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Abstract

Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure
in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and
consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-
guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an
hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber
tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically
correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles
corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new
technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as
reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to
anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high
reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with
varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the
multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters
large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to
demonstrate the high performance of the clustering framework in a multiprocessing environment.
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Introduction

Diffusion Weighted Imaging (DWI) [1] has been around for

more than two decades in the MR imaging community and has

become a well-established Magnetic Resonance Imaging (MRI)

technique that measures the translational displacement of water

molecules in biological tissue, also known as Brownian motion.

Diffusion Tensor Imaging (DTI) exploits this effect and

facilitates the estimation of diffusion tensors that enable the

extraction of quantitative measures such as diffusivity, apparent

diffusion coefficient or Fractional Anisotropy (FA). The resulting

voxel-wise diffusivity profiles are thus potential indicators for the

underlying microstructural axonal pathways in the brain [2]. In

order to approximate these white matter structures [3,4], fiber

trajectories can be reconstructed using various tractography

techniques [5–10].

For whole brain tractography, the reconstructed datasets

contain a wealth of information and consist of several thousand

up to more than one million streamlines. Though such datasets

approximate the underlying brain structure in high detail, the fiber

tracts (i.e. streamlines) have no apparent structural organization

and are loosely distributed throughout the brain. Hence, it is

unclear to which underlying white matter structure particular fiber

tracts belong and if tracts are part of either the same or of distinct

structures.

Even though fiber tracts are often color-coded according to

their spatial orientation, this coloring is mainly a visual aid that

does not help to decipher the structural organization of the

tractography datasets. However, various potentially useful appli-

cations would greatly benefit from disentangling the loosely

organized fiber tracts. Fiber tracts, grouped into meaningful

bundles that represent the underlying white matter structures

correctly, are useful for the assessment of structural connectivity

between distinct brain regions [11] or for determining structural

integrity of distinct white matter pathways.

Correct assignment of fiber bundles may also be helpful for the

assessment of tumors and delineation of tumorous tissue, as this

may aid to determine if white matter bundles have been infiltrated

by the tumor or whether the bundles have merely been dislocated

[12,13]. The incorporation of such fiber bundle specific informa-

tion (e.g. course, spatial location, integrity, etc.) into treatment

planning, neuronavigation as well as radiation therapy, will aid the

neurosurgeon and ultimately help the patients.

Another important area are Fiber bundle Driven Techniques

(FDTs) for the quantitative analysis of structural white matter

differences between groups of subjects (e.g. patients vs. healthy
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controls) [14–17]. Compared to established and predominantly

applied techniques such as voxel-based morphometry [18] or

tract-based spatial statistics [19], FDTs enable the analysis of

individual white matter bundles. In this context, FDTs aid the

quantitative analysis as they can be instrumented to prevent

interpolation effects between distinct white matter structures that

result from the coregistration of various datasets [17,20].

Disentangling the structural organization of tractography

datasets is of extraordinary importance for a number of potentially

useful applications but lacks applicability as the division of fiber

tracts into meaningful bundles is difficult. Even though the

bundling of fiber tracts can be performed manually, this type of

processing is prone to errors, remains highly time-consuming and

an operator with fundamental neuroanatomical knowledge is

essential.

Machine learning methods are auspicious techniques for the

automatic extraction of fiber bundles. Classification for example is

a supervised machine learning method that uses predefined

prototype classes (e.g. a white matter parcellation, atlas, etc.) to

predict the membership of fiber tracts to a class. With the

increasing availability of atlases and parcellations [21–23] as well

as guidelines to accomplish a reproducible segmentation of the

white matter [24], atlas-based classification has become a

convenient tool to define the fiber bundles that correspond to

specific regions of the atlas [25].

If an atlas is not available, fully automated unsupervised

learning techniques can be used instead of supervised methods.

Fiber clustering is such an unsupervised method that analyzes the

similarities between fiber tracts in order to assemble similar fiber

tracts into distinguishable fiber bundles. While classification is only

able to define fiber bundles that correspond to classes in the

anatomical atlas, cluster analysis groups tracts into fiber bundles

based on the similarity of distinct features of the tracts. In practice,

however, the clustering of the tracts is rarely optimal. Fiber

bundles are often divided into various parts or different bundles

are falsely merged together. As the outcome of cluster analysis is

influenced by various factors, such as the similarity measure, the

clustering parameters and the data itself, it is challenging to set up

the cluster analysis in a way that consistent and reproducible

clustering of different datasets with a good correspondence to

anatomical fiber bundles is achieved. Considering the high

variability of different datasets, it is in fact unlikely that clustering

without anatomical guidance can be used to extract fiber bundles

reliably in such a way that the generated bundles are anatomically

correct for all datasets. Hence, a consistent, reproducible and

correct extraction of fiber bundles across multiple subjects solely

based on tract similarity and without anatomical guidance is

difficult to achieve.

One fundamental drawback of clustering is the high computa-

tional complexity, which is immanent to the majority of

conventional clustering algorithms [26]. Since fiber tracts are sets

of points that constitute complex trajectories in 3D space,

appropriate measures are indispensable to determine the similarity

between the fibers. However, both the costly clustering and the

complex similarity measures increase the total computational load

and typically restrict cluster analysis to small datasets that consists

of only a few thousand fiber tracts. In recent years, a multitude of

methods have has proposed for both classification and clustering of

fiber tracts [27–37]. The first clustering approaches solely relied on

similarity measures to group tracts into bundles (e.g. Ding et al.

[27], Moberts et al. [29]). Various researchers investigated spectral

clustering approaches [28,31] and used ‘‘spectral embedding’’ to

map the fibers to three-dimensional Euclidean space, which

enabled the clustering algorithm to handle the inherent complexity

of fiber tracts more easily [31]. These first fiber clustering methods

primarily focused on single subject clustering and neglected

anatomical information. Later on, researchers started to experi-

ment with the clustering of multiple input datasets and the

incorporation of anatomical features into the clustering. While

O’Donnell et al. [38], for example, performed multi-subject

clustering to create an atlas that was used to automatically label

fiber tracts, Maddah developed an expectation-maximization

algorithm [33] and used Bayesian modeling to integrate spatial

anatomical information. More recent approaches, focused on

repeated, simultaneous clustering of multiple datasets [39] and fast

voxel-based clustering of rasterized tracts [40], but neglected

anatomical correspondence of fibers and obtained clusters.

Overall, despite the multitude of available methods that have

been proposed for both classification and clustering of fiber tracts,

fast, consistent and anatomically correct clustering for multiple

subjects is still challenging. To overcome these shortcomings, we

present a new clustering framework that introduces the novel

cluster analysis technique CATSER (Cluster Analysis Through

Smartly Extracted Representatives). While conventional clustering

techniques are often limited by long processing times, CATSER is

characterized by low computational complexity and is applicable

to large tractography datasets that contain hundreds of thousands

of fiber tracts. In order to reduce the computation time, our

approach relies on random sampling, partitioning of the data and

parallel computing.

Like other authors [41], we believe that hybrid techniques that

combine clustering and parcellation-based (or atlas-based) classi-

fication approaches will be instrumental to move the field of

automated fiber tract segmentation techniques forward. For this

reason, CATSER was designed to be used in conjunction with a

white matter atlas (see Figure 1) in order to achieve a more

consistent extraction of fiber bundles. With such a predefined

segmentation of the white matter, cluster analysis is facilitated in

partitioning the tracts according to the predefined regions of the

atlas. The additional anatomical information of the atlas is used to

guide the clustering by influencing the formation of the clusters on

the basis of spatial agreement between fiber tracts and atlas classes.

If the atlas regions are defined in accordance with the underlying

white matter structure, anatomically correct clustering with good

correspondence to the anatomy will result.

A Framework for the Atlas-Guided Cluster
Analysis of Large Tractography Datasets

A Note on Fiber Tracts, Similarity Measures and Notation
We assume that fiber tracts are represented by an ordered set of

points in three-dimensional space with arbitrary length that consist

of at least two points. Though cluster analysis in itself is not

restricted to fiber tracts and can be used for grouping all kinds of

objects (e.g. points, documents, etc.), we will use the term fiber

tract throughout the manuscript instead of the more general term

object. As the methodology of the paper is quite extensive, a

glossary is provided (Glossary S1) that contains short explanations

for frequently used terms and abbreviations.

Clustering techniques employ similarity measures to determine

the similarity between tracts by comparing specific and distin-

guishable properties or features of the tracts (e.g. differences in

length, orientation, etc.). We call a function that describes the

similarity of two tracts p and q from a dataset D on the basis of

such properties, a distance or similarity function d(p,q) if the

function is symmetric, positive semidefinite and reflexive:

Atlas-Guided Clustering of Tractography Datasets
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symmetric: d(p,q)~d(q,p), ð1Þ

positive semidefinite: d(p,q)§0 Vp,q[D, ð2Þ

reflexive: d(p,q)~0 ifp~q: ð3Þ

Thus, the distance between two tracts decreases the more

similar the tracts are and increases in the opposed case.

Throughout this theory section we use this general definition of

similarity functions. For the actual clustering of a dataset, an

explicit similarity function that satisfies our general definition (see

above) has to be used. Explicit similarity measures that are used in

this manuscript are defined in section ‘‘Similarity measures’’ of the

appendix.

CATSER – Cluster Analysis Through Smartly Extracted
Representatives

CATSER is based on the CURE (Clustering Using REpresen-

tatives) algorithm that was initially proposed by Guha et al. [42]

for clustering huge databases. Both techniques can essentially be

categorized as agglomerative hierarchical clustering methods that

use an iterative bottom-up approach in which the most similar

tracts are merged during each iteration.

Tractography datasets can consist of hundreds of thousands of

tracts that approximate the axonal pathways in the brain.

However, the number of fiber bundles that are concealed in such

datasets is considerably smaller compared to the overall number of

tracts. As the number of bundles per dataset is estimated to range

between 140 and 500 [29,39], it is obvious that each bundle

consists of numerous tracts that capture minuscule details of the

bundle. Since, the tracts in each bundle are quite similar, the

dataset in itself is inherently redundant. CURE and CATSER

exploit this redundancy. Instead of clustering the whole dataset as

it is the case with conventional clustering methods, they process

only a reduced sample and determine a set of prototype bundles.

Remaining tracts of the dataset that are not part of the initial

sample are then assigned to their most similar prototype clusters.

To reduce computation time and to improve the clustering

results, CATSER employs random sampling, partitioning and

outlier elimination. Compared to CURE, CATSER performs a

modified, more outlier-sensitive clustering approach to overcome

some of CURE’s limitations [43]. To this end, the original

algorithm was modified to incorporate Local Outlier Factors

(LOFs) [44] that provide insight about the structural organization

of the data. A LOF gives a rating to each tract that specifies the

degree how outlying a tract is with respect to other tracts. The

LOFs are used in the cluster analysis to increase the discrimination

between true clusters and clusters that are presumed to be outliers.

