
©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

 RepoRt

www.landesbioscience.com Cell Cycle 3083

Cell Cycle 12:18, 3083–3097; September 15, 2013; © 2013 Landes Bioscience

RepoRt

Introduction

It is well known that genomic stability and integrity are main-
tained through sophisticated cellular DNA damage response 
(DDR) networks that alter chromatin organization, switch 
on cell cycle checkpoints, activate DNA repair, and modulate 
numerous cellular processes. Defects in DDR lead to genetic 
instability, which, in turn, may enhance the rate of cancer devel-
opment.1 The DNA repair ability of tumor cells also prevents the 
accumulation of lethal DNA damage from cytotoxic agents and 
ionizing radiation (IR), leading to tumor resistance.2 Therefore, 
DDR plays a central role in tumorigenesis and cancer therapy. 
Among the many types of damage, DNA double-strand breaks 
(DSBs) induced by IR and radiomimetic chemicals are most del-
eterious to cell survival. In response to DSBs, activation of ATM 
(ataxia telangiectasia mutated) protein, a member of the phos-
phatidylinositol 3-kinase-related protein kinase (PIKK) family, 
plays a central role in the recognition and signaling of DNA dam-
age through rapid phosphorylation of numerous substrates.3,4 

The hallmark of ATM’s response to DSBs is a rapid increase in 
kinase activity initiated by autophosphorylation on S1981 imme-
diately following DSB formation.5 The rapid phosphorylation of 
S139 on H2AX by ATM is essential for focus formation at DNA 
DSB sites and for further recruitment of repair factors, such 
as the MRE11-RAD50-NBN (MRN) complex, RAD51, and 
BRCA1.6 p53, a main component in the G

1
–S cell cycle check-

point, is rapidly phosphorylated on S15 by ATM following DNA 
damage, contributing primarily to p53 activation.7,8 ATM also 
phosphorylates and activates CHK2 on T68, which regulates sev-
eral cell cycle checkpoints.9 Loss of functional ATM is associated 
with both increased genomic instability and cancer risk.1

Tumor protein D52 (TPD52) is the founding member of the 
TPD52-like protein family, which are coiled-coil motif-bearing 
small hydrophilic polypeptides conserved from lower organisms 
to human.10 The coiled-coil motif is required for homo- and 
heteromeric interactions between family members.11 TPD52-
like proteins also include N- and C-terminally located PEST 
domains, a proteolytic signal, as well as the D52-motif, which is 
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tumor protein D52 (tpD52) is a coiled-coil motif bearing hydrophilic polypeptide known to be overexpressed in 
cancers of diverse cellular origins. Increased tpD52 expression is associated with increased proliferation and invasive 
capacity in different cell types. Recent studies have reported a correlation between TPD52 transcript levels and G2 chro-
mosomal radiosensitivity in lymphocytes of women at risk of hereditary breast cancer, and that TPD52 knockdown sig-
nificantly reduced the radiation sensitivity of multiple cancer cell lines. In this study, we investigated possible roles for 
tpD52 in DNA damage response, and found that increased tpD52 expression in breast cancer and tpD52-expressing 
BALB/c 3t3 cells compromised AtM-mediated cellular responses to DNA double-strand breaks induced by γ-ray irradia-
tion, which was associated with downregulation of steady-state AtM protein, but not transcript levels, regardless of irra-
diation status. tpD52-expressing 3t3 cells also showed significantly increased radiation sensitivity compared with vector 
cells evaluated by clonogenic assays. Furthermore, direct interactions between exogenous and endogenous AtM and 
tpD52 were detected by GSt pull-down and co-immunoprecipitation assays. We also identified the interaction domains 
involved in this binding as tpD52 residues 111–131, and AtM residues 1–245 and 772–1102. taken together, our results 
suggest that tpD52 may represent a novel negative regulator of AtM protein levels.



