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Introduction

Leukemia constitutes a type of hematological malignancy 
characterized by a prominent increase in circulating immature 
white blood cells named “blasts.” Leukemogenesis involves 
a compendium of cell-autonomous genetic and epigenetic 
alterations that interfere with the homeostatic regulation of the 
hematopoietic (stem cell) compartment. Generally, this results 
in the accumulation of leukemic (stem) cells that gradually 
take over normal hematopoiesis as they acquire all hallmarks of 

cancer.1,2 Thus, curative antileukemic therapies may be conceived 
to achieve at least 1 out of 3 distinct purposes. First, cytotoxic 
agents can be designed to selectively kill leukemic (stem) cells, 
mostly by stimulating mitochondrial apoptosis. Second, cytostatic 
agents may be used to block the unrestrained proliferation of 
leukemic cells, thereby reducing their relative occupancy of the 
bone marrow. Third, differentiation-stimulating agents should 
stimulate the transition of leukemic (stem) cells to a mature 
phenotype, thereby abolishing their proliferative potential and 
allowing them to undergo terminal differentiation-associated cell 
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By means of an unbiased, automated fluorescence microscopy-based screen, we identified the epidermal growth 
factor receptor (EGFR) inhibitors erlotinib and gefitinib as potent enhancers of the differentiation of HL-60 acute myeloid 
leukemia (AML) cells exposed to suboptimal concentrations of vitamin A (all-trans retinoic acid, ATRA) or vitamin D (1α,25-
hydroxycholecalciferol, VD).  Erlotinib and gefitinib alone did not promote differentiation, yet stimulated the acquisition 
of morphological and biochemical maturation markers (including the expression of CD11b and CD14 as well as increased 
NADPH oxidase activity) when combined with either ATRA or VD. Moreover, the combination of erlotinib and ATRA or 
VD synergistically induced all the processes that are normally linked to terminal hematopoietic differentiation, namely, 
a delayed proliferation arrest in the G0/G1 phase of the cell cycle, cellular senescence, and apoptosis. Erlotinib potently 
inhibited the (auto)phosphorylation of mitogen-activated protein kinase 14 (MAPK14, best known as p38MAPK) and SRC 
family kinases (SFKs). If combined with the administration of ATRA or VD, the inhibition of p38MAPK or SFKs with specific 
pharmacological agents mimicked the pro-differentiation activity of erlotinib. These data were obtained with 2 distinct 
AML cell lines (HL-60 and MOLM-13 cells) and could be confirmed on primary leukemic blasts isolated from the circulation 
of AML patients. Altogether, these findings point to a new regimen for the treatment of AML, in which naturally occurring 
pro-differentiation agents (ATRA or VD) may be combined with EGFR inhibitors.
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death.3-5 A prominent example of such a differentiation therapy is 
all-trans retinoic acid (ATRA), the biologically active variant of 
vitamin A, which has been successfully employed for decades in 
the treatment of acute promyelocytic leukemia (APL).6 Similarly, 
1α,25-hydroxycholecalciferol, the active form of vitamin D

3
 

(VD) also known as calcifediol, and many of its analogs can 
stimulate the terminal differentiation of leukemic cell lines as 
well as primary myeloid precursors, and their therapeutic value 
has been tested in different clinical trials.7,8 However, the clinical 
development of VD as an antileukemic agent appears to stand 
at an impasse, for 2 reasons. First, the high doses of VD that are 
required to stimulate myeloid differentiation can cause moderate 
to severe adverse effects related to Ca2+ metabolism. Second, the 
administration of VD has been associated (at least in specific 
settings) with the rapid development of resistance.9,10 Thus, no 
differentiation therapies are currently approved for the clinical 
management of leukemias other than APL (French-American-
British subtype M3).

Acute myeloid leukemia (AML) is a heterogeneous clonal 
disorder of hematopoietic progenitors and represents one of 
the most common forms of acute leukemia affecting adults.11 
Although AML is a relatively rare disease, accounting for 
slightly over 1% of cancer-related deaths in the western world, 
its incidence is expected to augment as the population ages.12 
AML develops along a complex, multistep course characterized 
by the progressive accumulation of a variety of genetic defects 
that either confer a proliferative/survival advantage to myeloid 
progenitors (e.g., FLT3 or KIT mutations) or contribute to the 
failure of these cells to differentiate into mature granulocytes or 
monocytes (e.g., CEBPA or NPM1 mutations).13,14 The clinical 
management of AML patients younger than 60 y is based on 
high-dose chemotherapy and, upon relapse, bone marrow 
transplantation.15 However, the use of cytotoxic chemotherapy 
in the elderly is associated with high rates of morbidity and 
mortality.16,17 Novel antileukemic drugs have brought about a 
few improvements in disease outcome among elderly patients.18

Because the incidence of AML affecting old patients 
augments (along with the progressive increase in life expectancy 
of the general population), novel therapeutic paradigms for 
the clinical management of leukemia in this patient subset are 
urgently awaited. Differentiation therapies may represent a 
valuable alternative to cytotoxic agents in this setting, as they are 
generally associated with comparatively less severe side effects. 
However, most chemicals agents with a pro-differentiation 
activity described in the last 2 decades do not target a disease-
specific lesion such as ATRA, which selectively modulates the 
activity of PML-RARα (the etiological determinant of APL),19 
and generally are not potent enough to promote terminal 
differentiation. Recently, several groups, including ours, have 
proposed epidermal growth factor receptor (EGFR) inhibitors, 
such as gefitinib20,21 and erlotinib,22-24 as potential candidates 
for the treatment of AML, although the expression of EGFR 
by AML cells is a subject of controversy.24,25 Both gefitinib and 
erlotinib have been reported to exert a mild differentiation-
inducing effect in vitro,24,26,27 which, however, has not been 
confirmed in vivo.