Basic CATSER workflow. The individual processing steps of

the CATSER clustering algorithm are presented in this section

and illustrated in Figure 2. In order to exploit the redundancy in

the data, the whole brain tractography dataset is randomly divided

into two parts (step 1): the reduced random sample and the

remaining tracts that are not part of the reduced random sample.

The minimum random sample size can be estimated by employing

Chernoff bounds [42]. Assuming that every discernible cluster has

a minimum size, the minimum reduced random sample size can

then be computed so that this sample contains at least a tract

fraction of each cluster with high probability. As the size of the

smallest cluster in the dataset is unknown, the necessary estimation

of its size limits the ability to detect smaller clusters if they exist in

the dataset.

For various clustering techniques, the computation of similar-

ities between tracts is integrated into the clustering itself. As this

results in redundant computations and degraded performance of

the algorithm, we separated the computation of the similarities

from the cluster analysis. This greatly improves the overall

performance of the clustering and circumvents not only redundant

computations but enables the parallel computation of the

similarities. Similarities as well as LOFs for the sample are

therefore precomputed prior to the clustering (step 2).

The subsequent agglomerative hierarchical clustering procedure

of CATSER is used to generate a user-defined number of clusters

(details about the clustering process itself are presented in the

following section ‘‘Formation of clusters’’). The clustering is

Figure 1. Example of whole brain fiber tractography and fiber tract clustering. Fiber tractography is performed to generate streamlines
that approximate the underlying axonal pathways of the white-matter architecture (left). Tracts are color-coded according to their orientation with
red = left-right, green = anterior-posterior and blue = inferior-superior. Clustering methods can be used to cluster the fiber tracts and to group similar
tracts into fiber bundles or set of tracts (right). By employing a white matter atlas that consists of several white matter bundles (middle), the
automatic extraction can be improved to retrieve anatomically correct fiber bundles.
doi:10.1371/journal.pone.0083847.g001
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essentially a two-pass process, divided into a partial preclustering

and a final clustering stage. In the beginning of the first stage, each

tract is considered a singular cluster. The partial preclustering is

then primarily a coarse grouping of the most similar clusters that

reduces the number of clusters substantially. A strictly sequential

processing of the data during the clustering is therefore not

necessary [42]. Thus, we randomly divide the reduced random

sample (step 1) into a set of partitions each of which contains

approximately the same number of fiber tracts (step 3) and cluster

each partition separately (step 4). In order to speed up the cluster

formation during the first pass, the clustering of the separate

partitions can be performed in parallel. After this first pass, the

preclustered data of the partitions are joined together (step 5).

With this set of joined clusters, the final clustering stage is

performed and prototype clusters are generated (step 6).

During both clustering stages (steps 4 and 6), outlying tracts are

identified and removed from the dataset. Due to the shuffling and

separation of the data into multiple partitions, tracts of a cluster

will be scattered across partitions and tracts may be unintention-

ally labeled as outliers during the clustering, even if a multitude of

Figure 2. Overview of the cluster analysis technique. The size of the whole brain tractography dataset is reduced by extracting a random
sample (1). For this reduced random sample, similarity matrices and Local Outlier Factors (LOFs) are computed, which are subsequently used during
the clustering process (2). The reduced random sample is then automatically partitioned into a user defined number of N independent partitions (3).
A first-pass partial clustering as well as outlier elimination is performed for each partition (4) before resulting clusters of all partitions are joined
together (5). Resulting prototype clusters are generated during the second pass clustering (6). Outliers are then reassigned to the nearest prototype
cluster in order to obtain the final clustering and the hierarchical cluster tree (7). During the last step, remaining tracts that were not part of the
random sample in (1) are finally assigned to the nearest prototype cluster (8). The last two steps (step 7 and 8) are only performed for tracts that are
sufficiently similar to a prototype cluster. To integrate anatomical information into the cluster analysis, a white matter atlas can be used as input
during steps 4 and 6–8 (for details see section ‘‘Integration of anatomical information into the cluster analysis’’).
doi:10.1371/journal.pone.0083847.g002

Atlas-Guided Clustering of Tractography Datasets

PLOS ONE | www.plosone.org 4 December 2013 | Volume 8 | Issue 12 | e83847



similar tracts are situated nearby but are placed in other partitions.

To warrant that outlying tracts are true outliers, tracts that were

previously labeled as outliers are reevaluated and assigned to the

nearest prototype cluster (step 7) if the similarity between tracts

and cluster is sufficiently high (for details see section ‘‘Assigning

and reassigning tracts’’). In the final step, remaining tracts that are

not part of the reduced random sample (step 1) and have not been

appointed to a cluster yet, are also assigned to the nearest

prototype cluster (step 8) if the similarity between cluster and tracts

is high (for details see section ‘‘Assigning and reassigning tracts’’).

During the whole clustering process, a hierarchical cluster tree

that contains all successive merging steps is generated. The cluster

tree enables not only the visualization of the individual clustering

steps with dendrograms, but also the retrospective extraction of

bundles or a subset of tracts from the bundles.

Formation of clusters. Conceptually, CATSER employs

agglomerative hierarchical clustering during both clustering stages

(steps 4 and 6 in Figure 2). Starting with a set of clusters, the

iterative clustering process is performed until certain stopping

criteria are satisfied (e.g. a user-defined number of clusters is

reached). In each iteration of the clustering, the two most similar

clusters are selected and merged to form a new cluster.

In order to determine the similarity between two clusters, only a

subset of tracts from each cluster is considered. This subset consists

of a set of well distributed tracts that capture the geometry of the

cluster and act as representative tracts. To start the selection of

appropriate representatives tracts, the center of the cluster is

determined by locating the cluster medoid. For a cluster C with

DCD tracts, the medoid mC is defined as the tract in C whose

average distance or dissimilarity to all tracts in C is minimal:

mC~ min
p[C

1

DCD

X
q[C

d(p,q)

 !
: ð4Þ

After the medoid has been identified, representative tracts are

determined iteratively and added to the set of representatives RC .

In every iteration, the tract in C that has the maximum distance to

the medoid mC as well as to all other representatives in RC

becomes a new representative and is added to RC . This iterative

selection process guarantees that the representatives are well

distributed across the cluster. An important aspect for the selection

of representatives is the number of representatives that are used for

the clustering. In practice, this is a trade-off between correct

clustering, accurately assessing the cluster shape, achieving

computational efficiency and robustness to noise. Clusters are

not static, but evolve and grow. Therefore a fixed number of

representatives cannot be used, as all tracts of the cluster would

become a representative if the size of the cluster is smaller than the

number of representatives. By reducing the ratio between number

of representatives DRC D and the cluster size DCD with DRC DvDCD, the

selection algorithm can reject tracts that are outlying. In order to

select DRC D, we briefly divide the cluster formation process into two

stages. In the first stage, we chose DRC D with respect to the

individual size of each cluster and carefully adapt it to reflect

changes in the cluster size. As the cluster size and the number of

representatives increases the computational efficiency decreases

due to the additional calculations that have to be performed for

each additional representative. In order to maintain the compu-

tational efficiency, we define a second stage with a constant

number of representatives. To select the number of representa-

tives, we use a monotonically increasing, piecewise-defined

function that resembles these two stages (see Figure 3). The

function f (x) computes the number of representative DRC D in

dependency of the number of tracts in the cluster x~DCD:

jRC j~f (x)~

s|x if 1ƒxƒx1,

f (x1) if xwx1

8><
>: ð5Þ

with s~�0,1� and DRC D§1 for all x.

Instead of such a linear function, nonlinear functions (e.g.

monotonically increasing, interpolation functions or square root

functions) might also be employed to achieve a smooth transition

between the stages.

The similarity or distances between two clusters C1 and C2 is

denoted as d(C1,C2) and defined to be the distance between the

two most similar representatives of C1 and C2. Denoting the sets of

representatives for C1 and C2 as RC1
and RC2

, the formal

definition of d(C1,C2) is given by:

d(C1,C2)~ min
p[RC1

,q[RC2

d(p,q): ð6Þ

Representatives play an important role for the formation of

clusters by acting as an simplification that approximates their

shapes and structures. Since only representatives are used to

determine the similarity between clusters, the number of

comparisons and the computation time are dramatically reduced.

While carefully selected representatives help to prevent negative

effects of outlying tracts, such as adverse agglomerative behavior

(so called chaining effects) [26], they also enable the technique to

cope with clusters of arbitrary shapes. Various conventional

clustering techniques (e.g., k-means) are limited to spherical cluster

shapes in the similarity-based domain. By using representatives to

approximate the structural organization of the cluster, the

clustering method can handle arbitrarily shaped clusters correctly

[42].

Throughout the clustering, outliers are handled under the

assumption that they are typically isolated and do not belong to

any cluster. Therefore, they do not exhibit the typical agglomer-

Figure 3. Determination of the number of cluster representa-
tives. To determine the number of representatives DRC D for a cluster C
we use a two stage approach. As long as the number of tracts DCD in
cluster C is smaller than x1 , RC is selected in dependency of DCD using
either a linear or a nonlinear function (stage 1). If DCD is larger than x1 ,
RC is set to a constant value (stage 2).
doi:10.1371/journal.pone.0083847.g003
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ative behavior in contrast to real clusters [42]. In comparison to

tracts that belong to a cluster, the neighborhoods of outliers are

generally sparse and distances to other tracts of the dataset are

significantly larger. Consequently, clusters that grow very slow and

contain only few tracts at the end of the clustering are labeled as

outliers.

Local Outlier Factor (LOF). Local outlier factors [44] are a

density-based approach to obtain a score for each tract that

specifies its outlierness. By employing the precomputed tract-

similarities, the density distribution of the tracts is analyzed to

compute the LOFs. First, the k-Nearest Neighbors (k-NNs, i.e. the

k-most similar tracts) are determined for each tract. The distances

to these k-NNs are then utilized to compute the local tract density

for each tract. With the local tract density as well as the local tract

density of its k-NNs, the LOF of each tract is calculated.

Practically, a LOF is an estimate on how outlying a tract is

compared to its k-most similar tracts.

LOFs have the favorable property to specify an outlierness-

rating for each tract instead of a fixed labeling that indicates

whether the tract is either an outlier or not. While the LOFs

capture the sparsity of the neighborhood for each tract with a

single value, the upper bound of the LOFs depends on the

similarities in the dataset. Tracts that lie deep inside of a cluster

have a LOF that is approximately 1 or less, whereas the LOF of

tracts increases the more isolated the tracts are. An extensive

discussion about the bounds of LOFs can be found in the original

publication by Breunig et al. [44]. An artificial example of the

LOFs for a set of points in 2D is presented in Figure 4.