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

3084 Cell Cycle Volume 12 Issue 18

shared among family members and duplicated in TPD52L2.12,13 
TPD52 was initially cloned through differential screening of a 
breast carcinoma cDNA library, and subsequent studies have 
identified overexpression of TPD52 in many different types 
of malignancies.14 TPD52 also represents a candidate target of 
8q21 amplification/gain in different types of cancer, including 
breast, prostate, ovarian, and other cancers.14 Interestingly, while 
a number of studies have associated increased TPD52 expression 
with poor survival in breast15-17 and prostate cancers,18 increased 
TPD52 expression has been reported as a favorable independent 
prognostic marker in ovarian carcinoma, which is usually treated 
with DNA damaging agents.19 TPD52 promotes proliferation, 
migration/invasion, and metastasis in different cell models,17,20,21 
whereas knockdown of TPD52 induced apoptosis in breast and 
prostate cancer cell lines.17,22 The underlying mechanisms are not 
yet fully understood, apart from the regulation of Akt/protein 
kinase B and Stat3/Bcl-2 signaling pathways shown in prostate 
cancer cell lines.21,22

Studies have recently indicated a possible role of TPD52 in 
regulating DDR, where TPD52 levels positively correlated with 
G

2
 chromosomal radiosensitivity in lymphocytes from women 

with or at risk of hereditary breast cancer.23 A genome-wide 
association study combined with radiation cytotoxicity assays 
using human lymphoblastoid cell lines again identified TPD52 
levels to be positively associated with radiation sensitivity, and 
TPD52 knockdown in multiple tumor cell lines significantly 
de-sensitized these cell lines to radiation treatment.24 However, 
the molecular mechanisms explaining the association of TPD52 
expression with DDR are unknown.

In this study, we investigated possible roles for TPD52 in DDR 
within cell lines and found that expression of TPD52 compro-
mised ATM-mediated cellular response to DSBs induced by IR, 
and increased cell radiation sensitivity, which may be explained 
by the negative regulation of steady-state ATM protein but not 
transcript levels by TPD52. Decreased ATM levels were not 
restored by proteasome inhibitor MG132 treatment in TPD52-
expressing BALB/c 3T3 cells. Direct interactions between exog-
enous and endogenous ATM and TPD52 were detected. Taken 
together, our results indicate that TPD52 might represent a novel 
negative regulator of ATM protein levels.

Results

Overexpression of TPD52 compromised DNA repair capac-
ity in SK-BR-3 cells

We first investigated the effects of TPD52 expression on cellu-
lar responses to DNA damage induced by γ-ray irradiation. The 
breast cancer cell line SK-BR-3, which has TPD52 amplification 
and high expression levels, as well as a TP53 mutation,25,26 was 
transfected with pHM6 vector or HA-TPD52, encoding human 
tumor protein D52 (TPD52) transcript variant 3 (GenBank 
NM_005079.2). After 72 h, untreated or 2 Gy irradiated cells 
were harvested immediately (0 h) or 16 h post-IR and subjected 
to neutral comet assays. Although exposure to IR increased comet 
tails in both vector and HA-TPD52 transfected cell populations 
at time point 0 h compared with no IR controls, the comet tails 

in vector-transfected populations returned to baseline levels at 
16 h, whereas cells within the HA-TPD52-transfected popula-
tions retained long comet tails at the same time point (Fig. 1A). 
Measuring olive tail moments confirmed that there was a sig-
nificant increase in the mean olive tail moment in HA-TPD52-
transfected vs. vector-transfected populations at 16 h post-IR, 
compared with no significant differences in the absence of treat-
ment, or immediately after irradiation (Fig. 1B). Levels of endog-
enous TPD52 and HA-TPD52 at the indicated time points in 
each cell line are shown in Figure 1C. These results suggest that 
TPD52 reduces SK-BR-3 cell capacity to repair DNA DSBs.

Ectopic expression of TPD52 downregulated ATM-
mediated DNA repair signaling

Since γH2AX foci are early markers of DSB sites undergo-
ing DNA damage repair,4,6 and the rate of γH2AX clearance 
represents an important factor associated with radiosensitivity,27 
we examined the effects of HA-TPD52 transfection on γH2AX 
focus formation. In vector-transfected SK-BR-3 cells, the inten-
sity (Fig. 2A) and number (Fig. 2B) of γH2AX foci were maxi-
mal at 30 min and gradually returned toward baseline levels at 
16 h post 4 Gy IR. In contrast, in HA-TPD52-transfected cells, 
γH2AX focus formation peaked at 4 h post-IR, at a lower level 
than that noted at 30 min in vector-transfected populations. 
The mean number of γH2AX foci/cell at 30 min post-IR in 
HA-TPD52-transfected cells was significantly less than in control 
cells (Fig. 2B). At 8 h and 16 h post-IR, HA-TPD52-transfected 
cells maintained significantly increased numbers of γH2AX foci/
cell, compared with control cells (Fig. 2B). Western blot analy-
ses showed that ectopic expression of HA-TPD52 in SK-BR-3 
cells reduced IR-induced phospho-ATM, phospho-CHK2, and 
phospho-p53 levels 15 min post-IR (Fig. 2C). Similar results 
were obtained in MDA-MB-231 cells, which show low endog-
enous TPD52 levels (data not shown). These results indicate 
that TPD52 expression downregulates ATM-mediated DNA 
repair signaling in response to DSBs. Interestingly, we noticed 
an approximate 50% reduction in total ATM protein levels (nor-
malized to GAPDH) in HA-TPD52-transfected cells compared 
with control cells, regardless of irradiation status, whereas total 
CHK2 and p53 levels were unaffected (Fig. 2C).