In the present study, we addressed the question as to whether 
the maturation of AML cells exposed to suboptimal doses 
of ATRA and VD may be exacerbated by the concomitant 
administration of other therapeutically relevant agents. We 
report that erlotinib and gefitinib synergistically interact with 
ATRA and VD to stimulate the terminal differentiation of AML 
cells.

Results and Discussion

EGFR inhibitors stimulate the differentiation of AML cells 
in synergy with ATRA and VD

To identify novel agents that may induce or favor the 
differentiation of AML cells, we developed an automated 
screening system involving the immunofluorescence microscopy-
based detection of one particular marker of myeloid maturation, 
CD11b,28 in human HL-60 (Fig.  1) and MOLM-13 (data not 
shown) cells. We then employed this system to screen the US 
Drug Collection (which encompasses most FDA-approved 
drugs, plus a large amount of compounds that have reached 
clinical development), finding ATRA (employed at a final 
concentration of 1 µM) as the most effective differentiation-
inducing agent of the library (Fig.  1A and B). To identify 
possible synergistic interactions between anticancer agents that 
are currently employed in the clinic and known differentiation-
inducing chemicals, we repeated such screen on compounds from 
the Oncology Drug Set (which comprises most FDA-approved 
chemotherapeutics; final concentration = 10 µM), alone or in 
the presence of a suboptimal dose of ATRA (100 nM) or VD (50 
nM). These screens revealed that 2 EGFR inhibitors, erlotinib 
and gefitinib, are capable of stimulating the differentiation 
of HL-60 cells when combined with ATRA or VD, yet have 
limited, if any, differentiation-inducing activity when employed 
as single agents (Fig.  1C and  D). To validate these findings, 
we performed cytofluorometric assays for the detection of 
the differentiation markers CD11b and CD14 on HL-60 cells 
exposed to suboptimal doses of ATRA or VD, alone or combined 
with optimal concentrations of several FDA-approved tyrosine 
kinase inhibitors (TKIs) (Fig.  2A and B). A number of TKIs 
stimulated the expression of CD11b on the surface of HL-60 
cells, if co-administered with ATRA or VD (Fig. 2C). Moreover, 
several TKIs, notably erlotinib, favored the acquisition of the 
monocyte marker CD14 by HL-60 cells exposed to VD, but not 
to ATRA (Fig. 2D).

The capacity of erlotinib to promote the ATRA- or 
VD-induced differentiation of AML cells was confirmed by 3 
additional techniques, namely (1) the morphological evaluation 
of cells upon May–Grünwald–Giemsa staining, revealing the 
differentiation-associated decrease in cytoplasmic basophilia 
accompanied with increased cytoplasmic granularity and reduced 
nucleus/cytoplasm ratio29 (Fig. 3A and B), (2) the measurement 
of the respiratory burst that characterizes mature myeloid cells, 
based on the conversion of nitroblue tetrazolium chloride (NBT) 
to a blue insoluble product (formazan) by NADPH oxidases30 
(Fig.  3C and D), and (3) the cytochemical assessment of 
monocyte-specific esterase activity, based on the conversion of 
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1-naphthyl acetate into 1-naphthol (which 
forms an insoluble red-brown dye in the 
presence of a diazonium salt)31 (Fig. 3E and 
F). All these methods confirmed that erlotinib 
and gefitinib fail to induce the differentiation 
of HL-60 cells on their own, yet exacerbate 
the pro-differentiation activity of suboptimal 
doses of ATRA or VD. Similar findings 
were obtained when the ability of erlotinib 
and gefitinib to accentuate differentiation 
as induced by ATRA and VD was tested on 
MOLM-13 cells (Fig. S1).

We conclude that TKIs, and in particular 
erlotinib, can synergize with ATRA or VD in 
promoting the differentiation of AML cells.

Antiproliferative and pro-apoptotic 
effects of EGFR inhibitors combined with 
ATRA or VD

Physiologically, the terminal 
differentiation of myeloid precursors toward 
the granulocytic or monocytic lineage is 
coupled to a progressive reduction in cell 
proliferation followed by apoptosis.32,33 We 
therefore sought to determine the potential 
antiproliferative and pro-apoptotic effects 
of EGFR inhibitors combined with ATRA 
or VD. For the quantitative assessment of 
cell number, a fixed amount of fluorescent 
beads was added to differentiating cell 
cultures, followed by the cytofluorometric 
determination of the cell/bead ratio 
(Fig. 4A and B). In addition, we quantified 
cell proliferation using 5- (and 6-) 
carboxyfluorescein diacetate succinimidyl 
ester (CFSE), a plasma membrane-
permeant fluorescent dye that, upon stable 
incorporation into the cytoplasm, dilutes by 
a factor of 2 with each successive round of mitosis (Fig. 4C and 
D).34 Both these experimental settings revealed the capacity of 
erlotinib and gefitinib to exacerbate the antiproliferative effects 
of ATRA and VD (Fig. 4A–D). Such a cytostatic activity was 
particularly pronounced when erlotinib and gefitinib were 
combined with VD rather than with ATRA, which per se 
exerted cytostatic effects (Fig.  4A–D). In line with previous 
reports,21,35 erlotinib also had an antiproliferative activity, yet the 
combination of erlotinib plus ATRA or VD was more efficient 
at inhibiting the proliferation of HL-60 cells than any of these 
agents employed alone (Fig. 4A–D).