The LOF of a tract is solely based on the number of k-NNs that

will be used to assess its local tract density. Since, the value of k has

a direct impact on the LOFs, Breunig et al. derived guidelines for

reasonable values of k [44]. To achieve a stable solution without

statistical fluctuations, it is sufficient to choose k§10. Beyond that,

k implicitly defines the minimum cluster size. Consider the

smallest cluster C in a dataset with DCD tracts. If kwDCD, the k-NNs

of each tract in cluster C include not only tracts from the cluster C
itself but also tracts that belong to another cluster or tracts that are

outlier. In this case, LOFs will be artificially elevated. In order to

prevent an unintentional increase of the LOFs for small clusters,

the value k should not be higher than the number of tracts in the

smallest cluster that is expected in the dataset: 10ƒkƒDCD.
Incorporating LOFs into the cluster analysis of fiber

tracts. As LOFs specify a value for each tract that indicates how

outlying a tract is compared to its k-most similar tracts, it is

reasonable to incorporate this structural information into the

clustering to support the outlier handling of CURE.

The outlierness information provided by the LOFs is used as

complementary information besides the similarities to adjust the

pairwise similarities between tracts during the formation of the

clusters. Here, two scenarios have to be considered.

On the one hand, we have to consider intra-cluster distances.

They are primarily related to the determination of the cluster

representatives, which are iteratively selected by finding those

tracts in the cluster that maximize the distance to all other tracts in

the cluster. On the other hand, we also have to cope with inter-

cluster distances that are used to determine those clusters that will

be merged in each iteration of the clustering. In the latter case, the

two clusters that minimize the distance between them have to be

found (see Eq. 6). These two scenarios are obvious conflicting.

While we try to maximize the distance between tracts in the first

scenario, we try to minimize it in the second scenario.

Consequently, both scenarios have to be handled differently (see

below).

However, irrespective of the scenario, we first define a LOF-

based correction factor corr(p,q) to adjust the pairwise similarities

between two tracts p and q. By denoting the local outlier factor for

p, q with LOF (p) and LOF (q), we define corr(p,q) as follows:

corr(p,q)~
LOF (p)zLOF (q)

2

� �2

: ð7Þ

As long as p, q are not outlying and their LOF is around 1,

corr(p,q) yields &1. If either p, q or both are outlying, the LOFs

are elevated and the correction factor for p and q will increase by

((LOF (p)zLOF (q))=2)2.

Adjusting intra-cluster distances. Intra-cluster distances

are used throughout the clustering to determine the cluster medoid

and to select tracts of the cluster that act as representatives.

However, this process promotes the selection of outlying tracts as

representatives. As this might cause inferior clustering results, a

careful selection of representatives is essential. We therefore adjust

the intra-cluster distances to prevent outlying tracts from being

selected, by using the LOF-adjusted distance d ’(p,q) instead of

d(p,q) to assess the similarity between tracts p, q:

d ’(p,q)~d(p,q)|
1

corr(p,q)
: ð8Þ

The inverse application of the correction factor corr(p,q) (Eq. 7)

practically applies a spatially dependent attraction that pulls tracts

with an increased LOF into the cluster. If tracts have a high LOF,

the correction factor corr(p,q) will be higher as well and the

distance d(p,q) decreases. On the contrary, if tracts have a LOF

Figure 4. Color-coded visualization of Local Outlier Factors
(LOFs) for a set of points in 2D. For the points, LOFs have been
computed that indicate how outlying the points are compared to their
k-most similar tracts. The points are color-coded with the values of their
respective LOFs, whilst yellow denotes low and red high LOF values.
doi:10.1371/journal.pone.0083847.g004
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that is &1, the tracts are practically not affected. Due to this

reciprocal effect, tracts with a high LOF will suffer a penalty and

have a reduced distance to the medoid and to other representatives

(see Figure 5). This decreases the possibility that outlying tracts

with a high LOF are selected as representatives of a cluster.

Adjusting inter-cluster distances. To adjust the distance

between two different clusters C1 and C2 (see Eq. 6), we weight the

distances d(p,q) between two representative tracts p, q with the

LOF-based correction corr(p,q). This yields the new LOF-

adjusted distance, dcorr, between C1 and C2:

dcorr(C1,C2)~ min
p[RC1

,q[RC2

d ’’(p,q), ð9Þ

d ’’(p,q)~d(p,q)|corr(p,q): ð10Þ

This correction affects only the distances between the clusters

and has an influence on when and which clusters are merged. In

order to understand the mechanism behind the correction, the

clustering should be considered as a continuous process in which

clusters are not yet finished but are successively formed. If the

LOF for the representatives of two distinct clusters is &1, the

distance between the clusters is not altered. By definition, these

representatives have to belong to true clusters and are inside the

clusters (otherwise the LOF would not be &1). If representatives

are located at the boundaries of a cluster (compare Figure 4), their

LOF is slightly increased. As a result, the clusters will experience

minimum repulsion and will be clustered slightly later due to their

increased distance. If either one or both representatives of the

clusters are outlier, they will possess a high LOF. As a result of the

LOF-correction, the distance between the clusters will consider-

ably increase and they will be merged substantially later (if they are

merged at all). An exemplary illustration that depicts the

adjustment of the inter-cluster distances for an artificial set of

points in 2D is given in Figure 6.

This correction effectively contributes to the employed outlier

elimination strategy, which is based on the assumption that

outlying tracts will be far more isolated than other tracts. As a

result of the LOF correction, outlying tracts or clusters will become

even more isolated and will therefore be clustered not at all or in

the very end.

Assigning and reassigning tracts. In CURE and CAT-

SER, slowly growing clusters that contain only few tracts in the

end of the clustering are labeled as outliers. Due to the randomized

division of the data into multiple partitions during the clustering,

tracts may be unintentionally labeled as outliers, even if a

multitude of tracts are spatially located nearby in other partitions.

In order to correct for possibly wrong outlier assignment, outlier

are reevaluated. The distances to all extracted clusters are assessed

and outliers are reassigned to the most similar cluster if the

similarity between outlier and cluster is high enough.

By treating the outlying tract o as a singular cluster Co that

consists only of tract o, the distance d(Co,Cx) to all regular clusters

Cx is computed, with x~1 . . . N and N being the number of

regular clusters. The cluster with the minimum distance to Co is

denoted as CM and the two closest representatives of Co and CM

are termed rCo
and rCM

respectively. If dstd (CM ) is the standard

deviation of the distance between all representatives in CM and the

inequality.

d(Co,CM )ƒf |dstd (CM ) ð11Þ

is satisfied, tract o is assigned to CM (see Figure 7). Otherwise o

is labeled as outlier. The factor f can be chosen arbitrarily and is

used to regulate how similar tracts need to be, in order to permit

the reassignment. A value of f ~1 . . . 2 works usually quite well.

Subsequent to the clustering and the reassignment of wrongly

labeled tracts, the set of tracts CE that were not part of the initial

random sample (step 1 in Figure 2) have to be processed. Hereby,

they are either assigned to the nearest cluster or labeled as outlier.

This processing step is carried out in a similar way as the

reassignment above. For each tract o[CE the distance to all

regular clusters is computed and tract o is assigned to the nearest

cluster if inequality 11 is satisfied. As the computation of the LOFs

for the entire dataset is too time consuming (the whole similarity

matrix has to be available), we assume that the LOF of each tract

in CE is 1.

Integration of Anatomical Information into the Cluster
Analysis

In order to incorporate anatomical information into the cluster

analysis, we utilize a white matter atlas that contains various fiber

bundles. As the clustering is based on the principle of merging

clusters with the highest similarity, an effective way to influence

the clustering is to modulate the distance d(C1,C2) between the

clusters C1 and C2:

Figure 5. Influence of Local Outlier Factors on intra-cluster distances. Given one cluster C and the set of tracts fp,q,r,sg[C, the influence of
LOFs on the intra-cluster distances between p and the exemplary tracts q,r,s is unveiled. In the example, the LOF of p, q is approximately one, the LOF
of r is slightly increased and the LOF of s is considerably elevated. Since a reciprocal relation is used for the computation of intra-cluster distances
compared to inter-cluster distances, high LOFs result in reduced distances between tracts – an attraction effect. Therefore, the LOF-corrected distance
between p, s is considerably reduced, while the correction only slightly reduces the distance between p, r. Since p, q are not outlying (LOF &1), the
LOF correction has almost no effect on the distance between p, q.
doi:10.1371/journal.pone.0083847.g005
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d(C1,C2)~d(C1,C2)|w(C1,C2): ð12Þ

As those clusters with the shortest distance are merged in each

step, the weighting factor w(C1,C2) has a direct impact on the

clustering and how clusters are formed. While values of

w(C1,C2)w1 will increase the distances and lead to a repulsion,

a weighting w(C1,C2)v1 will result in attraction for C1, C2 (see

Figure 8). We exploit this effect and determine the weighting

w(p,q) with respect to the atlas-class membership of the clusters p

and q. To guide the cluster analysis, this weighting is determined

and applied in each successive step of the clustering as well as in

the reassignment and the labeling stage. The steps in which the

atlas has to be employed for the atlas integration are depicted in

Figure 2 (steps 4 and 6–8), showing the atlas as optional input in

grey dotted boxes.

The white matter atlas. For the cluster analysis, we use a

voxel-based white matter atlas that was constructed with a semi-

automatic method [25]. The atlas consists of various white matter

(WM) structures (i.e. the classes of the atlas) and each WM

structure contains a set of voxels that belong to the structure.

Hereby, different regions can overlap and voxels are allowed to

belong to multiple classes of the atlas. In Figure 1, a white matter

atlas is shown with a selection of fiber bundles in distinct colors.

Determining the class membership for tracts. In order

to determine the weighting factor w(p,q), the atlas-class member-

ship for the individual tracts and the clusters (groups of tracts) has

to be assessed. The class-membership of single tracts is computed

by rasterizing each tract and determining the spatial agreement of

the tract and the classes in the atlas (Figure 9).

For each atlas class A and each tract t, the spatial agreement

s(t,A) is computed using the number of all tract-voxels N and the

number of voxels NI that intersect the class in the atlas.

s(t,A)~
NI

N
: ð13Þ

For a cluster C with a set of DCD tracts, the atlas-class

membership to class A is computed by averaging the spatial

agreement between all tracts in the cluster and class A:

s(C,A)~
1

DCD

X
t[C

s(t,A): ð14Þ

Determining the weighting factor for two

clusters. During the clustering, the weighting has to be

determined and applied in each successive step. For two clusters

C1 and C2, we identify the two classes of the atlas AC1
, AC2

with

the highest spatial agreement s(C1,AC1
), s(C2,AC2

). For improved

readability, we will use the short notation sC1
and sC2

as

abbreviation. Then, we distinguish between four cases:

N case 1: cluster C1 and C2 have no corresponding class in the

atlas,

N case 2: either cluster C1 or cluster C2 has a corresponding class

in the atlas (s will be the spatial agreement for the non-empty

class),

N case 3: both cluster C1, C2 correspond to the same class in the

atlas,

N case 4: both cluster C1, C2 correspond to different classes in

the atlas.