Transient knockdown of endogenous TPD52 in SK-BR-3 
cells increased ATM-mediated DNA repair signaling

Next we examined whether knockdown of endogenous 
TPD52 could improve cellular responses to DSBs. A signifi-
cant reduction (>80%) in TPD52 levels was achieved in TPD52 
siRNA-transfected cells (Si-D52-2) compared with non-tar-
geting control siRNA-treated cells (Si-Con) (Fig. 3A). Similar 
results were obtained with TPD52 siRNA Si-D52-1 (data not 
shown). Total ATM levels were increased approximately 2-fold 
in TPD52 knockdown cells compared with control cells, with 
no change in CHK2 or p53 levels (Fig. 3A). Western blot analy-
ses showed increased detection of phospho-ATM, phospho-
CHK2, as well as phospho-p53 levels 15 min post 6 Gy IR in 
TPD52-siRNA vs. non-targeting siRNA-treated cells (Fig. 3A). 
Immunofluorescence analyses also detected a statistically signifi-
cant increase in γH2AX foci/cell in TPD52 siRNA-transfected 
cells compared with control cells (Figs. 3B and C).
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Stable TPD52 expression decreased Atm protein but not 
transcript levels in mouse BALB/c 3T3 cells

To further address the effects of TPD52 expression on ATM 
protein levels, we evaluated endogenous Atm levels in vector- or 
TPD52-transfected stable 3T3 cell lines. Western blot analyses 
detected a striking reduction in Atm levels in all 3 TPD52-
expressing cell lines relative to vector control, whereas p53 levels 
in these cells were unchanged (Fig. 4A). Quantification of Atm 
levels revealed an 80% reduction in D52-2-7 cell line, which 
shows the highest TPD52 levels, while 70% and 50% reductions 
were measured in the D52-1-12 and D52-2-1 cell lines, respec-
tively (Fig. 4B).

We also examined immunofluorescent staining of endog-
enous Atm in these cell lines. In contrast to the strong nuclear 
detection of Atm in vector control, the intensity of Atm staining 
was reduced by approximately 50% in D52-1-12 cells, while a 
lack of distinctive Atm nuclear staining was observed in most 
D52-2-7 cells (Fig. 4C).

We further queried whether reduced Atm levels resulted from 
reduced Atm transcript levels in TPD52-expressing 3T3 cell lines. 
We performed semi-quantitative reverse-transcriptase (RT)-PCR 
using cDNA from 3T3 parental cells, 3 vector-transfected, and 3 
TPD52-expressing cell lines to amplify 2 Atm products of 279 bp 
or 270 bp. None showed significantly different RT-PCR product 
levels compared with the Gapdh control (Fig. 4D).

Stable TPD52 expression disrupted γH2AX focus forma-
tion and sensitized cells to DNA damage

To determine whether the reduction of Atm levels alters cel-
lular responses to DSBs, we assessed γH2AX focus formation 
in vector control and D52-2-7 cells 30 min post 2 Gy IR, which 
revealed a significant reduction in γH2AX foci/cell in D52-2-7 
cells (Figs. 5A and B). We also compared Atm staining in these 
cells, and found that most D52-2-7 cells showed reductions in 
both Atm intensity and γH2AX focus formation. When there 
was no nuclear Atm staining, cells also showed a lack of γH2AX 
foci formed post-IR (Fig. 5C).