Cytofluorometric analyses confirmed the capacity of EGFR 
inhibitors to block HL-60 cells in the G

0
/G

1
 phase of the 

cell cycle when combined with ATRA or VD (Fig.  4E and 
F). HL-60 cell cultures exposed to ATRA displayed multiple 
hallmarks of apoptosis, including the accumulation of cell 
corpses with a subdiploid DNA content (Fig. 4E and F), the 
dissipation of the mitochondrial transmembrane potential 
(Δψ

m
) (Fig. 5A and B), the exposure of phosphatidylserine on 

the cell surface (Fig. 5C and D), as well the permeabilization of 
plasma membranes36,37 (Fig. 5A–D). Conversely, erlotinib and 
VD alone had negligible pro-apoptotic effects in this setting, yet 
caused consistent levels of apoptotic cell death when combined 
(Figs. 4E and F and 5D). Clonogenic assays confirmed these 
findings. The combination of erlotinib plus ATRA or VD near-
to-completely abolished the clonogenic potential of HL-60 
cells, while neither of these agents alone achieved such dramatic 
effects (Fig. 5E and F).

These results indicate that erlotinib synergizes with ATRA 
and VD in inducing the terminal differentiation of HL-60 
cells, a process that is coupled to a proliferative arrest and to the 
induction of apoptosis.

Mechanisms of action underlying the pro-differentiation 
activity of erlotinib

Several protein kinases have been involved in myeloid cell 
differentiation, including mitogen-activated protein kinase 1 
(MAPK1, best known as extracellular signal-regulated kinase, 
ERK), which positively regulates the process,38,39 as well as 

Figure  1. Automated screening platform for the identification of differentiation-inducing 
agents. (A–D). Human acute myeloid leukemia HL-60 cells were exposed to DMSO (control con-
ditions) (A–D), compounds from the US Drug Library (final concentration = 1 µM) (A and B), or 
compounds from the NCI Oncology Drug Set (final concentration = 10 µM) (C and D), alone or in 
combination with 100 nM all-trans retinoic acid (ATRA) or 50 nM 1α,25-hydroxycholecalciferol 
(VD), for 3 d, and the processed for the automated fluorescence microscopy-assisted detection 
of CD11b. Representative images (scale bar = 20 µm) and quantitative data on CD11b granu-
larity (AU, means ± SD, n = 3 parallel replicates) upon intra- and inter-plate normalization are 
reported in (A) and (B–D), respectively. In panels (C and D), dashed lines delimit the zone of 
statistical non-significance (90% prediction interval).
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MAPK14 (best known as p38MAPK) and multiple SRC family 
kinases (SFKs), which inhibit it.40,41 Immunoblotting revealed 
that erlotinib and gefitinib inhibit the activating phosphorylation 
of p38MAPK and SFKs, yet fail to suppress that of ERK and MAPK8 
(best known as c-JUN N-terminal kinase 1, JNK1) (Fig. 6A). 
Rather erlotinib (but less so gefitinib) appeared to stimulate ERK 
phosphorylation (Fig. 6A).

Of note, the pharmacological inhibition of p38MAPK with 
SB203580 and SB202190 (data not shown) or that of SFKs with 
PP2—but neither that of MAPK kinase 1 and 2 (MAP2K1 and 
MAP2K2) with U01326, nor that of JNK1 with SP600125, 
nor that of the mammalian target of rapamycin (mTOR) with 

rapamycin—favored the maturation of HL-60 cells in the 
presence of ATRA or VD (but not in their absence), hence 
mimicking the effect of erlotinib (Fig. 6B). Thus, the inhibition 
of p38MAPK and SFKs may account for the differentiation-
inducing activity of erlotinib. Next, we wondered whether 
SB203580 and PP2 might also mimic the cytostatic and pro-
apoptotic effects of erlotinib. Indeed, SB203580 and (less so) 
PP2 were able to enhance the cell cycle-arresting effect of ATRA 
and VD (Fig. 6C) and to synergize with the latter (but not with 
the former, as ATRA induced per se consistent degrees of cell 
death) in the killing of HL-60 cells (Fig. 6D). When combined 
with VD, SB203580 and PP2 also mimicked erlotinib in its 

