from each tissue sample using the mirVanaTM total RNA extraction kit
(Ambion, Austin, Texas, USA) following the manufacturer's protocol. The tissue samples
were homogenized at 4°C in Ambion lysis buffer using a Bead Ruptor Tissue Homogenizer
(Omni, Kennesaw, Georgia, USA) with 2.38 mm metal bead tubes using the following
machine settings: 4 cycles x 30 s at speed 4.0 with 30 s break between cycles. Quality
control for each sample included measuring RNA concentration and 260/280 nm ratios
using a Nanodrop® (Invitrogen, Carlsbad, California, USA). The ocular tissue RNA samples
were labeled and amplified using the Illumina® Total Prep kit (Ambion, Austin, Texas,
USA). RNA samples were hybridized to Illumina® HumanHT-12 v4 Expression BeadChips
(San Diego, California, USA), which target over 25,000 annotated genes (over 48,000
probes). All protocols were performed following the manufacturer's recommendations.
Twelve samples per chip were processed and chips were run in two batches, each containing
samples of at least two tissue types. The first batch (N = 51) included all adult and fetal
retina/RPE, choroid and sclera samples. The second batch included all adult and fetal cornea
and optic nerve samples (N = 24).
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2.4. Whole genome expression analyses

The microarray data preprocessing procedures were conducted separately for each of the
two batches (See Section 2.3). After the data was generated for each batch, background
noise was subtracted from the intensity values using the lllumina® GenomeStudio program.
The data was exported from GenomeStudio and log2 transformed. Sample outliers were
determined by principle component analyses using the Hoteling's T2 test (Hotelling, 1931)
(at 95% confidence interval) and removed from further analyses. The data intensity was
normalized by Quantile normalization followed by Multichip Averaging (Irizarry et al.,
2003) to reduce chip effects. The exact Wilcoxon rank sum test (Wilcoxen, 1945) was used
to identify differentially expressed genes because of the relatively small sample size. Fetal
ocular tissues were compared to their adult counterparts, and assessed for relative fold
changes per probe. Adult retina and RPE samples were averaged for comparison to fetal
retina/RPE. The Benjamin and Hochberg False Discovery Rate (Benjamini and Hochberg,
1995) (FDR) procedure was applied, and FDR was controlled at 0.05 to determine statistical
significance for all comparisons.

2.5. Quantitative real-time PCR (qPCR)

A total of 1.5 pg of RNA for each sample was converted into double —stranded cDNA using
the High Capacity cDNA Reverse Transcription Kit (Applied Biosystem, Austin, Texas)
according to the manufacturer's instructions. qPCR reactions were carried out with TagMan
primers and probe sets from Applied Biosystem, (Austin, Texas). GAPDH was used as the
endogenous control house-keeping gene. PCR reactions were carried out with three
technical duplicates for each sample. The comparative threshold cycle (Ct) method
(McCurdy et al., 2008), was used to calculate the relative gene expression difference
between adult and 24-week groups, and the results were expressed as fold changes in gene
expression.

2.6. Pathway analyses

In total, five adult versus fetal expression comparisons were made, representing each layer
of tissue. Functional and pathway enrichment assessment was conducted using Ingenuity®
Pathway Analysis ([IPA], Ingenuity® Systems, www.ingenuity.com) for each tissue
comparison using lists of genes with differentially expressed probes meeting the following
criteria. In the retina/RPE, choroid, sclera and cornea comparisons, only probes meeting
FDR significance (See Section 2.4) were included. The adult versus fetal optic nerve
comparisons did not produce any probes meeting FDR significance; consequently, probes
with raw p-values <0.05 were included. To focus on changes that we were confident were
biologically important, only those probes with fold changes =1.5 in each tissue were
included. For each tissue comparison, Table 2 contains the number of probes, representative
unique genes, as well as the range and average fold changes.