Figure 6. Influence of Local Outlier Factors on inter-cluster distances. Given clusters C1–C4 and the shortest distances d(C1,C2), d(C1,C3),
d(C3,C4) between the clusters, LOF-related effects on the inter-cluster distances are emphasized. Due to the cluster’s surroundings, the LOFs for
tracts in C1 and C2 are approximately 1, whereas the LOF for tracts in the solitary clusters C3 , C4 is increased and higher than 1. Hence, the LOF-based
correction has almost no effect on the distance between clusters C1 , C2 . The distance between C1 and C3 will be increased due to C3 ’s high LOF. This
repulsion effect is even more pronounced between clusters C3 and C4, because tracts in both clusters have high LOF values.
doi:10.1371/journal.pone.0083847.g006

Figure 7. Assignment and reassignment of tracts in CATSER.
Given the prototype clusters C1 , C2, the solitary cluster Co and the
carefully selected subset of representatives r, the closest cluster to Co is
C1 since d(rCo

,rC1
)vd(rCo

,rC2
). The representatives with the shortest

distance are denoted as rCo
and rC1. Co is then (re-) assigned to the

closest cluster C1 only if the distance d(rCo
,rC1

) is smaller than
f |dstd (C1), whilst dstd (C1) is the standard deviation of the distances
between all representatives in C1 .
doi:10.1371/journal.pone.0083847.g007
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Each case modulates the weighting in a different way:

w(p,q)~

1, AC1
~1 ^ AC2

~1 (case 1),

1= 1{
s

2

� �
, AC1

~1+AC2
~1 (case 2),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1{sC1

� �2

z 1{sC2

� �2

2

vuut
, AC1

~AC2
(case 3),

1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{sC1

� �2

z 1{sC2

� �2

2

vuut
, AC1

=AC2
(case 4):

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð15Þ

The four cases are summarized in Figure 10. For the sake of

simplicity, the clusters in the figure are shown as singular cluster

with only one single tract. However, as clusters are merged

together during the iterative clustering procedure, the cluster will

grow in size and can thus be composed of multiple tracts. In this

case, the spatial agreement between the cluster and the atlas

classes is the average of the spatial agreement between all tracts

and the atlas class (see Eqs. 13 and 14).

Materials and Methods

Data Acquisition and Data Processing
46 healthy subjects (24 female, 29+8:66 years old; 22 male,

29+9:99 years old) were measured on a clinical 3T whole-body

MR-Scanner (Tim Trio, Siemens Healthcare, Erlangen, Ger-

many). This study was approved by the Ethics Committee of the

Jena University Hospital. Participants provided informed written

consent to participate in this study in accordance to the statement

of the Ethics Committee.

For the diffusion tensor acquisition, a conventional single shot

twice refocused Echo Planar Imaging (EPI) sequence was used

with four bipolar diffusion gradients to compensate for eddy

currents [45]. Fat suppression was achieved by applying a SPectral

Attenuated Inversion Recovery (SPAIR) pulse. A 12 channel

phased array matrix head coil was employed for the measure-

ments. To minimize subject motion, special pads were used that

secured a tight fit of the heads in the coil. The following

acquisition parameters were used: a matrix of 96|96, 55 slices

with a thickness of 2.5 mm, voxel size ~2:5|2:5|2:5 mm3,

TE~91 ms, TR~6800 ms, a = 90u and acceleration factor 2. Six

b0 images without diffusion weighting (b0~0s=mm2) as well as 70

diffusion weighted images sampled with different gradient

directions at b~1000s=mm2 were acquired.

Following the data acquisition, in-plane interpolation was

performed on the MR-Scanner, resulting in an effective voxel

size of 1:25|1:25|2:5 mm3. Due to the head fixation, subject

motion was not observed and a retrospective motion correction

was not performed. The Diffusion Toolkit [46] was used to

perform DTI-based analysis and whole brain fiber tractography

using the interpolated streamline method [6] with a fixed step-

length of 0:5 mm and an angle threshold of 41 degree. For the

fiber tracking, three randomly located seed points were placed at

subvoxel resolution in each voxel of the brain’s white matter. The

white matter seed mask was based on the FA maps with a

manually-tuned minimum FA threshold of 0.2. Tracts having a

length less than 30 mm were subsequently removed from the

dataset. On average, each dataset consisted of about 280 000 tracts

with more than 20 million tract points per dataset. Tracts were not

resampled and differed in both length and number of tract points.

All datasets were spatially normalized in a two step procedure,

using the Advanced Normalization Tools (ANTs) [47]. In an initial

step, a rigid transformation of the FA maps was applied to register

and coarsely align all data to the common FA template

(FMRIB58) of the FMRIB’s Software Library (FSL) [48]. A

subject-specific template was created by normalizing the datasets

with the non-linear template generation framework of ANTs. As a

starting point for this non-linear, spatial normalization process, the

rigidly transformed FA maps were averaged to produce an initial

Figure 8. Effects of different weighting factors. The weighting factors guide the clustering by modulating the distance between the clusters p
and q according to their anatomical correspondence in the atlas. While a weighting factor w(p,q)~1 has no effect, a weighting factor w(p,q)v1 will
decrease the cluster distance (attraction). Contrary, a weighting factor w(p,q)w1 will increase the distance between the clusters (repulsion).
doi:10.1371/journal.pone.0083847.g008

Figure 9. The figure shows a single fiber tract that traverses
through two classes of an atlas. A single fiber tract (yellow)
traverses through the inferior fronto-occipital fasciculus (IFO, in blue)
and the forceps major (Fmaj, in red). The remaining atlas classes that
share no spatial volume with the tract are displayed in grey. The class
membership of the tract for the IFO is &0:73 and for the Fmaj &0:12.
doi:10.1371/journal.pone.0083847.g009
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FA template. The template was refined and improved in four

iterations using the greedy SyN transformation model and the

cross correlation metric of ANTs. The resulting transformation

matrices and displacement fields were finally employed to transfer

the fiber tracts into the space of the newly generated template.

White Matter Atlas Generation
We constructed a white matter atlas with a semi-automatic

method [25]. Out of the 46 spatially normalized datasets (see

previous section), 15 randomly selected datasets were employed to

generate the atlas. We selected 16 WM structures (WM bundles) to

be included in the atlas: forceps major (Fmaj), the frontal

projection of the corpus callosum (the forceps minor – Fmin) as

well as the following bundles of the left and right hemisphere:

anterior thalamic radiation (ATR), gyrus part of the cingulum

cingulate (CGC), hippocampal part of the cingulum (CGH),

cortico-spinal tract (CST), inferior fronto-occipital fasciculus

(IFO), temporal part of the superior longitudinal fasciculus (SLFt),

uncinate fasciculus (UNC). To delineate these bundles, a set of

Regions Of Interests (ROIs) was drawn for each bundle, taking

into account the guidelines for reproducible extraction by Wakana

et al. [24]. For each dataset, tracts that crossed these ROIs were

extracted and assigned to the corresponding WM bundle. While

this is an efficient and fast way to extract the WM fiber bundles, it

only extracts the major parts of the bundles. Tracts that belonged

to the bundle but had not crossed all ROIs were not assigned to

the bundle. This probably resulted in a loss of minuscule details for

the bundles.

The probabilistic white matter atlas was then created by using

the extracted bundles (K~16) of all datasets (N~15). With all

these bundles, the 16 prototype classes of the white matter atlas

were generated. Hereby, each class in the atlas contains all voxels

that are associated with the corresponding atlas class and describes

how reliably each voxel can be associated with this class. Let

A1, . . . ,AK be the prototype classes. If A is one of these classes, it

formally consists of a list of voxels vA~fv1, . . . ,vng with an

unknown number of voxels n that belong to class A. Each vi[vA is

a set of coordinates vi~fx,y,zg that describes the position of voxel

vi in the 3D dataset. The probability that voxel vi belongs to class

A is denoted by wA(vi). As vA consists only of voxels that belong to

A, the probability for each voxel vi[vA is wA(vi)w0. wA(vi) is

therefore bounded by �0,1�.
To generate the probabilistic atlas a two step procedure was

used. During the first step, the probabilities for each fiber bundle

were computed individually for each dataset, before these

probabilities were used to generate the final prototype classes in

the second step.

For the first step, the computation of the dataset probability wD

is performed individually for each dataset D[fD1, . . . ,DNg.
Initially, for each fiber bundle A of dataset D, the tract density

rA is determined. Hereby each tract that belongs to bundle A is

rasterized to a user-defined 3D grid and all voxels

vA~fv1, . . . ,vng that are occupied by the tracts of A are

identified. The tract density rA(vi) for voxel vi is computed by

counting the number of tracts that occupy voxel vi. To obtain the

dataset probability wD
A(vi) for voxel vi of bundle A, the ratio

between the tract density rA(vi) and the number of all tracts that

occupy voxel vi is computed:

wD
A(vi)~

rA(vi)PK
j~1

rj(vi)

: ð16Þ

If only tracts of A occupy voxel vi, the probability wD
A(vi) is 1.

After computing the dataset probability for each dataset and

each fiber bundle the final prototype classes are generated in the

second step. For prototype class A, the prototype probability

wA(vi) in voxel vi is defined as the average of all dataset

probabilities w
j
A(vi) for A in voxel vi with j~1, . . . ,N:

wA(vi)~
1

N

XN

j~1

w
j
A(vi): ð17Þ

If there is no voxel in a bundle A to which the corresponding

bundles of all N datasets contribute, the maximum bundle

probability max (wA) will be less than 1. To prevent such a

Figure 10. The four cases that determine the weighting factor for the atlas guidance. The figure shows the four cases that determine the
weighting factor. In order to present and visualize the four cases, the classes of the atlas that correspond to the left and right cingulum bundle are
shown in pink and cyan along with two tracts that represent two clusters (shown in red and blue).
doi:10.1371/journal.pone.0083847.g010
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degradation of probabilities, the probabilities in each bundle are

normalized to a maximum probability of 1.

During this prototype generation stage, tracts are rasterized to a

3D grid. As tracts are a set of real-valued points in 3D space, the

atlas can be reconstructed for arbitrary grid resolutions. In this

study we used an atlas with 1 mm3 isotropic resolution. Unreliable

voxels with probability less than 0.3 were removed from the atlas,

before further processing was performed. An example for a class of

the probabilistic atlas is shown in Figure 11. Volume renderings

for a selection of fiber bundles that are defined in the atlas are

shown in Figure 12. The bundles are overlaid onto the FA volume

of a single subject.

Spatial Matching of Clusters and Atlas Classes
After the clustering of a dataset, the obtained clusters are not

ordered and a spatial matching is performed to relate the clusters

to their best matching atlas class. For this purpose, the clusters of a

dataset D are rasterized to a 3D grid with the same resolution as

the atlas. The tract density rC is computed for all clusters

C[fC1, . . . ,Cng and normalized to a maximum density of 1 for

each cluster.