Figure 2. Effects of tyrosine kinase inhibitors on myeloid differentiation. (A–D). Human acute myeloid leukemia HL-60 cells were treated with 10 μM 
erlotinib (ERLO, E), 10 μM gefitinib (GEFI), 100 nM dasatinib (DASA), 5 μM lapatinib (LAPA), 5 μM imatinib (IMA), 5 μM sorafenib (SORA), 500 nM nilo-
tinib (NILO), 500 nM sunitinib (SUNI), or an equal volume of DMSO, alone or combined with 100 nM all-trans retinoic acid (ATRA) or 50 nM 1α,25-
hydroxycholecalciferol (VD), for 3 d, and then processed for the cytofluorometry-assisted detection of CD11b (A–C) or CD14 (B–D) expression. Panels 
(A and B) report representative CD11b and CD14 expression profiles, respectively. ISO, isotype control. Panels (C and D) illustrate quantitative data on 
the percentage of CD11b- and CD14 -expressing cells, respectively (means ± SEM; n = 2–3). *P < 0.05, **P < 0.01, ***P < 0.001 (ANOVA plus Dunnett post-
hoc test) as compared with DMSO-treated cells; ###P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with ATRA-treated cells; +P < 0.05, 
++P < 0.01 +++P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with VD-treated cells.
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Figure 3. Morphological and functional assessment of the differentiation-inducing activity of EGFR inhibitors. (A–F). Human acute myeloid leukemia 
HL-60 cells were treated with 10 μM erlotinib (ERLO), 10 μM gefitinib (GEFI), or an equal volume of DMSO, alone or in combination with 100 nM all-trans 
retinoic acid (ATRA), or 50 nM 1α,25-hydroxycholecalciferol (VD), for 3 d, then cytospun and processed for the cytochemical assessment of myeloid dif-
ferentiation upon May–Grünwald–Giemsa staining (A and B) or the colorimetric detection of NADPH oxidase (C and D) or α-naphtyl acetate esterase 
(E and F) enzymatic activities. Panels (A, C, and E) depict representative images (scale bars = 10 µm), whereas quantitative data on the percentage of 
cells exhibiting morphological signs of differentiation (decreased cytoplasmic basophilia, nuclear lobulation and cytoplasmic granulation), nitroblue 
tetrazolium chloride (NBT)-reducing activity and α-naphtyl acetate esterase activity are reported in (B, D, and F), respectively (means ± SEM; n = 3 with 
at least 100 cells/condition). The inset in (E) depicts a megakaryocyte (M) exhibiting intense α-naphtyl acetate esterase activity (positive control). *P < 
0.05, **P < 0.01, ***P < 0.001 (ANOVA plus Dunnett post-hoc test), as compared with DMSO-treated cells; n.s., not significant, ###P < 0.001 (ANOVA plus 
Bonferroni post-hoc test), as compared with ATRA-treated cells; ++P < 0.01, +++P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with 
VD-treated cells.

ability to elicit 2 hallmarks of cellular senescence, namely (1) an 
arrest in the G

0
/G

1
 phase of the cell cycle (defined by a diploid 

DNA content and quantified by cytofluorometry upon Hoechst 
33342 staining) coupled to reduced RNA synthesis (assessed by 
cytofluorometry upon pyronin Y staining)42 (Fig.  7A and B), 

and (2) the acquisition of senescence-associated β-galactosidase 
activity43 (Fig. 7C and D).

Altogether, these results are compatible with the hypothesis 
that erlotinib stimulates the differentiation of myeloid cells by 
inhibit p38MAPK and SFKs.
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Figure 4. Antiproliferative response associated with myeloid differentiation. (A–F). Human acute myeloid leukemia HL-60 cells were treated with 10 
μM erlotinib (ERLO), 10 μM gefitinib (GEFI), or an equal volume of DMSO, alone or in combination with 100 nM all-trans retinoic acid (ATRA) or 50 nM 
1α,25-hydroxycholecalciferol (VD), for the indicated number of days (7, where not specified), followed by (A, B, E, and F) or alongside with (C and D) the 
assessment of proliferation (A–D) or cell cycle distribution (E and F) based on the bead-assisted cytofluorometric quantification of cell number (A and B), 
the CFSE-dependent assessment of replication (C and D), or the analysis of DNA content upon propidium iodide staining (E and F). Representative dot 
plots, CFSE emission profiles and cell cycle distributions are reported in (A, C, and E), respectively. In (A), the cell:bead (C/B) ratio is reported. In (E), 
numbers refer to the percentage of cells with a DNA content >2n and <4n (compatible with the S phase of the cell cycle). Quantitative data on the C/B 
ratio, CFSE fluorescence and distribution in different phases of the cell cycle are reported in (B, D, and F), respectively (means ± SEM; n = 3). ***P < 0.001 
(ANOVA plus Dunnett post-hoc test), as compared with DMSO-treated cells; #P < 0.05, ##P < 0.01 (ANOVA plus Bonferroni post-hoc test), as compared 
with ATRA-treated cells; +++P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with VD-treated cells.

Differentiation-inducing effects of erlotinib on primary 
AML blasts

The results presented above underscore the capacity of 
erlotinib and gefitinib combined with either ATRA or VD to 

drive the differentiation of HL-60 (Figs. 1–7) and MOLM-13 
cells (Fig.  S1). We next investigated whether a similar effect 
might be observed on primary leukemic cells isolated from the 
peripheral blood of AML patients (Table S1). Indeed, a fraction 
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of AML samples acquired the differentiation marker CD11b 
more robustly (difference in the percentage of CD11b+ cells > 
10%) upon treatment with erlotinib plus ATRA or VD than 

upon exposure to any of these agents alone (Fig. 8). This applied 
to 4 out of 24 AML samples treated with ATRA plus erlotinib 
and 4 out of 9 AML samples treated with VD plus erlotinib. 

