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Abstract
Protein- and cell-based therapies represent highly promising strategies for regenerative medicine,
immunotherapy, and oncology. However, these therapies are significantly limited by delivery
considerations, particularly in terms of protein stability and dosing kinetics as well as cell survival,
engraftment and function. Hydrogels represent versatile and robust delivery vehicles for proteins
and cells due to their high water content that retains protein biological activity, high
cytocompatibility and minimal adverse host reactions, flexibility and tunability in terms of
chemistry, structure, and polymerization format, ability to incorporate various biomolecules to
convey biofunctionality, and opportunity for minimally invasive delivery as injectable carriers.
This review highlights recent progress in the engineering of poly(ethylene glycol) (PEG)
hydrogels cross-linked using maleimide reactive groups for protein and cell delivery.

The Need for Delivery Vehicles for Protein and Cell Delivery
Protein- and cell-based therapies represent revolutionary strategies in regenerative medicine,
oncology, treatment of inflammatory disorders, and immunology1-3 (Table 1). These next-
generation therapeutics offer significant advantages over small pharmacological compounds
in terms of specificity, control, and functionality. However, several challenges limit the
broad application of protein- and cell-based therapeutics (Table 2). In particular, delivery
considerations pose significant challenges to efficient and effective implementation.

Proteins, such as growth and differentiation factors, antibodies, and cytokines, represent
important therapeutics in regenerative medicine, oncology, and other targeted therapies. For
instance, protein-based therapeutics can directly promote tissue growth as in nerve
regeneration, provide enzymes to digest scar tissue, recruit osteoprogenitors and induce
differentiation into bone-forming cells, or promote angiogenesis/vascularization to modulate
tissue healing and repair. In cancer therapeutics, protein-based interventions can modulate
new blood vessel growth at tumor sites and potentially ‘starve’ cancers of nutrients, or
enable targeting of tumors based on surface biomarker expression on tumors. For protein-
based therapeutics, important delivery considerations include delivery route, protein
stability, and dosing kinetics (target dose, residence time). For example, vascular endothelial
growth factor (VEGF) is a potent inducer of angiogenesis and vasculogenesis and has
emerged has a promising therapeutic to treat conditions with reduced vascular perfusion,
including peripheral artery disease, coronary heart disease and myocardial infarcts, and
vascularization of tissue-engineered constructs4,5. However, injected VEGF is rapidly
cleared from tissues, resulting in reduced therapeutic efficiency. Moreover, high local
concentrations of VEGF induce a potent vascularization response but these vessels are often
dysfunctional and leaky and regress once the exogenous growth factor is depleted. In
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contrast, delivery of VEGF from engineered carriers leads to sustained local levels of VEGF
and functional vessels that persist beyond the residence time of the delivered factor6-8.

Cell-based therapies represent hugely promising therapeutic strategies in numerous areas of
regenerative medicine and immunology. In particular, stem cell transplantation promotes
therapeutic improvements in various deficiencies by providing cells that either engraft and
differentiate into functional tissue constituents or secrete bioactive factors supporting host
cellular activities. For example, delivery of mesenchymal stem cells and cardiomyocyte
progenitors to restore cardiac function, either by secreting paracrine factors to recruit and
enhance survival of endogenous cells or differentiation into contractile cells, is a promising
strategy to treat myocardial infarcts9-11. Similarly, implantation of metabolically functional
cells may provide long-term corrective function of metabolic deficiencies in ways that are
superior to pharmacologic intervention. For instance, implantation of metabolically
responsive, insulin-secreting cells has the potential to provide significantly better glycemic
regulation than blood glucose monitoring and insulin injections12. Nevertheless, roadblocks
to efficient cell delivery in terms of cell survival, engraftment, differentiation, and
monitoring severely limit the widespread success and application of these strategies. Long
term cell engraftment has been shown to correlate with enhanced therapeutic outcomes13-15,
and has also been shown to be greater in cases in which cells are delivered in an appropriate
biomaterial carrier16. For example, bone marrow stromal cells directly injected into
myocardial infarcts have poor engraftment rates (<1%) and at best modest improvements in
function17,9. Similarly, progressive loss of transplanted pancreatic islets due to poor
vascularization and engraftment significantly limit the long-term success of this promising
cell therapy for type 1 diabetes18,19. Therefore, new classes of cell delivery vehicles that
promote cell survival, engraftment, and function, including integration with host cells and
tissues, are necessary to fully realize the potential of cell therapy.