For each tissue comparison, the lists of differentially expressed genes, their significance and
fold change were imported into IPA. Each gene was mapped to its corresponding object In
the Ingenuity® Knowledge Database (www.ingenuity.com). Functional analysis of these
genes identified biological functions and/or diseases that were most significant to the
molecules (genes) in the group. A right-tailed Fischer's exact test was used to calculate a p-
value determining the probability that each biological function and/or disease assigned was
due to chance alone. Additionally, IPA calculated a z-score, or standard score, for each
functional classification. A z-score of <-2.00 indicates that function has a significantly
decreased predicted activation in the data set. Conversely, a z-score of >2.0 indicates a
predicted increased activation of that functional group in the data set.
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Canonical pathway analysis identified pathways from the IPA library of canonical pathways
that were most significant to the group. The significance of the association between the data
set and the canonical pathway was measured in two ways: 1) A ratio of the number of genes
from the data set that map to the pathway divided by the total number of genes that map to
the pathway; 2) Fischer's exact test was used to calculate a p-value determining the
probability that the association between the genes in the data set and the canonical pathway
was due to chance (Ingenuity® Systems, www.ingenuity.com).

3.1. Microarray analyses

The number and fold change of genes differentially expressed varied by tissue type. The
retina/RPE had the lowest average fold change and the fewest number of differentially
expressed genes, while the cornea had the largest fold changes and the highest number of
differentially expressed genes (Table 2). The optic nerve comparisons failed to yield any
FDR significantly differentially expressed genes.

The microarray chips were redundant, thus, many genes had multiple tagging probes within
them. Given the stringent quality control and fold change criteria used in our testing, all
probes for a given gene did not always meet that threshold. Consequently, some genes have
differing numbers of probes in different tissue types. Additionally, probes with near/below
background intensity readings in one or both age groups tended to have very high fold
changes (Table 3). In particular, the most differentially expressed genes in the retina/RPE
and sclera included a number of genes whose expression detection levels were low (bottom
5% intensity of differentially expressed genes) for one or both age groups (Table 3). These
low readings may have resulted either from failed probes or absent expression. The degree
of expression fold changes in these genes (noted in Table 3) with low readings in both
groups may appear higher due to the relative calculation and the normalization process and
should be considered when interpreting the data.

In each tissue, some of the most differentially expressed genes have near background
readings in one of the two age groups, which may indicate expression being turned on or off
(Table 3). Also the most differentially expressed genes per tissue type included many genes
that have either previously been implicated or suggested for involvement in ocular diseases
particular to these tissues. As a group, extracellular matrix collagens were among the most
differentially expressed genes during growth and development in all tissue types tested
(Table 3). Fig. 1 is a heat map of 31 extracellular matrix, ocular developmental, and
glaucoma-associated genes comparatively expressed in fetal relative to adult ocular tissues.

3.2. Real-time quantitative PCR

Real time quantitative PCR was performed on 6 genes for cornea, 7 genes for optic nerve,
and three genes for retina/retinal pigment epithelium, choroid, and sclera. All demonstrated
verification of the microarray results with respect to up- or down-regulation (Fig. 2).

3.3. Pathway analyses

IPA functional and canonical pathway analysis was performed separately for each tissue
comparison. In all tissue comparisons there was overlap in the most significant functional
categories identified (Table 4). Conversely, the most significant canonical pathways
identified were more variable between tissue types (Table 5).

3.3.1. Functional annotation enrichment—To identify overrepresentation of genes
within known functional pathways involved in growth and development, we performed IPA
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functional annotation analyses. Probes including their associated gene, p-value, and fold
change were analyzed separately for each comparison. The significance of each functional
group is given as a p-value. The ten most significant functional assignments for each tissue
type by p-value are shown in Table 4. For presentation purposes, functional assignments
containing redundant genes and functions were consolidated. Full data is available in
Supplementary Table S1.

In all comparisons of ocular tissues, the most significant functional assignments included
development, cell growth/death and cancer categories. Tumorigenesis was one of the two
most significantly associated functional assignments in all tissues. Other common categories
included cell cycle, movement, function, morphology and expression. These significant
functional assignments showed that genes involved in basic cellular regulations were
differentially activated in rapidly growing and developing tissues relative to their adult
counterparts.