Figure 5. Apoptotic response of AML cells undergoing terminal differentiation. (A–D). Human acute myeloid leukemia (AML) HL-60 cells were treated 
with 10 μM erlotinib (ERLO), 10 μM gefitinib (GEFI), or an equal volume of DMSO, alone or in combination with 100 nM all-trans retinoic acid (ATRA), or 50 
nM 1α,25-hydroxycholecalciferol (VD), for 7 d (A and B) or 14 d (C and D), followed by the determination of apoptosis-related parameters upon DiOC6(3)/
propidium iodide (PI) (A and B) or AnnexinV/PI (C and D) co-staining. Representative dot plots are depicted in (A and C) (numbers refer to the percent-
age of PI+ cells). In (B and D), black and white column illustrate the percentage of dead (PI+) or dying (PI-DiOC6(3)low or PI-AnnV+) cells, respectively (means 
± SEM; n = 3). (E and F) Alternatively, HL60 cells were cultured in solid media in the presence of 10 μM ERLO or an equivalent volume of DMSO, alone 
Oncology Drug Set (which comprises most FDA-approved chemotherapeutics) or combined with 100 nM ATRA or 50 nM VD for 14 d, followed by the 
assessment of clonogenicity. Representative images (scale bar = 1 cm) and quantitative data (means ± SEM; n = 3) are reported in (E and F), respectively. 
In (B, D, and F), ***P < 0.001 (ANOVA plus Dunnett post-hoc test), as compared with DMSO-treated cells; #P < 0.05, ##P < 0.01, ###P < 0.001 (ANOVA plus 
Bonferroni post-hoc test), as compared with ATRA-treated cells; +++P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with VD-treated cells.
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Thus, erlotinib appears to exacerbate the capacity of ATRA and 
VD to promote the differentiation not only of AML cell lines, 
but also of primary leukemic cells from AML patients, at least in 
a fraction of cases.

Concluding Remarks

Our results reveal the capacity of erlotinib to favor the 
differentiation of primary or cultured AML cells as triggered by 
ATRA or VD. In particular, erlotinib stimulated the acquisition 
of multiple differentiation markers by HL-60 cells exposed to 
suboptimal doses of ATRA (CD11b expression on the cell surface 
and NADPH oxidase activity) or VD (CD14 expression on the 
cell surface and monocyte-specific esterase activity). Moreover, 
in the presence of ATRA or VD, the pharmacological inhibition 
of EGFR with erlotinib promoted several processes that normally 
accompany terminal differentiation, including a proliferation 
arrest in the G

0
/G

1
 phases of the cell cycle, cellular senescence, 

and apoptosis. Of note, erlotinib (and gefitinib) alone exerted 
limited pro-differentiation activity, yet strongly synergized with 
VD (and less so with ATRA) in inducing the maturation of AML 
cells, confirming previous results by Miranda and colleagues.44 
Along similar lines, gefitinib alone reportedly fails to induce the 
differentiation of APL NB4 cells, yet synergizes with arsenic 
trioxide (As

2
O

3
) in doing so.45 Moreover, the SFK inhibitor 

PP2 has recently been shown to rescue inducible differentiation 
in emergent ATRA-resistant myeloblastic leukemia cells, 
confirming the important role of SFKs in this process.46

The detailed molecular mechanisms whereby erlotinib exerts 
differentiation-inducing effects remain largely elusive. However, 
it appears plausible that this activity involves the inhibition of 
p38MAPK and/or SFKs, as (1) several distinct EGFR-targeting 
agents are known to interfere with the enzymatic functions of 
these kinases,47,48 and (2) the pharmacological inhibition of 
p38MAPK or SFKs mimicked the differentiation-inducting effects 
of EGFR inhibitors combined with ATRA of VD.40,44,49 p38MAPK 

Figure 6. Molecular mechanisms underlying the differentiation-inducing effects of EGFR inhibitors. (A). Serum-starved human acute myeloid leukemia 
HL-60 cells were treated with 10 μM erlotinib (ERLO), 10 μM gefitinib (GEFI) or an equal volume of DMSO for 1 h, and then processed for the immunoblot-
ting-assisted assessment of the phosphorylation status of the indicated proteins. Representative immunoblots are reported. β actin levels were moni-
tored to ensure equal lane loading. (B–D). HL60 cells were exposed to 10 μM ERLO, 10 μM SB203580 (SB203), 10 µM SP600165 (SP600), 5 µM U0126, 10 
µM PP2, 100 nM rapamycin (RAPA), or an equivalent volume of DMSO, alone or in combination with 100 nM all-trans retinoic acid (ATRA) or 50 nM 1α,25-
hydroxycholecalciferol (VD), for 72 h, then processed for the cytofluorometric assessment of CD11b expression, upon immunostaining with a CD11b-
specific antibody (B), cell cycle distribution, upon propidium iodide (PI) staining (C), or apoptosis-related parameters, upon DiOC6(3)/PI co-staining (D). 
Quantitative data on the percentage of cells expressing CD11b and distribution in different phases of the cell cycle are reported in (B and C), respectively 
(means ± SEM; n = 3). In (D), black and white column illustrate the percentage of dead (PI+) or dying (PI-DiOC6(3)low) cells (means ± SEM; n = 3). In (B and 
D), *P < 0.05,**P < 0.01,***P < 0.001 (ANOVA plus Dunnett post-hoc test), as compared with DMSO-treated cells; ###P < 0.001 (ANOVA plus Bonferroni 
post-hoc test), as compared with ATRA-treated cells; ++P < 0.01, +++P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with VD-treated cells.
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phosphorylates serine and threonine (rather than tyrosine) 
residues and hence is unlikely to be directly inhibited by erlotinib 
or gefitinib. A recent report suggests that SRC is not a direct 
target of erlotinib either.50 Thus, the erlotinib/gefitinib-mediated 
inhibition of p38MAPK and SFKs must involve an indirect signal 
transduction cascade that deserves further scrutiny. Interestingly, 
a large panel of TKIs (some of which exert a biological activity 
overlapping with that of erlotinib) also favored the differentiation 
of AML cells in the presence of ATRA and/or VD. These 
encompass alternative EGFR inhibitors (such as lapatinib),51 as 
well as imatinib (targeting BCR-ABL, KIT and platelet-derived 
growth factor receptor, PDGFR)52 and dasatinib,53,54 which has 
a quite distinct inhibitory spectrum55 including the SFK LYN.56 
The molecular effects of these TKIs remain to be precisely 
elucidated.