The spatial agreement between all atlas classes and all obtained

clusters is then determined. A matching value f(A,C) for an atlas

class A and a cluster C is computed that reflects the spatial

resemblance between A and C (see below). The higher the value

f(A,C) the higher the spatial agreement between A and C. After

the computation of the spatial matching value for all atlas classes

and all obtained clusters, clusters are iteratively assigned to the best

matching atlas class until all atlas classes have been associated with

a cluster. During this process, a one to one mapping is enforced

and clusters cannot be assigned to more than one atlas class.

To determine the matching value f(A,C), the intersecting

voxels vAC~fv1, . . . ,vMg as well as the non-intersecting voxels

vA~fvA
1 , . . . ,vA

Kg for A and vC~fvC
1 , . . . ,vC

Lg for C are identified.

The number of all voxels in A ^ C is denoted by N . To assess the

similarity in the overlapping regions of A and C, the average of the

differences in the intersecting voxels is computed with:

D(A,C)~
1

M

XM
i~1

(1{abs(rA(vi){rC(vi))): ð18Þ

To take into account the average tract density of non-

intersecting voxels for both A and C, we also compute:

D(A)~
1

K

XK

i~1

(1{rA(vA
i )), ð19Þ

D(C)~
1

L

XL

i~1

(1{rC(vC
i )): ð20Þ

The matching value f(A,C) is then given by:

f(A,C)~
M

N
|D(A,C)|D(A)|D(C): ð21Þ

Cluster Analysis
The clustering framework was implemented in C++ and uses

highly specialized libraries as well as multithreading to accelerate

the processing and reduce the computation time. Details and

additional technical aspects of the implementation are discussed in

the appendix (see section ‘‘Technical aspects and implementation

details’’).

For each of the 46 whole brain tractography datasets we

performed the cluster analysis in the atlas-space with three

different techniques: atlas-guided clustering with CATSER,

conventional CATSER clustering (without atlas) as well as

standard Hierarchical Agglomerative Clustering (HAC) using

Ward’s method [49]. For both atlas-guided and non-atlas-guided

clustering with CATSER, we used the same parameters (see

below). For HAC, the datasets were far to large to be processed in

reasonable time. Therefore, we randomly selected 10000 tracts

from each dataset, clustered the sample individually and recon-

structed 250 clusters for each dataset.

For the cluster analysis with CATSER, identical parameters,

empirically derived from prior experiments were used. We chose a

sampling size of 10000 tracts (Figure 2, step 1), and divided the

sample into 3 partitions (Figure 2, step 3) that were clustered

during the preclustering stage (Figure 2, step 4). After 80% of the

preclustering, outlier elimination was performed and very small

clusters with less than three tracts were removed. During the final

clustering stage (Figure 2, step 6) the second outlier elimination

stage was performed after 60% of the clustering. This time,

clusters with less than four tracts were removed. For the

computation of the LOFs, the number of neighboring points k
was set to 15. The number of representatives was set to a

maximum value of 40 for a cluster size of 120 tracts. With respect

to Eq. 5 this yields x1~120 and s~40=120. The factor f for

reassignment of outliers was set to 1 and for the labeling of

unprocessed tracts to f ~1:5 (see section ‘‘Assigning and

reassigning tracts’’). We reconstructed 250 fiber bundles for every

dataset.

For the atlas-guided clustering with CATSER, the white matter

atlas was used (see section ‘‘White matter atlas generation’’). A

subsequent step was employed, in which the spatial agreement of

the clusters to all atlas bundles was assessed and a merging of

clusters was performed if this merging would lead to an increased

spatial agreement between the newly formed clusters and the best

matching atlas regions. The purpose of this additional step is to

guarantee that clusters are not splitted and completely formed.

The clustering of all datasets was performed twice with the three

clustering techniques (see above). Each time a different distance

Figure 11. Example for an atlas class in the probabilistic white
matter atlas. The maximum intensity projection of the probabilities is
shown as a pseudo color image for the gyrus part of the left cingulum
(CGCleft). Regions with high probability (wCGCleft

~1) are colored in red,
while regions with low probability (wCGCleft

~0) are shown in blue.
doi:10.1371/journal.pone.0083847.g011
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measure was used to determine the similarity between the tracts.

We used a Combined Distance (CD) measure [50] as well as the

Hausdorff Distance (HD) (for details about the similarity measures

we refer to section ‘‘Similarity measures’’ in the appendix). In

total, cluster analysis was performed 276 times (46 datasets | 3

clustering techniques | 2 similarity measures).

With spatial matching (see section ‘‘Spatial matching of clusters

and atlas classes’’), clusters were identified and related to their

corresponding and best matching class in the atlas. Inter-

individual matching for bundles of different datasets was not

performed, but can be applied in an additional spatial matching

step, by selecting one dataset to which bundles of remaining

datasets are matched. To evaluate the quality of the final results,

we computed the spatial agreement (see Eq. 13) between the

voxelized clusters and their corresponding, best matching atlas

classes.

To demonstrate the benefits from outlier elimination, the effects

of different outlier elimination strategies and varying levels of noise

were investigated. For this purpose, one dataset that resided in its

native space was segmented according to the guidelines by

Wakana et al. [24]. The same 16 fiber bundles that are also

defined in the atlas (see Figure 12) were extracted. For this

segmented dataset, unsupervised clustering (without white matter

atlas) was performed for varying levels of noise and different sets of

outlier elimination parameters. As the correctness of fiber tract

clusters are visually hard to depict due to their inherent complexity

we used the Euclidean norm between the tract centroids as a

similarity measure for this clustering experiment (see section

‘‘Similarity measures’’ in the appendix). Contrary to fiber tracts,

the distance between the tract centroids can be easily depicted in

3D Euclidean space, which allows good visual delineation of the

clusters and their shapes. For this experiment, the cluster analysis

was performed for three different outlier elimination parameter

sets (low, moderate and high outlier elimination, see Table 1 for

details). In addition, artificial white noise was added to the tract

centroids and gradually increased (0%, 33%, 66%, 99% additional

noise).

Performance Analysis
In order to assess the performance of the clustering in a

multiprocessing environment, a performance analysis was con-

ducted using a symmetric multiprocessing (SMP) system equipped

with 16 GB main memory and two Intel Xeon processors (L5430,

quad core, 64-bit, 2.66 GHz). Effects on the execution time TP

and the relative speedup SP~T1=TP were investigated by

gradually increasing the number of utilized cores P. T1 is the

execution time if the processing is performed with a single CPU

core. The performance analysis was conducted for the unsuper-

vised clustering without white matter atlas. One dataset D with

100 000 fiber tracts was used, whereas the reduced random sample

consisted of 5000 tracts. The Hausdorff Distance [29] and the

Combined Distance [50] were used as similarity measures. To

impede statistical fluctuations due to running background process,

all computations were repeated ten times.

The analysis of our clustering framework is divided into three

individual parts to identify those parts of the clustering (cmp.

Figure 2) that are suspected to be computationally most critical, as

well as to identify the parts that will profit the most from adding

additional cores:

N Part 1: Computation of the similarity measures for Din

(Figure 2, step 2)

N Part 2: Clustering of the sample dataset Din (Figure 2, steps 3–

7):

The performance during the formation of clusters was

investigated by gradually increasing the number of parallel

clustered partitions.

N Part 3: Labeling of remaining tracts Dout~D\Din (Figure 2,

step 8):

By employing identical clustering parameters as in part 2, the

performance of the labeling was analyzed.

Results

Clustering
The clustering of all 46 datasets was successfully performed

using the three clustering techniques (atlas-guided CATSER,

CATSER, HAC) and both similarity measures (CD, HD). For

each clustering experiment and each dataset, we matched the

clusters to the atlas classes and determined the best matching

cluster for each class. Clusters for one exemplary dataset,

processed with the atlas-guided CATSER clustering and the

combined distance measure (CD) are shown in Figure 13. All

extracted bundles of the dataset are displayed in the top row. To

enhance the visualization, the bundles in the upper row have been

divided into three groups: bundles of the left hemisphere (left

image), bundles that cross both hemispheres (middle image) and

bundles of the right hemisphere (right image). Fiber bundles are

displayed in distinct colors, and tracts that belong to the same

cluster are colored identically. The matched bundles that

correspond to the atlas classes in Figure 12 are displayed in the

bottom row of Figure 13 with the same coloring as in Figure 12.

Figure 12. Volume renderings for a selection of fiber bundles defined in the white matter atlas. From left to right the bundles are:
anterior thalamic radiation (ATRleft), cortico-spinal tract (CSTleft), the forceps minor (Fmin), gyrus part of the right cingulum (CGCright), hippocampal
part of the right cingulum (CGHright), forceps major (Fmaj), inferior fronto-occipital fasciculus (IFOleft), temporal part of the superior longitudinal
fasciculus (SLFtleft), uncinate fasciculus (UNCleft).
doi:10.1371/journal.pone.0083847.g012
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To assess the quality of the clustering quantitatively, the spatial

agreement (see Eq. 13) between matched bundles and atlas classes

has been determined for all 46 clustered datasets. The spatial

agreement for CD and HD is shown in Figures 14 and 15. Both

figures use box plots to present the spatial agreement of the

individual, clustered bundles, obtained with atlas-guided CAT-

SER (in red), CATSER (in green) and HAC (in blue). The

centerline in the boxes denotes the median (second quartile). The

bottom and the top of a box correspond to the first and the third

quartile and define the Inter-Quartile Range (IRQ). The lines that

emerge from the top and bottom of a box are whiskers and contain

all remaining data points that are in the range of +1:5|IRQ. All

data points that are outside of the whiskers are outliers and marked

with grey dots.

For both similarity measures (CD, HD) all clustering techniques

were able to group fibers into bundles that had a high spatial

agreement with the classes in the atlas (see Figures 14 and 15).

Nonetheless, for both measures various differences between the

three clustering methods were observed. For all clustered bundles,

the variability of the spatial agreement for atlas-guided CATSER

clustering is considerably lower compared to clustering with

CATSER and HAC. Especially the IRQs are significantly

reduced, but also the number of outliers. By comparing the

spatial agreement between CATSER (without atlas) and HAC no

striking differences of the IRQs and outliers are apparent.

By inspecting the average spatial agreement of atlas-guided

CATSER and CATSER without atlas, we see higher spatial

agreement for the atlas-guided clustering in most bundles (expect

for the left IFO (for CD and HD), the left SLFt (for CD) and the

right ATR (for HD)). In contrast, for the conventional clustering

with HAC we observed higher spatial agreement in certain

bundles than in corresponding bundles that were clustered with

atlas-guided CATSER. However, it has to be considered that

HAC clustered only a small subset of 10 000 tracts, which resulted

in considerably smaller clusters that occupied less space compared

to the other techniques. As fewer tracts exist to delineate the whole

bundle and to depict its smaller details, a higher spatial

correspondence was obtained for HAC. This effect can easily be

identified in Figure 16, which shows an example of a single fiber

bundle (inferior fronto-occipital fasciculus – IFO), clustered with

all methods. Using HAC, the best matching bundles contain only

few fiber tracts. These few tracts travel primarily through the

bundle, which results in a high spatial agreement. Regarding the

other methods, the fiber bundle are more detailed and contain

Table 1. Parameters for the three different outlier elimination strategies.