In the retina/RPE, the most significant functional assignments also included differentiation,
cell proliferation, cell movement and tissue development. In the choroid, cell death,
proliferation and growth were among the most significantly associated functional
annotations. In the sclera, the most significant functional groups included cell division and
progression, as well as tissue development. In the optic nerve, tissue development, RNA
expression, cell proliferation and microtubule dynamics were some of the most significantly
enriched functions. The lower significance for the optic nerve in the array data was reflected
in its lower significance for functional classifications. Despite large variances in the number
and significance of genes between tissue type comparisons, the most significant functional
assignments across all adult versus fetal comparisons, including the optic nerve, were
comparable (Table 4). Lastly in the cornea, the most significantly associated functional
annotations included tissue development, cell death, proliferation and growth.

Supplementary Table S2 contains the significant functional assignments with predicted
activation changes for each adult versus fetal tissue comparison (absolute value [z-score] >
2.0). Adult versus fetal compared tissues still shared major functional categories in common,
but with some differences from those most significantly present. When taking direction of
fold changes and their predicted effects on a functional assignment, all tissues had predicted
activation changes for cancer and cell movement categories. Many tissue types also had
development and cell growth/death categories in common. Even within the same tissue type
these shared categories were not consistently predicted to have the same directional
activation; however, those shared categories had differing functional assignments and
contained distinct genes. Functionally assigned groups containing redundant genes which
were removed from the data for publication did not contradict one another in the direction of
predicted activation. In the adult retina/RPE, choroid and sclera, functions predicted to have
increased activation included cell proliferation, while those predicted to have decreased
activation included lymphocyte movement and/or proliferation. In the adult optic nerve,
predicted increased functions included cell growth, formation, and organization. Lastly in
the adult cornea, predicted functional increases included development, differentiation, and
cell cycle progression, while decreased included cell invasion and survival.

3.3.2. Canonical pathway enrichment—To identify specific pathways involved in the
rapid growth and development seen in prenatal development we performed canonical
pathway analyses using IPA. Probes including their associated gene, p-value, and fold
change were analyzed simultaneously for each comparison to identify overrepresentation of
genes within known canonical pathways. The significance of each pathway was assigned a
p-value. The five most significant canonical pathways by p-value are shown in Table 5.
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Additionally, IPA calculates a ratio of genes differentially expressed within each canonical
pathway. Full data is available in Supplementary Table S3.

There was some overlap in pathways between tissue types and all tissues included signaling
pathways among the most significantly associated (Table 5). The retina/RPE and sclera both
included atherosclerosis signaling among pathways with the highest significance. The most
significant pathways in the choroid and cornea both included axonal guidance signaling. In
the sclera and optic nerve tissues both included significant pathways involving cell cycle
regulations. Other significant pathways in retina/RPE involved expression, regulation and
immune responses of the cell. In the choroid, significant pathways also included growth,
expression and immune responses. In the sclera, many of the most significantly associated
pathways involved cell cycle regulation. In the optic nerve, the most significant pathways
were cell fate, growth, regulation and expression. For the cornea, the pathways with the
highest significance were cell fate and growth.

3.4. Disease gene overlap

The most differentially expressed genes in each of the tissues included genes previously
implicated in ocular diseases such as myopia, glaucoma and syndromes with an ocular
component (Table 3). Examples from the 40 most differentially expressed probes in each
direction for each tissue include: MYOC (MIM 601652), which has been implicated in the
development of myopia (Tang et al., 2007; Vatavuk et al., 2009), had probes with 6.40 and
2.22 fold higher expression in the adult relative to fetal scleral tissue and 74.2 fold higher
expression in the adult corneal tissue. LAMAL (MIM 150320), which has also previously
been implicated in myopic development (Zhao et al., 2011), had 30.80 lower fold expression
in the adult (relative to fetal) choroid. NTM (MIM 607938), which has been implicated in
central corneal thickness in primary open angle glaucoma (Ulmer et al., 2012), had -131.38
lower fold expression in adult corneal tissue relative to the fetal tissue. PTPN22 (MIM
600716), implicated in Behget disease (Baranathan et al., 2007; Sahin et al., 2007), has
46.10 higher fold expression in the adult cornea. Also, all tissues tested included collagens
in the most differentially expressed genes (Table 3), many of which have been implicated in
ocular diseases.