Of note, erlotinib has previously been shown to synergize 
with other anticancer agents, namely azacytidine and etoposide, 
in reducing the proliferation and inducing the apoptotic demise 
of AML cells.57,58 These synergistic effects mainly reflect the 

ability of erlotinib to exacerbate the intracellular accumulation of 
azacytidine and etoposide as it inhibits multiple transmembrane 
transporters of the ATP-binding cassette (ABC) family.57,58 
However, at least under some circumstances, PP2 and SB203580 
exacerbate the antiproliferative and cytotoxic response of HL-60 
cells exposed to azacytidine. Moreover, the pharmacological 
inhibition of ABC transporters also promotes to some extent 
the differentiation-inducing effects of VD (Lainey et al., 
unpublished observations). Thus, there may be a link between 
the pharmacokinetic effects of erlotinib and its ability to inhibit 
p38MAPK and SFKs that warrants further investigation.

In synthesis, our results reveal an antileukemic cooperation 
between 2 groups of therapeutic agents, (1) relatively non-
toxic natural compounds like ATRA and VD, which are well 
known for their differentiation-inducing activity, and (2) TKIs 
such as erlotinib, which can amplify the biological effects of the 
former. Erlotinib and gefitinib may normalize multiple signal 
transduction pathways that are deregulated in leukemic cells, 
including those centered around MAPKs and SFKs, and hence 

Figure 7. Metabolic aspects of myeloid differentiation. (A–D). Human acute myeloid leukemia HL-60 cells were treated with 10 μM erlotinib (ERLO), 10 
µM PP2, 10 μM SB203580 (SB203), or an equivalent volume of DMSO, alone or in combination with 50 nM 1α,25-hydroxycholecalciferol (VD), for 7 d, 
then processed for the cytofluorometric detection of DNA and RNA content, upon Hoechst 33342/Pyronin Y co-staining (A and B) or the colorimetric 
detection of senescence-associated β-galactosidase activity (C and D). Representative dot plots and images are reported in (A) (numbers refer to the 
percentage of cells exhibiting a 2n DNA content and reduced RNA levels) and (C) (scale bar = 5 µM; arrows indicate senescent cells), respectively. Panels 
(B and D) report quantitative data on the percentage of Pyronin Ylow cells in the G0/G1 phase of the cell cycle or cells expressing senescence-associated 
β-galactosidase, respectively (means ± SEM; n = 3). **P < 0.01, ***P < 0.001 (ANOVA plus Dunnett post-hoc test), as compared with DMSO-treated cells; 
+++P < 0.001 (ANOVA plus Bonferroni post-hoc test), as compared with VD-treated cells.
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may be useful as part of combinatorial therapeutic regimens. 
Further clinical studies are needed to fully elucidate the 
antineoplastic potential of these EGFR inhibitors and determine 
which specific subsets of AML patients may obtain therapeutic 
benefits from the administration of erlotinib and gefitinib.

Materials and Methods

Chemical, cell lines, and culture conditions
Unless otherwise indicated, media and supplements for 

cell culture were obtained by Gibco®-Life Technologies™ and 
plasticware from Corning. Erlotinib hydrochloride, gefitinib, 
imatinib mesylate, sorafenib, and sunitinib were purchased from 
LC Laboratories; dasatinib, lapatinib ditosylate, and nilotinib 
from Selleck Chemicals LLC; 1α,25-hydroxycholecalciferol 
(VD), all-trans retinoic acid (ATRA) and rapamycin from 
Sigma-Aldrich; 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)
pyrazolo[3,4-α]pyrimidine (PP2), SB203580, SB202190, and 
U0126 from Calbiochem; and SP600125 from InvivoGen. All 
chemicals were dissolved in DMSO and stored at −20 °C. Human 
AML HL-60 and MOLM-13 cells were purchased from the 
Deutsche Sammlung von Mikroorganismen und Zellkulturen 
(DSMZ) and cultured in RPMI 1640 medium supplemented 
with 20% fetal calf serum (FCS). Cells in the logarithmic phase 
of growth seeded at a density of 5 × 104 cells/mL were used for 
most experiments. For the long-term evaluation of cell death or 
senescence (at day 14), cells were seeded at the concentration of 
1 × 104 cell/mL.