Biomaterial Delivery Vehicles
Countless materials have been explored as delivery vehicles for proteins and cells. General
requirements for these delivery vehicles are enumerated in Table 3, but the importance and
relevance of each requirement are strongly dependent on the target application. Materials
derived from natural sources, such as collagen, hyaluronic acid, alginate, and chitosan, have
been extensively used in regenerative medicine and tissue engineering as protein and cell
delivery vehicles. These natural materials can be biologically active, promote cell adhesion
and growth, display high cytocompatibility and acceptable inflammatory profiles, and can be
enzymatically or hydrolytically degraded. However, natural materials are difficult to process
and manufacture into formulations with target mechanical and biochemical properties,
display lot-to-lot variability, and may carry some risk of immunogenicity and pathogen
transmission. Consequently, synthetic materials, such as metals, ceramics and glasses,
polymers, and composites, offer significant advantages over natural materials in terms of
defined composition, control over mechanical and chemical properties, manufacturability
and processing. Limitations of synthetic materials include lack of bio-functionality/bio-
specificity, reduced cytocompatibility compared to natural materials, and uncontrolled
inflammatory host responses that often lead to foreign body reaction and fibrosis, although
recent synthetic materials have been functionalized with bioactive components (e.g,
peptides) to diminish or overcome these limitations. In particular, polymers provide highly
tailorable synthetic materials for cell and protein delivery applications. Polymers have been
extensively used as controlled delivery vehicles for proteins in various configurations,
including membranes for delivery from reservoirs, biodegradable matrices that release
proteins as the polymer degrades in aqueous environments, micro- and nanoparticles and
micelles, and mesh networks such as hydrogels20-23. Polymeric systems have also
advantages as cell delivery vehicles as these can be formulated as injectable carriers, tailored
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to degrade at specified rates to promote replacement by repair tissue, functionalized with
bioactive agents to direct cellular activities, and engineered to provide structural and
biological support for cells24,25. Polymeric cell carriers come in diverse structural
configurations including space-filling cross-linked and self-assembled networks, porous
foams, micro- and nanofibrillar scaffolds, and scaffolds generated by 3-D printing and
associated additive manufacturing technologies.

PEG-maleimide Hydrogel as Delivery Vehicles
An attractive class of materials for protein and cell delivery is hydrogels. Hydrogels are
water-swollen physically or chemically cross-linked polymer networks that can be
engineered from natural materials such as alginate and collagen or synthetic polymers such
as polyethylene glycol (PEG) (Figure 1). Advantageous characteristics of hydrogels include
retention of protein biological activity, high cytocompatibility and minimal adverse host
reactions due to their high water content, flexibility and tunability in terms of chemistry,
structure, and polymerization format, ability to incorporate various biomolecules to convey
biofunctionality, and opportunity for minimally invasive delivery as injectable carriers.
Excellent reviews on hydrogels for protein and cell delivery can be found elsewhere26-32.

PEG synthetic hydrogels represent the ‘gold standard’ in this field due to their intrinsic low-
protein adsorption properties, minimal inflammatory profile and history of safe in vivo use,
ease in incorporating various functionalities, and commercial availability of reagents such as
macromers functionalized with different reactive end groups. Various cross-linking
chemistries have been pursued to create biofunctionalized hydrogel networks of PEG
macromers, with Michael-type addition reactions and acrylate polymerization being the
most widely used30,33. Cross-linking chemistry, gelation time, polymer network structure
(mesh size), swelling, and degradation properties are important considerations when
selecting a hydrogel for protein- and cell-delivery applications. In PEG-diacrylate hydrogels,
macromers are cross-linked via free-radical polymerization of acrylate end groups. Free
radicals are created either by chemical activation or UV cleavage of a photoinitiator with the
added ability to spatially control incorporation of bioligands or mechanical properties
through additive or subtractive photo-patterning34,35. Free-radical polymerization cross-
linking, however, is limited by cytotoxicity (especially in the case of sensitive cells such as
pancreatic islets and neurons), non-ideal network structure containing poly(acrylate) chains
of various sizes, and challenges related to in situ photo cross-linking for in vivo delivery
applications. In contrast, for hydrogels cross-linked by Michael-type addition, functionalized
end groups on branched PEG macromers are reacted with bi-functional or branched cross-
linking molecules. Michael-addition PEG hydrogels based on 4-or 8-arm PEG macromers
with acrylate, vinyl-sulfone, and thiol end-groups have been extensively investigated36-47.
Michael-type addition cross-linking avoids the use of cytotoxic free-radicals and UV light,
but instead require a nucleophilic reagent, such as triethanolamine (TEA), to facilitate the
addition reaction. However, hydrogels formed in the presence of high concentrations of
TEA have cytotoxic effects on sensitive cell types such as endothelial cells, ovarian
follicular cells, and pancreatic islets48,49.