Additionally, a number of genes previously identified as involved with ocular disease
belonged to the most significantly enriched functional annotations for all tissues tested. In
particular, there were a large number of genes implicated in either non-syndromic or
syndromic high myopia in various degrees, differentially expressed in these tissues and
present in the most significantly enriched functional annotations. Fourteen differentially
expressed genes associated with non-syndromic myopia were present in the ten most
significant functional classifications for the retina/RPE, choroid and/or sclera (Table S4).
Many of these myopia-associated genes were found in the same functional annotations with
concentrations in those groups related to cell growth and proliferation (including
tumorigenesis).

4. Discussion

To our knowledge, this is the first whole genome expression study comparing human adult
and fetal retina/RPE, choroid, sclera, optic nerve and cornea. This study investigated gene
expression patterns during ocular growth and development in humans. We assessed
differentially expressed genes between rapidly growing fetal tissues relative to their mature
adult counterparts. Then, we examined the functions and canonical pathways of those
differentially expressed genes to extrapolate information regarding the mechanisms of
prenatal ocular growth and development. This study identified genes, biological functions
and canonical pathways that were most active or inactive during normal growth and
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development in human ocular tissues. In addition to not having been investigated in this way
before, some of the tissues investigated in this study also are involved in clinical features of
highly myopic individuals. Investigation of normal growth and development mechanisms in
these human tissues may also help to interpret biological mechanisms of ocular disease by
providing a reference framework.

4.1. Microarray analyses

Whole genome expression analysis comparing human fetal and adult ocular tissues revealed
over 1000 genes that were FDR significantly differentially expressed in each of the tissues
tested, except the optic nerve. Tissues-specific gene expression patterns that are likely
attributable to their distinct functions were identified for growth and development, such as
rhodopsin up-regulation in the adult retina/RPE or hemoglobin down-regulation in the adult
vascular choroid. Despite having different biological functions, the ocular tissues examined
in this study had overlap in their most differentially expressed genes (Table 3). Some of the
overlap shared by all or most tissue types, such as up-regulation of methyltransferases in
adult tissues, may be attributed to the fundamental similarities in development between
tissues. Other overlaps, such as extracellular matrix genes in the fibrous tissues, may reflect
structural similarities between specific tissues. In all tissues examined — especially the
fibrous sclera, optic nerve and cornea — there was a general trend of down-regulation of
collagen genes in adult tissues, which is consistent with previous findings in mouse
postnatal versus adult sclera (Zhou et al., 2006).

4.2. Pathway analyses

All tissues examined in this study had overlap in biological functions the differentially
expressed genes were most significantly associated with. While tumorigenesis was one of
the most significantly enriched biological functions in all tissues, this finding does not
indicate abnormal growth in the tissues samples under investigation. Rather, we believe it
suggests that there was an enrichment of genes that regulate normal cell proliferation and/or
death mechanisms (also shared by all tissues) that are frequently targeted in the development
of cancer. There was considerable variation between tissue types in the most significantly
enriched canonical pathways in the sets of differentially expressed genes (Table 5). Yet
despite these differences, there was broad consistency in the presence of signaling pathways
among the tissues. As with the enrichment for tumorigenesis functional genes, these
significantly enriched canonical pathways included disease pathways. The genes involved in
these diseases (as reported in the literature) were likely enriched in the data sets not because
these tissues are diseased, but because these genes may have normal functional roles in these
tissues.

In the retina/RPE, the enrichment of biological functions relating to blood cells and the
immune system may be due to differences in the proportion of foveal vs. non-foveal tissues
and consequently differences in vasculature in the collected tissue, or indicative of vascular
formation in the fetal tissue. A deeper analysis of the direction of expression of these genes
and/or differential expression analyses of foveal versus non-foveal retina/RPE may clarify
this finding. Similarly, the most significant canonical pathways in the retina/RPE broadly
related to vasculature. Again, further study would be necessary to determine the cause of
these findings. Interestingly, axonal guidance signaling was the most significantly enriched
pathway in the choroid. It is possible that known signaling pathways such as this may also
function as the inter-tissue signaling pathways that locally regulate ocular growth in
postnatal emmetropization. In the sclera and optic nerve, the enrichment of canonical
pathways involving the regulation of cell growth may be because these fibrous tissues
undergo substantial growth and remodeling as they develop. Finally, the cornea had the most
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variation within a tissue in the most significant canonical pathways; though similarly to the
other fibrous tissues examined, three of the top five involved the regulation of cell growth.