Patient samples and CD34+ cell selection
Patient samples were studied after obtaining informed consent, 

as per the Declaration of Helsinki. AML was diagnosed by the 
morphological examination of peripheral blood and bone marrow 
biopsies, according to the World Health Organization (WHO) 
2008 and French–American–British (FAB) classifications. 
Relevant clinicopathological features of the patients included 
in this study are reported in Table S1. To obtain CD34+ cells, 
peripheral blood mononuclear cells (PBMCs) were isolated on 

a Ficoll–Paque PLUS density gradient (Amersham Biosciences) 
and the subjected to positive selection with the MiniMacs system 
(Miltenyi Biotec), according to the manufacturer’s instructions. 
Patient-derived CD34+ cells were cultured in standard conditions 
(37 °C, 5% CO

2
) in Iscove modified Dulbecco medium 

(IMDM) supplemented with 1% L-glutamine, 100 units/mL 
penicillin sodium, 100 μg/mL streptomycin sulfate, 10 ng/mL 
interleukin-3 (Peprotech), 10 ng/mL interleukin-6 (Peprotech), 
50 ng/mL thrombopoietin (Peprotech), 100 ng/mL FLT3-
ligand (Miltenyi Biotec), 50 ng/mL stem cell factor (SCF) 
(Miltenyi Biotec), and 20% BIT 9500 serum substitute (200 µg/
mL transferrin, 10 µg/mL insulin, 2% bovine serum albumin; 
StemCell Technologies).

High-throughput screening for myeloid cell differentiation
Ten thousand HL-60 or MOLM-13 cells were seeded in 

V-shaped 96-well plates in 100 µL complete medium and treated 
with compounds from the US Drug Collection (Microsource 
Discovery Systems; final concentration = 1 µM) or the Oncology 
Drug Set (NCI/DTP Open Chemical Repository Collection; 
final concentration = 10 µM), alone or combined with 100 nM 
ATRA or 50 nM VD, for 3 d. Thereafter, cells were washed 
twice with PBS and stained with PBS supplemented with 10 µg/
mL Hoechst 33342 (Molecular Probes®-Life Technologies™), to 
visualize nuclear morphology; 1:2000 Far Red Live/Dead® Fixable 
Dead Cell Stain (Molecular Probes®-Life Technologies™), a vital 
dye that only incorporates into dead cells owing to permeabilized 
plasma membranes; 1:200 Human FcR Blocking Reagent 
(Miltenyi Biotec), to minimize unspecific antibody binding; and 
1:25 fluorescein isothiocyanate (FITC)-conjugated anti-CD11b 
antibodies (clone Bear1, Beckman Coulter), for assessing granulo-
monocytic differentiation, for 20 min at 4 °C. Cells were then 
washed, transferred into poly-L-lysine pre-treated Black/Clear 
96-well Imaging Plates (Becton Dickinson), spun for 5 min at 
350 g and fixed with 4% paraformaldehyde (PFA) for 20 min at 
room temperature (RT). Four view fields per well were acquired 
by means of a BD Pathway 855 automated imaging station 
(Becton Dickinson) equipped with a 20× objective (Olympus) 

Figure 8. Effects of differentiation-inducing agents on primary leukemic cells from AML patients. CD34+ cells isolated from the peripheral blood of acute 
myeloid leukemia (AML) patients were treated with 10 μM erlotinib (ERLO), 100 nM all-trans retinoic acid (ATRA), 50 nM 1α,25-hydroxycholecalciferol 
(VD) or an equivalent volume of DMSO, alone or in combination, for 3 d, then processed for the cytofluorometric assessment of CD11b expression upon 
immunostaining with a CD11b-specific antibody. Results are expressed as differences between the percentage of CD11b+ cells upon treatment and that 
recorded in control conditions (i.e., among DMSO-treated cells). n.s., not significant, *P < 0.05, **P < 0.01 (ANOVA plus Student post-hoc t test), as com-
pared with cells treated with ERLO plus ATRA or ERLO plus VD.
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and coupled with a robotized Twister II plate handler (Caliper 
Life Sciences). Finally, image were segmented and analyzed for 
nuclear area, Live/Dead® Fixable Dead Cell Stain uptake, FITC 
intensity and FITC granularity by means of the BD AttoVision™ 
software (Becton Dickinson). Data were invariably normalized 
to take into account inter- and intra-plate signal variations.

Assessment of cellular differentiation by conventional 
approaches

For the morphological/cytochemical analysis of differentiation, 
AML cells were cytospun onto slides, fixed with absolute 
methanol for 15 min at RT, and then sequentially stained with the 
May–Grünwald and Giemsa reagents, as previously described.29 
Morphological and cytochemical hallmarks of differentiation 
(i.e., decreased cytoplasmic basophilia, decreased nucleus/
cytoplasm ratio, appearance of granulation, nuclear lobulation) 
were then quantified among at least 100 cells for experimental 
condition on a Primo Star microscope (Zeiss) equipped with 
a Plan-Achromat 100×/1.25 oil immersion objective and an 
AxioCam EEc 5s CCD camera (both from Zeiss).

For the cytofluorometric assessment of differentiation, AML 
cells were harvested, washed with PBS, incubated with the 
Human FcR Blocking Reagent for 15 min at RT, and then stained 
with allophycocyanin (APC)-conjugated anti-CD11b (5 µL/
sample; clone D12, Becton Dickinson) and phycoerythrin (PE)-
conjugated anti-CD14 antibodies (10 µL/sample; clone RMO52, 
Beckman Coulter) for 20 min at 4 °C (under protection from 
light) in the presence of 10 µg/mL 4’,6-diamidino-2-phenylindole 
(DAPI, Molecular Probes®-Life Technologies™). Isotypic APC-
conjugated mouse IgG2a and PE-conjugated IgG1 antibodies 
(both from Beckman Coulter) were used to determine threshold 
levels. Samples were run on a FACSCalibur™ (BD Biosciences) or 
a Gallios™ cytometer (Beckman Coulter) and first-line statistical 
evaluations were performed on live (DAPI−) cells by means of 
the CellQuest™ (BD Biosciences) or Kaluza™ (Beckman Coulter) 
software.