We have recently established maleimide groups as an alternative cross-linking chemistry for
PEG hydrogels50. The maleimide reactive group is extensively used in peptide bioconjugate
chemistry because of its fast reaction kinetics and high specificity for thiols at physiological
pH. Maleimide-based cross-linking has significant advantages over other cross-linking
chemistries, namely well-defined hydrogel structure, stoichiometric incorporation of
bioligands, increased cytocompatibility, improved cross-linking efficiency, and reaction
time scales appropriate for in situ gelation for in vivo applications50. Additionally, the base
macromer exhibits minimal toxicity and inflammation in vivo and is rapidly excreted via the
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urine51 – important considerations in establishing the safety and translational potential of
these hydrogels. We next present two examples of applications of PEG-maleimide hydrogels
for protein and cell delivery.

PEG Hydrogel-based Delivery of Therapeutic Proteins for Cardiac Repair
Acute myocardial infarction caused by ischemia and reperfusion is the most common cause
of cardiac dysfunction due to local cell death and inflammatory responses and fibrosis52,53.
Protein therapeutics targeting different elements of the infarct cascade are being explored to
enhance endogenous cell survival, modulate inflammation, reduce fibrosis, and promote
repair54-56. However, direct protein injection into the myocardium has proven inefficient as
the therapeutic proteins are rapidly cleared, thereby limiting the effective tissue dose. To
address this delivery limitation, synthetic and natural hydrogels have been developed for
controlled delivery of proteins and cells57-68. These therapeutic vehicles promote
myocardial function and repair by supporting endogenous and transplanted cell survival and/
or recruiting endogenous progenitor cells. Additionally, evidence is accumulating that
natural hydrogels consisting of hyaluronic acid or decellularized ventricular extracellular
matrix without exogenous therapeutic factors reduce infarct expansion and negative post-
infarct remodeling possibly by providing mechanical support69-72. These biomaterial
strategies are discussed in an excellent review73.

We engineered hydrogels for protein delivery in order to harness endogenous cell repair to
enhance myocardial repair and function74. PEG-maleimide hydrogels cross-linked with a
protease-degradable peptide were loaded with hepatocyte and vascular endothelial growth
factors (HGF, VEGF) and delivered to the infarcted myocardium of rats. The hydrogel mesh
size is on the order of 35-50 nm and provides a barrier for the release of HGF and VEGF,
but in the presence of proteases, the peptide cross-linkers are degraded, resulting in
sustained release of HGF and VEGF. The released protein maintains equivalent bioactivity
as soluble protein51, demonstrating that this delivery vehicle supports the stability of
encapsulated proteins. When delivered to the border zones following ischemia-reperfusion
injury, there was no acute effect on cardiac function as measured by echocardiography.
However, there was a time-dependent increase in angiogenesis, c-kit-positive stem cell
recruitment, and decrease in fibrosis in infarcts treated with hydrogel co-delivering VEGF
and HGF compared to direct injection of these proteins, hydrogels delivering single proteins,
empty hydrogels, and untreated injured controls (Figure 2). Importantly, the dual growth
factor-delivering hydrogel led to improvements in chronic cardiac function as measured by
both invasive hemodynamics and echocardiography (Figure 2). These results demonstrate
that dual growth factor release of HGF and VEGF from a bioactive hydrogel has the
capacity to significantly improve cardiac remodeling and function following ischemia-
reperfusion injury.