It is not surprising that all tissues shared functional categories involving cell growth, death
and development given that they were in a state of rapid growth and development. These
significantly enriched functional categories were identified from IPA's network derived from
scientific findings, suggesting that many of the prenatal growth and development
mechanisms in the eye are similar to other mechanisms found in other tissues and systems.
Likewise, these same genes and pathways involved in normal growth may contribute to
abnormal growth when dysfunctional. This abnormal growth could arise in the form of a
tumor when restricted to a specific tissue or cell type, or could accompany corresponding
changes in nearby tissues. Our findings suggest that the prenatal growth and development
seen in these ocular tissues is largely influenced by standard mechanisms and this data
provides a useful framework to study candidates. However, we are still unsure how these
tissues are communicating with one another and how prenatal and postnatal ocular growth
signals may differ. While, these inter-tissue signaling molecules may not be among the most
significant functional categories if they are indeed specific to the eye and not well
established in the literature; other molecules in the mechanistic pathway could still be
identified as a starting point.

gene overlap

In all tissues, a number of genes previously implicated in ocular disease were identified
among the most differentially expressed genes and the most significantly associated
biological functions. It is not unreasonable to think that the disruption of these genes in their
normal functions within these tissues may contribute to or cause disease. For example, as a
gene that regulates cellular growth may be mutated to allow unrestricted cancerous growth,
a mutation in a gene regulating local control of eye growth may result in failure of the
emmetropization process leading to refractive error. While these differentially expressed
genes presented were not identified in diseased versus normal tissue, our findings suggest
that many disease genes also have roles in normal prenatal growth and development of the
eye. This information on the normal roles of these genes in the tissues with phenotypic
changes in diseases eyes may help to elucidate their mechanistic roles in disease
development.

4.4. Consideration of limitations

Since the fetal and adult eyes were obtained from different sources, expression differences
could in part be attributed to different processing methods and time frames for procurement.

None of the genes in the optic nerve met FDR statistical significance-However, other
qualitative metrics such as probe concordance and pathway assessment were comparable to
the other tissues examined in this study, lending some credibility to their validity. It is
unlikely that there are no truly differentially expressed genes during growth and
development in the optic nerve given the physical and developmental changes the tissue
undergoes, the fold changes seen in expression, and the overlap with other tissues in genes
and enriched functional annotations of the set of genes. The optic nerve may have failed to
reach statistical significance for differential expression of any of its genes for several
reasons, such as its small sample size (due to sample drop out) or biological variation (due to
variation in the proportion of optic nerve stem to head in biological replicates). It is more
likely that the high variability between samples was the major contributor, as we did note
large expression changes (Table 2).
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There were also potential confounding factors in the assessment of differentially expressed
genes during growth and development in the retina/RPE in this study. Combining the retina
and RPE may have reduced the power to detect expression differences, which may account
for the relatively low number of differentially expressed genes and their corresponding fold
changes. Another potential caveat is the possible differences in contribution of foveal tissues
to the posterior retina/RPE in the fetal versus adult tissues. Given that the same size biopsy
punch was used in both age groups, it may be assumed that the fetal tissue included a higher
proportion of non-foveal retina/RPE than the adult tissue.