The capacity of mature myeloid cells to undergo respiratory 
bursts was assessed by measuring their nitroblue tetrazolium 
chloride (NBT)-reducing activity, as previously described.59 
Briefly, AML cells were harvested and incubated for 30 min 
at 37 °C with Hanks buffer freshly supplemented with 1 µg/
mL phorbol-12-myristate-13-acetate and 2 mg/mL NBT (both 
from Sigma-Aldrich). Samples were then cytospun on slides 
for 5 min at 350 g and the percentage of blue cells (containing 
insoluble formazan) was quantified on a Primo Star microscope 
(Zeiss) equipped with a Plan-Achromat 100× oil immersion 
objective. At least 100 cells per experimental condition were 
counted. Monocyte-specific α-naphtyl acetate esterase activity 
was evaluated with the LEUCOGNOST® EST kit (Merck 
Millipore), according to the manufacturer’s instructions.

Cytofluorometric assessments of cell proliferation
 Cell number was quantified by adding a predefined amount 

of fluorescent AlignFlow™ Plus Alignment Beads (Molecular 
Probes®-Life Technologies™), emitting at 488 nm, to 500 µL of 
cell suspensions. Thereafter, samples were evaluated on a Gallios™ 
cytometer (Beckman Coulter) for the number of cells acquired 
together with 3000 beads (both identified based on forward and 

side scatter parameters), allowing for the estimation of cell:bead 
ratios. Alternatively, cell proliferation was assessed by means of 
the CellTrace™ CFSE Cell Proliferation Kit (Molecular Probes®-
Life Technologies™), as previously described.34,60

Clonogenic assays
 For the assessment of clonogenicity, 2 × 103 HL-60 cells were 

seeded in MethoCult® H4434 classic methylcellulose-based 
medium (StemCell Technologies) and treated with 2.5 µM 
erlotinib, 0.1 µM ATRA, 50 nM VD, or an equivalent volume of 
DMSO, alone or in combination. Fourteen days later, dishes were 
imaged by means of a G:BOX imaging system (Syngene) and 
colonies were quantified with the GeneTools software (Syngene).

Cytofluorometric assessment of apoptosis and cell cycle 
distribution

 For apoptosis determinations, cells were co-stained with 1 
µg/mL propidium iodide (PI) (Sigma-Aldrich), which identifies 
cells with ruptured plasma membranes, and either 20 nM 
3,3′dihexiloxalocarbocyanine iodide (DiOC

6
(3); Molecular 

Probes®-Life Technologies™), which measures mitochondrial 
transmembrane potential (Δψ

m
), or FITC-conjugated AnnexinV 

(Beckton Dickinson), which evaluate phosphatidylserine 
exposure, as previously reported.61,62 For the assessment of cell 
cycle distribution, 5 × 105 cells were collected, washed once 
with ice-cold PBS and permeabilized with 100 µL 0.5% Triton 
X-100. Thereafter, cells were stained with 50 µg/mL PI in 200 
µL PBS supplemented with 20 μg/mL (w/v) RNase A (Molecular 
Probes®-Life Technologies™) for 1 h at 4 °C. Cytofluorometric 
acquisitions were performed on a FACSCalibur™ or a Gallios™ 
cytometer at a low flow rate mode. First-line analysis was 
performed with the CellQuest™, DIVA 6.1 (BD Biosciences) or 
Kaluza™ software, upon gating on the events characterized by 
normal forward and side scatter parameters and discrimination 
of doublets in a FSC-A vs. FSC-H bivariate plot.

Assessment of quiescence and senescence
To precisely distinguish the G

0
 and G

1
 phases of the cell cycle, 

cells were harvested and incubated with 8 µM Hoechst 33342 
in complete culture medium for 30 min at 37 °C, followed by 
staining with and 100 µg/mL Pyronin Y (Sigma-Aldrich), which 
specifically labels RNA, in the presence of 10 µM Hoechst 
33342, for additional 15 min at 37 °C. Tubes were then kept 
on ice until the acquisition on a FACSVantage flow cytometer 
(BD Biosciences) equipped with blue (488 nM) and UV (350 
nM) lasers. The percentage of resting cells (in the G

0
 phase of 

the cell cycle) was estimated based on events having a diploid 
DNA content and low RNA levels on Hoechst 33342 vs. Pyronin 
Y dot plots. Cell senescence was evaluated using the Senescence 
β-Galactosidase Staining Kit (Cell Signaling Technology), 
according to the manufacturer’s instructions.

Immunoblotting
Immunoblotting was performed according to conventional 

procedures.63,64 Briefly, cells were lysed on ice in a buffer 
containing 1% NP40, 20 mM HEPES pH 7.9, 10 mM KCl, 1 
mM EDTA, 10% glycerol, 1 mM orthovanadate, 1 mM PMSF, 1 
mM dithiothreitol, and 10 µg/mL aprotinin, leupeptin, pepstatin. 
Total protein extracts were then separated on pre-cast NuPAGE® 
Novex® 4–12% Bis-Tris Gels (Invitrogen®-Life Technologies™) 
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