PEG-maleimide Hydrogels for Pancreatic Islet Delivery and Engraftment
Type 1 diabetes (T1DM) affects one in every 400 children and adolescents in the US75.
Standard therapy with exogenous insulin is burdensome, associated with a significant danger
of hypoglycemia, and only partially efficacious in preventing long term complications.
Pancreatic islet transplantation has emerged as a promising therapy for T1DM76,77. Despite
impressive initial improvements in metabolic control, few islet transplant patients maintain
long term insulin independence12,78. Moreover, islet transplantation therapy is limited by
inadequate supply of donor islets, a problem worsened by islet loss post-transplantation.
Instant blood-mediated inflammatory reaction and toxic responses to immunosuppressive
drugs contribute to progressive islet loss. Furthermore, inadequate vascularization of
transplanted islets remains a significant cause of reduced islet viability, function, and
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engraftment79-82,77. Therefore, there is clear need for islet delivery vehicles that promote
islet survival, vascularization, and function.

Biomaterial strategies for islet transplantation (reviewed in83,84) have centered on (i) semi-
permeable barriers for encapsulation and immunoprotection85-90 and (ii) delivery vehicles
for factors that support islet survival and/or vascularization91-97. We recently engineered an
injectable vasculogenic, PEG-maleimide hydrogel to enhance the survival, vascularization,
and engraftment of transplanted pancreatic islets in a mouse model of T1DM51 (Figure 3).
VEGF, a potent stimulator of angiogenesis, was incorporated into the hydrogel and released
in an on-demand manner through protease-mediated degradation of the hydrogel network
(Figure 3). The PEG-maleimide hydrogel exhibited extended in vivo release of VEGF
compared to other carriers such as alginate49. Isolated islets encapsulated in PEG-
maleimide hydrogels displayed enhanced viability and insulin secretion compared to islets
encapsulated in other hydrogels, including PEG-diacrylate and collagen I49. This injectable
hydrogel was then used to deliver islets to the small bowel mesentery, a metabolically
relevant site for insulin release, in diabetic mice. Controlled presentation of VEGF and RGD
cell adhesive peptides within this hydrogel significantly improved the vascularization and
function of transplanted islets. Diabetic mice receiving islets transplanted in proteolytically
degradable hydrogels incorporating VEGF exhibited complete reversal of diabetic
hyperglycemia with a 40% reduction in the number of islets required to achieve
normoglycemia51 (Figure 3). Furthermore, hydrogel-delivered islets significantly improved
weight gain, regulation of a glucose challenge, and intra-islet vascularization and
engraftment compared to the clinical standard of islet infusion through the hepatic portal
vein (Figure 3). This study establishes a simple biomaterial strategy for islet transplantation
to enhance islet engraftment and function.

Conclusions and Outlook
Promising protein- and cell-based therapies are significantly limited by delivery
considerations, particularly in terms of protein stability and dosing kinetics as well as cell
survival, engraftment and function. Hydrogels represent versatile and robust delivery
vehicles for proteins and cells due to the retention of protein biological activity, high
cytocompatibility and minimal adverse host reactions, flexibility and tunability in terms of
chemistry, structure, and polymerization format, ability to incorporate various biomolecules
to convey biofunctionality, and opportunity for minimally invasive delivery as injectable
carriers. Biofunctional hydrogels have shown promise in pre-clinical models for diverse
regenerative medicine applications but safety and functional data in rigorous animal models
are necessary to establish the translational potential of these engineering materials. Among
PEG-based hydrogels, maleimide-based cross-linked hydrogels offer significant advantages
over other cross-linking chemistries, including well-defined hydrogel structure,
stoichiometric incorporation of bioligands, increased cytocompatibility, improved cross-
linking efficiency, and reaction time scales appropriate for in situ gelation for in vivo
applications.

Continued progress in material design and synthesis strategies, including the application of
orthogonal chemistries and novel macromolecular materials, will accelerate the development
of tailorable, multi-functional delivery vehicles. Additionally, the engineering of stimulus-
triggered functionalities for spatiotemporal control of mechanical properties, degradation
and protein release kinetics, and cell-instructive activities will yield materials that better
mimic tissues and promote the integration of transplanted or recruited endogenous cells with
host tissues. Advances in immunology and stem cell biology will lead to the identification of
potent biomolecules, such as immunoregulatory cytokines and cell recruitment factors,
which can be integrated into delivery vehicles to generate immunomodulatory and reparative