Outlier elimination strategy Preclustering Final clustering

time point t1 in % critical size s1 time point t2 in % critical size s2

low 95 1 85 4

moderate 80 2 85 6

high 80 4 85 8

The table shows the outlier elimination parameters for the three outlier elimination strategies (low, moderate, high). The outlier elimination is performed during the
preclustering (Figure 2, step 4) as well as during the final clustering (Figure 2, step 6). Clusters that contain no more tracts than the critical cluster size s1 (s2) after t1%

(t2%) of the clustering has been finished are considered outliers and are removed from the subsequent clustering.
doi:10.1371/journal.pone.0083847.t001

Figure 13. Atlas-guided clustering results for one dataset, clustered with the combined distance measure. In the top row all bundles
are presented. Fiber bundles are shown for the left hemisphere (left image), bundles that cross the hemispheres (middle image) and bundles of the
right hemisphere (right image). Different fiber bundles are displayed in distinct colors. In the middle image a tracking error is present that resulted in
a fiber bundle connecting the prefrontal lobe and the corpus callosum (green bundle, marked with an arrow). The bottom row shows the clusters
that correspond to the atlas classes that are shown in Figure 12.
doi:10.1371/journal.pone.0083847.g013
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more fiber tracts. They resemble the atlas class more closer, even

though the spatial agreement is lower compared to HAC (expect

for the atlas-guided CATSER clustering with HD). For the atlas-

guided CATSER with CD, however, the obtained cluster for the

IFO is rather large and contains large parts of the uncinate fascicle

compared to the clusters obtained with other methods. While the

results for different clustering methods were consistent for both

similarity measures, we observed that the spatial agreement with

HD was consistently higher for most bundles compared to CD

(Figure 14 vs. Figure 15). In average, the spatial agreement for HD

compared to CD increased by 0.04 for atlas-guided CATSER, by

0.12 for CATSER and by 0.04 for HAC.

For the CGH (in particular the CGH of the left hemisphere)

fiber bundles could not be extracted for all datasets. By analyzing

the data we noted that no or only few fibers traversed through the

volume of the CGH atlas classes for certain datasets. This is also

captured in Figures 14 and 15, in which the CGH bundle has a

very low spatial agreement and a high spread of values. This is

presumably due to imperfections in the coregistration, the small

volume of the CGH atlas class and the small number of tracts that

this bundle contains. We assume that some of the very few tracts

that belonged to the CGH were removed by the outlier

elimination. The cortico-spinal tract also has a relatively low

spatial agreement (Figures 14 and 15), which is the result of

merging the CST bundle with tracts that are not part of the CST

but are highly similar. While the CST is a very narrow fiber

bundle, the tracts in its vicinity are still highly similar to the tracts

that constitute the CST. Even though we incorporated anatomical

information, some highly similar tracts are still merged into the

CST, which leads to a reduction in spatial agreement (compare

the occupied volume of the CST atlas class and the corresponding

CST cluster in Figures 12 and 13).

With the atlas-guided CATSER cluster we observed an elevated

IRQ of the spatial agreement for certain bundles (e.g. UNC). This

increase is primarily associated with the inclusion of additional

tracts during clustering that belong only partly to the bundle. In

Figure, 17 one example is presented that shows the uncinate

fasciculus (UNC) of the left hemisphere for two datasets and the

volume of the corresponding atlas class (in semi-transparent

green). While the tracts follow the anticipated trajectory of the

fibers in the clustered UNC in the left image, the bundle in the

right image contains additional fibers that leave the bundle

(arrows). These incorrect tracts share major parts of the atlas-class

volume and also have a high partial correspondence to other tracts

in the bundle.

In order to demonstrate the consistency of the atlas-guided

CATSER clustering, Figure 18 displays the temporal part of the

superior longitudinal fasciculus (SLFt) for different datasets. The

clusters are superimposed on the volume of the corresponding

atlas class. Even though clusters vary between subjects, the

appearance, the shape and size of the cluster is very similar and

close to the volume-based atlas representation. Due to the fact that

Figure 14. Spatial agreement of clustered fiber bundles and atlas classes for the combined distance measure. Using the atlas-matched
fiber bundles of the 46 datasets that were clustered with the three different methods (atlas-guided CATSER, CATSER, HAC), we determined the
average spatial agreement between fiber bundles and atlas class. The results for each bundle and each clustering technique are shown above.
doi:10.1371/journal.pone.0083847.g014
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various sub-parts of the SLFt leave the atlas class, the spatial

agreement is decreased and ranges between 0.60 and 0.82 for the

shown bundles.

During the analysis of the clustered datasets, some tracking

errors were observed. In Figure 13, for example, various tracts

were traced by the tracking algorithm that connect the prefrontal

lobe and the corpus callosum (green bundle in the middle image of

the top row, marked with an arrow). Another tracking error is

shown in Figure 18, in which the SLFt bundle of various datasets

Figure 15. Spatial agreement of clustered fiber bundles and atlas classes for the Hausdorff distance measure. Using the atlas-matched
fiber bundles of the 46 datasets that were clustered with the three different methods (atlas-guided CATSER, CATSER, HAC), we determined the
average spatial agreement between fiber bundles and atlas class. The results for each bundle and each clustering technique are shown above.
doi:10.1371/journal.pone.0083847.g015

Figure 16. Inferior fronto-occipital fasciculus (IFO) of one dataset clustered with different methods. The IFO of one dataset is shown,
which was clustered with all three methods (atlas-guided CATSER, CATSER, HAC) and both similarity measures (CD, HD). Bundles are shown in the
atlas space and are superimposed with the corresponding class of the atlas (in semi-transparent blue). The spatial agreement for the bundles
clustered using CD is (from left to right): 0.58; 0.62; 0.69 and for the bundles clustered using HD: 0.75; 0.67; 0.73.
doi:10.1371/journal.pone.0083847.g016
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connect to the external capsule in the sub-insular white matter (see

regions of the bundles marked with an arrow).

Outlier Elimination
Results of the outlier elimination are presented in Figure 19.

The fiber tracking dataset in the upper left corner was manually

segmented and the 16 fiber bundles that are also defined in the

atlas were extracted. The data was not spatially transformed and

resides in its native space. For visualization the data, a tableau

view shows the data in three different orientations: top left

image = anterior-posterior view, bottom left image = left-right

view, top right image = superior-inferior view. Each of the

segmented fiber bundles is shown in a different color. For all

tracts of the dataset the centroids were computed and used as gold

standard. Centroids are shown in the top right corner, with the

same tableau view and identical coloring as the tracts.

To investigate the clustering with CATSER, the centroids were

clustered with different outlier elimination strategies (low, moder-

ate, high outlier elimination) and varying levels of noise (D1 = 0%,

D2 = 33%, D3 = 66%, D4 = 99%). The results for this tract-

centroid clustering are shown below the gold standard datasets

(tracts, centroid). Again, the tableau view was used to visualize the

results of the clustering from three distinct orientations. Resulting

clusters are shown in different colors, while the colors of the

clusters were selected in correspondence to the coloring of the gold

standard dataset (top right tableau in Figure 19). Centroids that

were identified as outlier during the clustering are displayed in

grey.

First of all, we observed that the transformation from the

segmented tracts (top left) to centroids (top right) already resulted

in some isolated centroids that are visible in the tableau of the

(segmented) fiber tract centroids (the gold standard).

By inspecting the clustered tableaus in Figure 19, it is evident

that the quality of the clustering depends on both the level of noise

in the dataset and the outlier elimination strategy. Overall, we

observed that the framework was able to handle all scenarios quite

well. However, no outlier elimination strategy was able to achieve

an adequate clustering for all four noise scenarios (D1 D4). If noise

Figure 17. Left uncinate fasciculus (UNC) of two datasets clustered with atlas-guided CATSER clustering. Both bundles reside in the
atlas space and are superimposed with the corresponding class of the atlas (in semi-transparent green). While the bundle on the left follow the
anticipated trajectory of the UNC, the bundle on the right side contains additional tracts that leave the bundle and follow other paths. The spatial
agreement for the left bundle is s~0:93 and for the right bundle s~0:58.
doi:10.1371/journal.pone.0083847.g017

Figure 18. Temporal part of the left superior longitudinal fasciculus (SLFt) for 15 datasets. The datasets reside in the atlas space and were
clustered with the atlas-guided CATSER clustering. The spatial agreement for the bundles in the top row is (from left to right): 0.62; 0.65; 0.67; 0.61;
0.68, in the middle row: 0.67; 0.60; 0.82; 0.64; 0.60 and in the bottom row: 0.64; 0.61; 0.74; 0.65; 0.69. In certain images, tracking errors have been
observed that connect the SLFt to the external capsule (see arrows).
doi:10.1371/journal.pone.0083847.g018
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Figure 19. Results of the experiments that were conducted to demonstrate the effects of outlier elimination. One dataset was
segmented into a set of bundles that are shown in distinct colors in the top left corner. Using the segmented fiber tracts, centroids of tracts were
computed and used as a gold standard. Each point in the gold standard image (top right) represents the centroid of one fiber tract. The groups of
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is barely present (D1, D2), minimal outlier elimination is sufficient

to obtain a good discrimination between the clusters, while a more

aggressive outlier elimination strategy is indispensable if too much

noise is present (D3, D4). If more aggressive outlier elimination

strategies are used for datasets with little noise (e.g. D1, D2), the

outlier elimination rate might be too high and small clusters might

be labeled as outliers. In the opposite case, when plenty of noise is

present (e.g. D3, D4) and minimal outlier elimination is used,

clustering will probably fail and lead to erroneous clusters. In

general, the number of points that were identified as outliers

increases with intensified outlier elimination. Hence we believe

that a moderate outlier elimination strategy seems to be a good

compromise.

However, an increase in noise always has harmful effects on

clustering and will result in degraded performance due to noise

contaminations of the true clusters. The clustering methods will

have difficulties to identify the correct clusters and chaining effects

will lead to merging of distinct clusters. The more noise the more

aggressive the outlier elimination should be in order to achieve

satisfying clustering with good delineation of fiber bundles.

Performance Analysis
The performance analysis of our clustering framework was

conducted as described in the Materials and methods section.

Figure 20 shows the results of the analysis for the individual parts

of the cluster analysis and the two analyzed similarity measures

(CD, HD). The overall computation time in dependency of the

number of employed CPU cores is shown with a stack plot in the

top row, along with the corresponding speedup in the bottom row.

Due to the separation of the similarity measures from the

clustering, precomputation of the similarity measures (part 1, step

2 in Figure 2) and assignment of remaining tracts to the prototype

clusters (part 3, step 8 in Figure 2) were the most time consuming

parts that accounted for major portions of the computation time.