4.5. Conclusions

We present the first whole genome expression analysis comparing human adult and fetal
retina/RPE, choroid, sclera, optic nerve and cornea. This data provides a wealth of
information regarding the genes, biological functions and canonical pathways that are up- or
down-regulated during growth and development. A deeper understanding of the expression
patterns in the developing human eye, as gained by this information, was a missed early step
in understanding how genetic defects or damage may manifest as diseases. This information
is not only beneficial for congenital diseases arising from developmental failures, but may
also be used to study other diseases resulting from failures to the normal visual system such
as myopia. This data set provides a network with which to study the normal expression,
function and pathway interactions of genes in ocular tissues that are relevant to disease
development. This information could help generate testable hypotheses for the mechanistic
roles of these genes in disease development. Although not emphasized in this manuscript,
there were limited microRNAs (approximately 200) that were incidentally expressed in
various ocular tissues. A future study of a purposeful microRNA microarray or RNASeq
study of ocular tissues would be useful for subsequent microRNA target identification and
functional validation of predicted targets or to study the regulatory effects of miRNAs on
target genes. We propose that the information in this data set may be used to prioritize
candidate genes by providing insights into how they might function in disease development
as well as confirming their presence in the relevant tissues. However, further genetic and/or
functional validation of candidate genes would be necessary to make specific claims
regarding their involvement in the development of myopia.

This expression information may be particularly useful when other genetic means, such as
association mapping or sequencing, fail to reduce the number of candidate genes to a cost
and resource effective number. The expression data presented in this study for the retina/
RPE, choroid and sclera was also used to prioritize candidate genes from a genetic
association mapping study for the high myopia locus MYP3 (MIM 603221) (Hawthorne et
al., 2013). While expression data alone is not sufficient to determine candidates for ocular
disease, it may be used interpret and prioritize candidates when validation of a large number
of genes in not feasible or practical, as was the case with the MYP3 locus. The candidates
identified in our MYP3 association mapping study were found to be nominally significantly
associated in an independent cohort and one of the candidates, PTPRR (MIM 602853), was
also recently identified in a large scale meta-analysis of myopia GWA study (Verhoeven et
al., 2013). This replication of a candidate gene for myopic development supports its validity
and also provides preliminary support of the utilization of this expression data for disease
candidate prioritization.

4.6. Future directions

While these hypotheses require further testing, we have provided a novel framework
(normal ocular growth and development) in which to interpret and contextualize candidate
genes for ocular disease. Early analyses of the functional classifications of these genes may
help elucidate their potential roles in disease progression, particularly their tissue-specific
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roles. Next, a deeper understanding of the mechanisms connecting these tissues may be
better studied using the enriched signaling pathways identified. Genes whose mutations may
confer an increased risk for ocular disease via known or undetermined pathways may be
components of these established pathways regardless of their differential expression in the
tissues. This data could be used to prioritize candidate genes within previously identified
disease loci containing large numbers of genes. Supplemental Table S5 contains a list of
genes within MIM recognized myopia loci (a focus disease in our lab) which are
differentially expressed in the retina/RPE, choroid, and/or sclera. We have only scratched
the surface of the possibilities with this vast resource by interpreting and prioritizing
candidate genes for one disease study of myopia. The use of this information for other loci
and common ocular diseases associated with these tissues should be explored further.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Heat map of 31 extracellular matrix, ocular development, and glaucoma-associated genes
comparatively expressed in fetal relative to adult ocular tissues.
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Retina/RPE, Choroid, Sclera and Cornea were filtered by False Discovery Rate (FDR) <0.05. *Optic Nerve

were filtered by raw p-value <0.05. All tissues were filtered by a fold change (FC) >1.5.

Tissue FC range AverageFC  #probes # uniquegenes
Retina/RPE —-8.50 <+ 21.09 1.86 1236 1185
Choroid —617.57 <+ 550.49 5.56 7124 6446
Sclera -125.11 <+ 6.40 2.28 1423 1349
Optic nerve*  —205.22 <+ 1695.34  5.90 2399 2179
Cornea —-1252.45 <+ 205.77 7.34 4354 3872
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Ten most significant functional groups for adult versus fetal differentially expressed genes.