García Page 5

Ann Biomed Eng. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



materials to harness endogenous repair. Finally, the combination of advanced imaging
modalities for in vivo tracking of delivered proteins and cells and powerful transgenic
animal models will provide rigorous platforms to evaluate engineered delivery vehicles.
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Figure 1.
Biofunctional hydrogels for protein and cell delivery. Hydrogel network is functionalized
with bioactive molecules, including cell adhesive peptides, protease-degradable cross-links,
and growth factors. Hydrogel is designed to promote host cell interactions and blood vessel
ingrowth to promote integration of transplanted donor cells.
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Figure 2.
PEG-maleimide hydrogels for protein delivery to myocardial infarcts. (A) Hydrogels cross-
linked with a protease-degradable peptide and loaded with HGF and VEGF were injected
into the infarcted myocardium. Infarcts treated with hydrogel co-delivering VEGF and HGF
(B) enhanced angiogenesis (*p<0.05, ***p<0.001) and (C) decreased fibrosis (*p<0.05) at
21 days post-treatment compared to direct injection of these proteins, hydrogels delivering
single proteins, empty hydrogels, and untreated injured controls. Dual growth factor-
delivering hydrogel led to improvements in (D) fractional shortening (*p<0.05) and (E)
hemodynamics (dP/dT = change in pressure over time, EDV = end-diastolic volume,
*p<0.05, **p<0.01) at 21 days post-treatment. Adapted from Ref. 74.
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Figure 3.
Vasculogenic PEG-maleimide hydrogels for pancreatic islet cell engraftment and function.
(A) VEGF release profile from collagenase-degrading gels or gels treated in PBS as
measured by ELISA showing on-demand release of VEGF. (B) Random daily blood sugar
levels in streptozotocin-induced diabetic mice transplanted within syngeneic islets (400
islets). Only islets delivered within PEG-maleimide hydrogels with VEGF restored
normoglycemia (p<0.001). (C) Transplant site in the small bowel mesentery at day 0 and at
4 weeks demonstrating significant remodeling of the PEG-maleimide hydrogel. (D) Islet
graft explants (4 weeks) with patent vascular structures stained with IV-perfused FITC-
lectin (green), DAPI (blue), and immunostained for insulin (red). (E) Quantification of
vascular area normalized to islet area p<0.05). Adapted from Ref. 51.
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Table 1

Representative protein- and cell-based therapies or clinical trials and associated delivery vehicles.

Application Protein Cell Delivery Vehicle

spinal fusion BMP-2 (Medtronic) collagen sponge

myocardial infarct bone marrow-derived stem cells (Amorcyte) MSC
(Osiris) Saline

rheumatoid arthritis, Crohn's
disease & other inflammatory

disorders

adalimumab TNF-α antibody
(Humira, Abbott) Saline

stroke neural stem cells (ReNeuron) Saline

diabetes porcine β cells (Living Cell Tech) Alginate

cartilage autologous chondrocytes (Genzyme) Collagen

breast cancer
trastuzumab HER2
antagonist antibody

(Herceptin, Genentech)
Saline

diabetes insulin lispro (Humalog, Eli
Lilly) Saline

leg ulcer fibroblasts/keratinocytes (Organogenesis) cell-derived matrix

critical limb ischemia MSC (Stempeutics) Saline
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Table 2

Considerations for protein and cell therapeutics.

Protein Cell

selection of therapeutic due to complex underlying biology autologous, allogenic donor cells, including ex vivo manipulations

delivery route & vehicle delivery route & vehicle

bioactivity & stability cell dose, survival, & engraftment

dosing & clearance kinetics mechanism of action: paracrine/trophic support vs. direct functional support

host response host response

manufacturing, including expression, purification, sterilization manufacturing, including sterilization

regulatory aspects, safety & monitoring regulatory aspects, safety & monitoring
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Table 3

General requirements for protein and cell delivery vehicles.

Protein Vehicle Cell Carrier

delivery route delivery format (e.g., injectable vs. pre-formed)

protein loading capacity vehicle structural, mechanical, biochemical properties to support target
cell activities

protein bioactivity & stability after encapsulation immunoisolation considerations

release mechanisms & kinetics to match desired pharmacokinetics cell loading & cytocompatibility

host response to protein & vehicle host response & integration, including vehicle degradation to allow tissue
ingrowth

vehicle residence time & clearance Vascularization

manufacturing, including sterilization manufacturing, including sterilization

regulatory aspects, safety & monitoring regulatory aspects, safety & monitoring
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