The actual clustering process that is responsible for the generation

of prototype clusters from the sample (part 2, steps 3–7 in Figure 2)

accounted only for a fraction of the total computation time.

Increasing the number of active CPU cores led to a significant

reduction of the computation time for both distance measures. For

part 1 and part 3, the speedup is nearly linear for CD

(Figures 20C), whereas the speedup is fully sustained for HD as

the number of employed cores increases from 1 to 8 (Figure 20D).

This implies that the HD could be parallelized very efficiently,

whereas the additional CPU cores are not as efficiently used with

CD. However, cluster analysis with CD is still an order of

magnitude faster compared to cluster analysis with HD

(Figure 20A and B).

While the performance analysis was only performed for

unsupervised clustering, we observed an increase in computation

time of approximately 10% for atlas-guided clustering.

Discussion and Conclusion

Due to the high computational complexity of many conven-

tional clustering algorithms, cluster analysis is in practice restricted

to small datasets (e.g. [27,29,33]). In this contribution, we have

introduced a new framework for cluster analysis of tractography

datasets derived from diffusion-weighted MRI data. To assess the

similarity of fiber tracts, the framework contains several proximity

measures that can either be used independently or in conjunction

with other similarity measures to perform clustering in higher

dimensions. Together with practical concepts for cluster analysis of

large tractography datasets, the new clustering method CATSER

has been presented. CATSER exploits the inherent redundancy of

large datasets and separates fiber tracts into meaningful bundles in

reasonable time. Structural information of a white matter atlas can

be incorporated into the clustering to achieve an anatomically

correct and reproducible grouping of fiber tracts. This approach

combines the benefits of classification and clustering and can be

considered a hybrid technique. In addition to the clusters that

correspond to the classes of the atlas, CATSER also extracts

additional clusters that are concealed within the dataset. If an atlas

is not available (e.g., in pediatric cases [51]), the technique can still

be used to cluster large datasets without anatomical guidance. 46

tractography datasets of healthy volunteers have been processed

and clustered with three different clustering techniques and two

similarity measures (Combined Distance (CD) and Hausdorff

Distance (HD)). The presented clustering technique CATSER

(with and without atlas-guidance) and conventional Hierarchical

Agglomerative Clustering (HAC) was used for clustering. With

HAC only a small subset of 10000 tracts was clustered due to the

high computational complexity of HAC.

For the majority of the fiber bundles that corresponded to

classes in the atlas, consistent results were obtained. In order to

quantify the quality of the clustering the spatial agreement

between clustered fiber bundles and their corresponding atlas

classes was assessed. For both similarity measures we observed that

the incorporation of the volumetric atlas clearly resulted in an

improved, more consistent and reproducible clustering of fiber

tracts. While spatial resemblance to the atlas classes increased,

variability decreased. In contrast, both other methods (CATSER

without atlas and HAC) had significantly higher spread of values

for spatial agreement.

The comparison of the utilized similarity measures revealed that

spatial agreement was consistently higher for HD compared to

CD. Even though we expected that incorporating shape similarity

would improve clustering and increase spatial agreement between

clusters and atlas classes, this assumption was not confirmed. One

reason for the lower spatial agreement may be related to the shape

similarity which is an essential part of the CD. The shape similarity

is not computed for the entire tracts but only for matched partial

tract parts to determine the similarity of complete and incomplete

tracts (see section ‘‘Similarity measures’’). If the shape of the

matched tract parts is highly similar, agreement rates are also high

even if the tracts are not incomplete but belong to another fiber

bundle. Figure 16 contains an example where the IFO contains a

substantial part that belongs to the UNC. Nevertheless, one has

not only to consider spatial agreement but also computation time.

Here, the cluster analysis with CD was 10 times faster compared to

the cluster analysis with HD.

The spatial correspondence between obtained clusters and atlas

classes was computed by using the number of all cluster voxels and

the number of cluster voxels that intersect the atlas class (see Eq.

13). While this takes into account voxels that are occupied by both

centroids (gold standard) are show in the same color as their corresponding fiber bundles. All data is presented in a tableau view that shows the data
in three different orientations: top left image = anterior-posterior view, bottom left image = left-right view, top right image = superior-inferior view.
The centroids of the gold standard dataset were clustered using the tract centroid distance as similarity measure. Varying levels of artificial noise (0%,
33%, 66% and 99% additional noise) were used and different outlier elimination strategies were tested. The results for the clustering are displayed in
the 4|3 table (D1–D4).
doi:10.1371/journal.pone.0083847.g019
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– the cluster and the atlas class, it entirely neglects the possibility,

whether tracts have been falsely assigned to the fiber bundle and

occupy voxels that belong to other atlas classes. To quantify the

correctness of the obtained clusters more accurately, future studies

should ideally use measures that consider not only voxels that

occupy the corresponding atlas class but also voxels of the cluster

that are situated in different classes.

The separation of the similarity computations from the

clustering permits the presented framework to dramatically reduce

the computation time of the cluster analysis by utilizing multiple

CPUs of modern multiprocessor systems. We analyzed the

performance of the clustering framework and demonstrated the

good speedup of the framework in a multiprocessing environment.

The framework delivers nearly optimal speedup and performance,

as long as the employed similarity measures are implemented

efficiently. If a conventional fiber tracking dataset is available

together with a white matter atlas, the presented technique

CATSER can be used to consistently and reproducibly extract

fiber bundles that correspond to the regions of the atlas. Especially

in the light of the recent introduction of algorithms for generating

and visualizing fiber tracts with the MRI scanner software of

vendors, methods and tools for fast and correct extraction of fiber

bundles are becoming increasingly important in order to aid the

medical personal in analyzing and interpreting tractography data.
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Figure 20. Performance analysis of the cluster analysis for the similarity measures CD (left) and HD (right). The overall computation
time is shown in the top row and the achieved speedup below. For the analysis, the whole clustering process was separated into three distinct parts
and analyzed separately (see section ‘‘Performance analysis’’ in Materials and methods). In all plots, each part is highlighted in distinct colors, whereas
blue denotes the computation of the distance matrix (part 1: ‘‘DM computation’’), green the clustering (part 2: ‘‘CATSER’’) and red the labeling of
remaining tracts (part 3: ‘‘Assign tracts’’). For both distance measures, we observed that part 1 and part 3 were the most time consuming stages
during the clustering. By utilizing multiple CPUs during both parts, a high speedup was achieved and the computation time was significantly
reduced. While the speedup is nearly optimal for HD, the speedup for CD is slightly reduced. However, the overall processing speed for CD is still 10
times faster.
doi:10.1371/journal.pone.0083847.g020
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Besides the application of CATSER for clustering such single

subject datasets in clinical routine, we believe that the presented

techniques and algorithms are especially useful and important for

the fast and fully automated clustering of multiple datasets that are

supposed to be analyzed with fiber bundle driven techniques for

quantitative analyses.

As an anatomically correct and consistent grouping of tracts for

multiple subjects is difficult to achieve without additional

anatomical information, our technique can incorporate an atlas

to guide the clustering process. We demonstrated that CATSER is

capable to extract bundles that are defined in the atlas and that it

also extracts additional reasonable clusters with conventional

clustering. To influence the cluster generation we computed the

spatial correspondence between tracts and atlas classes and

incorporated this information into the clustering. As the atlas

contains not only the occupied voxels for each atlas class but also

additional probabilistic information, it might be reasonable to

incorporate this information in the future. The atlas contains only

the major parts of the bundles due to the employed ROI-based

extraction technique. Even though the spatial agreement between

obtained clusters and atlas classes was already quite high, we

anticipate that the manual generation of an atlas that captures

even smallest details will increase the spatial agreement between

the clusters and the atlas bundles even further.

The validity and anatomical correctness of the obtained clusters

is not only affected by the cluster analysis algorithm. Both data

quality and preprocessing techniques play a crucial role and

influence the generation of the white matter atlas and the cluster

analysis. In this study, we only used Diffusion Tensor Imaging

(DTI) and deterministic tractography as such techniques are

widely available and often used in clinical routine [51]. However,

the measured diffusion signal is just an approximation of the

underlying microstructure that consists of billions of axonal

connections per imaging voxel [52]. Even though the diffusion

tensor is a good approximation if tissues are homogeneous and

axons are aligned parallel, it is insufficient in heterogeneous tissue,

where multiple fiber compartments give rise to a complex diffusion

signal (e.g. crossing, fanning or kissing fibers). As the tensor

degrades, DTI is incapable to describe the microstructure

properly. In such cases, tractography often fails to reconstruct

meaningful fiber tracts. Tracts may be incorrect, will be disrupted

along the course of the structure or even perform an unreliable

trajectory that follows distinct anatomical structures nearby.

Examples for tracking artifacts and tracts that connect wrong

regions are seen in Figures 13 and 18. A cluster that consisted of

additional spurious tracts is shown in Figure 17. While the

clustering technique can counter some of these imperfections by

using outlier elimination, it will be unable to identify incorrect

tracts if a sufficiently large number of similar misguided tracts

exist. If tracts share major parts of the atlas-class volume and also

have a high (partial) correspondence to the other tracts in the

bundle, the atlas-guided clustering is limited in excluding incorrect

fibers. In order to describe the diffusion in the presence of complex

fiber architectures accurately more elaborate methods have to be

used. With complex techniques that sample the diffusion signal in

many directions with high b-values (e.g. high angular diffusion

imaging [53,54]), Orientation Distribution Functions (ODFs) can

be reconstructed that characterize the diffusion signal more

accurately and are able to resolve regions with crossing fibers.

By employing high angular resolution diffusion imaging in

conjunction with ODF-based tractography techniques [55], we

anticipate significant improvements in the quality of the tracto-

graphy datasets and a reduction of unreasonable clusters. As the

white matter atlas is generated on the basis of reconstructed fiber

tracts, erroneous tractography influences the atlas generation as

well. The connection between the uncinate fasciculus and the

inferior frontal gyrus (see Figure 17) is, for example, missing from

the atlas. Considering heterogeneous tissue where multiple fiber

compartments exist (e.g. crossing fibers), a voxel-based probabi-

listic atlas is limited as probabilities will be significantly reduced in

regions with crossing fibers. An orientation dependent atlas that

takes into account the fiber orientation in each voxel by using, for

example, ODFs, will be the next reasonable step to further

enhance the clustering and to prevent the bundling of misguided

tracts. In addition, a grey matter atlas might also be employed to

improve the clustering. In this case, a weighting factor might be

based on the distance between the tracts and their closest grey

matter region.