Ten Most Significant Functional Assignments

Table 4

Tissue Functions annotation P-value  #genes
Retina/RPE  Differentiation 7.15E-16 156
Tumorigenesis 2.48E-12 260
Proliferation of cells 8.05E-12 182
Cell movement 8.36E-11 133
Tissue development 9.28E-11 182
Function of blood cells 4.33E-10 57
Immune response 1.14E-09 116
Cell death of blood cells 3.18E-09 60
Development of lymphocytes 4.35E-09 60
Quantity of cells 1.06E-08 118
Choroid Tumorigenesis 3.19E-28 1317
Cell death 1.37E-23 1058
Cell cycle progression 3.81E-20 376
Proliferation of cells 1.07E-16 835
Growth of cells 1.22E-14 588
Expression of RNA 2.95E-14 658
Transcription 1.63E-13 610
Differentiation 2.10E-13 617
Transcription of RNA 2.37E-13 599
Organization of cytoplasm 6.20E-13 329
Sclera Tumorigenesis 6.17E-18 365
Cell division of chromosomes 3.73E-12 43
Cell cycle progression 1.14E-10 110
Tissue development 1.35E-10 237
Proliferation of cells 2.13E-10 231
Differentiation 4.42E-10 179
Cell death 2.39E-09 272
Cell movement 6.59E-09 164
Interphase 1.30E-08 73
Morphology of organ 8.54E-08 132
Optic Nerve  Tumorigenesis 5.22E-10 548
Tissue development 1.31E-08 371
Expression of RNA 8.54E-08 288
Proliferation of cells 9.32E-08 357
Microtubule dynamics 8.38E-07 100
Cell cycle progression 9.49E-07 152
Transcription 9.68E-07 263
Morphology of basement membrane  1.24E-06 9
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Tissue Functions annotation P-value  #genes
Immortalization 4.28E-06 17
Morphology of blood vessel 1.18E-05 44
Cornea Tumorigenesis 9.15E-28 1060
Tissue development 6.71E-19 702
Cell death 7.63E-19 831
Proliferation of cells 1.51E-18 684
Growth of cells 1.05E-17 492
Encephalopathy 3.18E-17 363
Cell movement 1.96E-16 483
Invasion of cells 2.00E-16 199
Movement disorder 2.52E-14 289
Organization of cytoplasm 3.77E-14 275
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Table 5

Top Five Canonical Pathways
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Significance (p-value) of pathways is determined by Fischer's exact test of probability of genes in the dataset
fit into the pathway by chance alone and by proportion (ratio) of genes in pathway that are included in the
dataset (# genes).

Tissue Ingenuity canonical pathways —og(p) Ratio #genes
Retina/RPE  Atherosclerosis signaling 3.99 1.09E-01 14
LXR/RXR activation 3.25 9.56E-02 13
p38 MAPK signaling 3.25 1.13E-01 12
MIF regulation of innate immunity 3.15 1.40E-01 7
Hepatic fibrosis/hepatic stellate cell activation 3.14 9.52E-02 14
Choroid Axonal guidance signaling 7.03 2.98E-01 128
Molecular mechanisms of cancer 5.55 2.88E-01 109
CXCR4 signaling 5.33 3.39E-01 57
Ephrin receptor signaling 5.09 3.12E-01 62
EIF2 signaling 4.85 3.22E-01 66
Sclera ATM signaling 531 2.20E-01 13
Role of CHK proteins in cell cycle Checkpoint control ~ 3.68 2.29E-01 8
Atherosclerosis signaling 3.53 1.24E-01 16
Mitotic roles of polo-like kinase 2.37 1.38E-01 9
Cell cycle: G2/M DNA damage Checkpoint regulation  2.17 1.43E-01 7
Optic Nerve  Wnt/B-catenin signaling 5.61 2.03E-01 35
Hereditary breast cancer signaling 4.99 2.05E-01 26
Human embryonic stem cell pluripotency 458 1.80E-01 27
Cell cycle: G1/S checkpoint regulation 3.64 2.31E-01 15
RAR activation 3.47 1.60E-01 30
Cornea Breast cancer regulation by Stathminl 6.67 2.93E-01 61
Mitochondrial dysfunction 6.35 2.64E-01 46
Whnt/B-catenin signaling 6.16 3.14E-01 54
Axonal guidance signaling 5.89 2.37E-01 102
Molecular mechanisms of cancer 5.79 2.41E-01 91
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