Our atlas-guided clustering approach aims at a fast and

consistent extraction of fiber bundles for multiple subjects by

using a white matter atlas. Compared to recent techniques that

have been presented (e.g. [35,39,40]), it enables the anatomically

correct extraction of bundles that are defined in the atlas, as well as

the extraction of additional bundles that are not available in the

atlas. While Guevara et al. [40] uses a reasonably fast approach

that is based on the clustering of voxels, Visser’s algorithm employs

partitioning and repeated hierarchical clustering to achieve a

grouping of tracts. Even though Visser’s technique [39] works

quite well for the clustering of fiber tracts, it is limited by the long

computation times, which make it impractical to cluster large

numbers of datasets. However, while such similarity-based

approaches can be used for grouping fiber tracts, a good

correspondence of the clustered bundles to the true anatomical

bundles cannot be guaranteed due to the lack of anatomical

knowledge. As a result, Guevara et al. extended their voxel

clustering approach to increase anatomical correspondence by

incorporating a white matter atlas [56]. First, agglomerative voxel

clustering is performed until many thousands of clusters remain.

This multitude of clusters is then classified using a manually

labeled white matter atlas, derived from a set of clustered datasets.

A different approach for the anatomically correct extraction of

white matter fiber bundles was proposed by Yendiki et al. [57]

with the TRACULA framework. Instead of using cluster analysis

to retrospectively bundle fiber tracts from whole brain tracto-

graphy datasets, TRACULA aims at the separated reconstruction

of the bundles during the fiber tracking itself. Hereby, probabilistic

tractography is used to reconstruct only the tracts of interest by

restricting the tracking using anatomically a-priori-defined regions

of interest as defined by Wakana et al. [24].

Cluster analysis of fiber tracts is not only based on the clustering

algorithm itself, but fundamentally depends on the employed

similarity measures that define the criteria to distinguish fiber

tracts. Popular measures such as the Hausdorff distance [29], the

Chamfer distance [58] or shape-based similarity measures [59] are

often used to assess the similarity of entire tracts, but neglect

partially overlapping [60] or incomplete fibers. To take into

account partially overlapping fiber tracts, Wassermann et al. [60]

proposed a mathematical framework that modeled tracts and fiber

bundles as Gaussian processes using blurred indicator functions in

voxel space. While the Combined Distance measure (CD) also

takes into account incomplete or partially overlapping fibers,

Wasserman’s similarity measure has also some resemblance to our

atlas-guided clustering. In their framework tracts are successively

formed and the Gaussian processes of the tracts are merged in

each iteration. As this approach is partly similar to our atlas-

guidance, both methods might by suitable to complement each

other.
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Finally, the scalability of our clustering framework was analyzed

with respect to the number of employed CPU cores. Results

revealed that the computationally most demanding parts are the

computations of fiber tract similarities, while clustering with

CATSER itself is quite fast. Thus, the computation time is

primarily determined by similarity computations. An in-deep

analysis demonstrated that the clustering framework enables fast

processing with minimal computational overhead. Even when all

cores of a system are employed, the achieved speedup is nearly

optimal. However, results indicate that speedup of the framework

depend on the utilized similarity measure. This was confirmed by

additional experiments, which revealed that a reduced speedup for

certain similarity measures is primarily related to the computer

system’s memory management. We assume that the degraded

multiprocessing efficiency is the result of a memory bandwidth

bottleneck because of the system’s inability to handle excessive

memory (de-)allocations that may occur during the computation of

certain similarity measures. Although the presented framework

already offers good performance, an additional gain may be

achieved by developing more sophisticated algorithms for deter-

mining fiber tract similarity or by exploiting parallelism with

alternative hardware architectures. Especially General Purpose

Graphics Processing Units (GP-GPUs) that are based on a stream

processing architecture [61] already demonstrated their potential

to reduce the processing time for cluster analysis of fiber tracts

notably [62].

Similarity Measures

Tract Centroid Distance Measure (TCD)
We define the tract centroid distance dTCD(p,q) between two

tracts p, q as the Euclidean distance between their centroids Gp

and Gq:

dTCD(p,q)~ Gp{Gq

�� ��: ð22Þ

For an arbitrary tract p described by a finite set of tract points

p~fp1, . . . ,pNg and N§2, the tract centroid Gp is p’s center of

gravity. This is necessary to cope with unequally distributed points

along p that would shift the centroid. Two successive points pi and

piz1 define an individual segment of p. The centroid and the

length for each segment is then denoted by gi and li, respectively:

gi ~ piz
piz1{pi

2
,

li ~ piz1{pik k:
ð23Þ

The center of gravity for p can now be defined as the length-

weighted average of all segment centroids of p. If Lp is p’s overall

tract length:

Lp~
XN{1

i~1

li, ð24Þ

Gp is given by.

Gp~
1

Lp

XN{1

i~1

gi|li: ð25Þ

Tract Orientation Similarity Measure (TOS)
In order to determine the tract orientation similarity dTOS(p,q)

between two tracts p, q with N, M tract points, we compute the

angular distance between their orientation vectors ~OOp and ~OOq:

dTOS(p,q)~ arccos
~OOp.~OOq

~OOp

��� ���| ~OOq

��� ���
0
B@

1
CA: ð26Þ

As orientation vector ~OOp, ~OOq we use the endpoint-orientation of

both tracts [46]:

~OOp~pN{p1, ð27Þ

~OOq~qM{q1: ð28Þ

Hausdorff Distance Measure (HD)
For two tracts p and q with a finite set of tract points

q~fp1, . . . ,pNg, p~fq1, . . . ,qMg and N,M§2, the one-sided

Hausdorff distance is defined as the maximum of the shortest

distances between the points of p and q:

dH1(p,q)~ max
i[p

min
j[q

i{jk k: ð29Þ

Since the Hausdorff distance is directional (dH1(p,q)=dH1(q,p)),
we define the two-sided Hausdorff Distance (HD) as follows:

dHD(p,q)~ max (dH1(p,q),dH1(q,p)): ð30Þ

Combined Distance Measure (CD)
The Combined Distance (CD) measure [50] is based on the

assumption that the spatial location, the orientation and the shape

of the tract are the most important characteristics of fiber tracts.

Consequently, the CD uses these properties to determine the

similarity between two tracts p, q with N, M tract points. To

determine the spatial location and the orientation of the tracts, we

use the tract centroid distance dTCD(p,q) and the tract orientation

similarity dTOS(p,q) (see definition above). Assessing the shape

similarity between tracts is more complex. For this purpose a

method of Atalla et al. [63] based on tract resampling, contour

segmentation and elastic matching was adopted [50]. To cope

with incomplete tracts, we use the resampled tracts to determine
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the two points that minimize the distance between p and q. Using

these two points a partial tract matching is performed and the sub-

tracts p’ and q’ are extracted. For these sub-tracts the tract

centroid distance dTCD(p’,q’) and the tract shape similarity

dTSS(p’,q’) is computed (cmp. [50,63]).

Even though these measures can be employed individually or

combined for multidimensional cluster analysis, we decided to

merge the individual measure into one measure. The one-sided

combined similarity measure dCD O(p,q) is then defined as the

sum of the individual, normalized (between 0 and 1) measures:

dCD O(p,q)~

1

4
dTCD(p,q)zdTOS(p,q)zdTCD(p0,q0)zdTSS(p0,q0)ð Þ

ð31Þ

At this point, it might be also beneficial to use individual weights

to favor or to penalize the individual measures [64]. To account

for reversed tracts the procedure is repeated for the reversed tract

q~fqM ,qM{1, . . . ,q2,q1g which yields dCD R(p,q). The similarity

between tract p and q is then the minimum of dCD O(p,q) and

dCD R(p,q):

dCD(p,q)~ min dCD O(p,q),dCD R(p,q)ð Þ ð32Þ

Technical Aspects and Implementation Details

To facilitate fast processing of large datasets the framework was

implemented in C++ for 64-bit Linux (x86–64) architecture.

Various software packages, such as the Boost C++ Libraries [65],

the Automatically Tuned Linear Algebra Software (ATLAS) and

the AMD Core Math Library (ACML) were employed. In

addition to these specialized libraries, the framework heavily relies

on Symmetric MultiProcessing (SMP) architectures with multiple

compute cores and a shared memory model. By these means

multithreading with T threads is employed to further reduce

computation time and to accelerate the processing during stages

that are computationally demanding.

For a dataset D with N tracts three basic processing stages exist:

1. Extraction of a random sample of tracts Din(D with size Nin.

2. Performing the cluster analysis of Din to obtain a set of

prototype clusters C with size NC .

3. Assigning remaining tracts Dout~D\Din to C with size

Nout~N{Nin.

Reduction of the processing time is accomplished by analyzing

stages and sub-stages of the cluster analysis first. Computationally

demanding parts are optimized and parallelized. An overview of

both, the sequential and the parallel stages in the framework is

given in Fig. 21.

Stage 1– Extracting a Random Sample of Tracts
Finding a random sample Din of tracts in a dataset D is

computationally not demanding and can be carried out serially. As

the Fisher–Yates shuffle [66,67] guarantees unbiased results, it is

employed for the extraction of the reduced random sample.

Stage 2– Performing Clustering
Performing the cluster analysis for the reduced set of tracts in

Din consists of several sub-stages – the precalculation of the local

outlier factors, the partitioning of the data, the preclustering and

the final clustering that produces NC prototype clusters.

Figure 21. Overview of the three fundamental stages of the clustering and their sequential and parallel sub-stages. The figure depicts
the way how the data is processed during the stages of the clustering process. It is illustrated, which parts of the clustering are performed either in
serial or in parallel and how the data is distributed across multiple threads.
doi:10.1371/journal.pone.0083847.g021
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The computationally most expensive operation is the recurrent

calculation of the pair-wise similarities between all tracts in Din

that is necessary in all stages but the partitioning stage.

Consequently, similarities are computed only once and stored on

disk before LOFs are calculated.

Since the entirety of similarities must be available, (N2
in{Nin)=2

similarities are computed for every feature to obtain the triangular

Nin|Nin similarity matrix S. This, however, does not cover the

computational complexity necessary to compute the pair-wise

similarity for two tracts. Employing complex features (e.g.,

Hausdorff distance) will increase the computational complexity

further.

To reduce the computation time, the calculation of the

triangular matrix S is sourced out to multiple threads and

performed in parallel. Matrix S is divided into an arbitrary

number of contiguous line-segments, with an approximately equal

number of tracts (since the matrix is triangular, the number of

elements differ from line to line). All similarities related to one tract

are calculated by one thread.

LOFs are then computed by employing the precalculated

similarities.

For the preclustering, the Fisher–Yates shuffle is employed to

shuffle the tracts in Din, before Din is partitioned into NP sets

P1 . . . PNP
with approximately equal size &Nin=NP. The parti-

tions are then clustered simultaneously. Later on, the final

clustering is carried out serially.

Stage 3– Assigning Remaining Tracts
Since the remaining tracts in Dout must be assigned to their

individual, most similar prototype clusters of C, the similarity for

each tract p[Dout to all prototype representatives in C has to be

computed by employing the same similarity measures as in stage 2.

The Nout tracts of Dout are partitioned into T segments of

approximately equal size &Nout=T . The segments are assigned to

T threads and similarity computations are carried out in parallel.
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