Figure 1. transient HA-tagged TPD52 transfection of SK-BR-3 cells disrupted DNA damage repair post-IR. (A) SYBR Green-stained DNA in un-irradiated 
cells (no IR), cells harvested immediately (0 h) or 16 h post 2 Gy IR (16 h). Composite images shown are from one of 3 independent experiments. (B) DNA 
damage was quantified by comparing mean ± Se olive tail moments (y-axis, arbitrary units) at different time points. experiments were performed in 
triplicate and images from 3 independent experiments (47–54 comet specimens per condition per experiment) were quantified. *P = 0.016, Student t 
test. (C) Representative western blots indicate endogenous tpD52 and HA-tpD52 levels in SK-BR-3, vector-, or HA-TPD52-transfected cells. GApDH served 
as a loading control. MW, molecular weight in kDa (right).
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We further investigated whether reduced Atm levels in 
TPD52-expressing cells impairs cell survival post-IR. Indeed, 
both D52-1-12 and D52-2-7 cells displayed significantly reduced 
survival fractions in response to γ-ray irradiation compared with 
vector control cells (Figs. 6A and B). These results suggest that 
TPD52 expression downregulates Atm protein levels, which con-
tributes to the defective cellular DDR.

TPD52 directly interacted with ATM
To explore the underlying mechanisms by which TPD52 reg-

ulates ATM levels, we examined whether TPD52 interacts with 
ATM. Using GST pull-down assays, ATM protein was recovered 
by GST-tagged mouse (Tpd52) or human TPD52, but not by 
the GST tag alone, from un-irradiated MCF-7 or SK-BR-3 cell 
lysates (Fig. 7A) and MDA-MB-231 cell lysates (data not shown), 

Figure 2. HA-tagged tpD52 expression in SK-BR-3 cells compromised AtM-mediated DDR post-IR. (A) Cells were untreated or treated with 4 Gy IR 72 
h post-transfection with pHM6 vector or HA-TPD52, and γH2AX foci were detected at the indicated time points using immunofluorescence. Images 
shown are representative of those obtained from one of 3 independent experiments. (B) Quantitation of γH2AX foci/cell from 3 independent experi-
ments (70–100 cells per condition per experiment) was performed using Metamorph. Mean ± Se of γH2AX foci/cell (y-axis) at different time points are 
shown. *P = 0.05 (30 min); P = 0.02 (4 h); P = 0.03 (8 h); P = 0.02 (16 h); Student t test. (C) total protein was extracted from SK-BR-3 cells treated as described 
in (A) at 15 min post-IR and subjected to western blot analyses with antisera to the proteins shown (left). GApDH served as a loading control. At least 3 
independent experiments were performed.
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indicating a direct interaction between TPD52 and ATM. As a 
positive control, the binding of TPD52/Tpd52 with TPD52L1 
was confirmed (Fig. 7A).28

To identify the ATM interaction domain within TPD52, 
pull-down assays were performed using a series of thiore-
doxin-6His-tagged truncated Tpd52 proteins (Fig. 7B). ATM 
expressed in SK-BR-3 lysates bound to an N-terminal Tpd52 
fragment representing amino acids (aa) 1–131, but not aa 1–71, 

aa 1–103 or aa 1–111, indicating that aa 111–131 are required 
to bind ATM (Fig. 7C). Re-probing the same membrane with 
TPD52L1 antisera revealed interactions between TPD52L1 and 
all Tpd52-truncated proteins, as predicted. The same results 
were also obtained using MCF-7 cell lysates (data not shown). 
Interestingly, functional site prediction through ELM (http://
elm.eu.org/)29 identified a FHA (forkhead associated domain) 
motif ..(T)..[ILV] located at V120-E126 and 2 BRCT-BRCA1 

Figure 3. Knockdown of endogenous tpD52 in SK-BR-3 cells improved AtM-mediated DDR post-IR. Cells were untreated or treated with 6 Gy IR 72 h 
post-transfection with non-targeting (Si-Con) or TPD52 (Si-D52-1, Si-D52-2) siRNAs. (A) total protein were harvested and subjected to western blot analy-
ses using antisera indicated. (B) γH2AX foci were visualized using immunofluorescence with co-staining of tpD52. Nuclei were counterstained using 
DApI. Representative images from one of 3 independent experiments are shown. (C) γH2AX foci were quantitated using Metamorph. Scatter plots of 
the numbers of γH2AX foci/cell from 3 independent experiments obtained using Graphpad prism 4.03. Horizontal bars indicate the median γH2AX foci/
cell for each siRNA. ***P < 0.0001 (Si-Con v. Si-D52-1, n = 576; Si-Con v. Si-D52-2, n = 642); Mann–Whitney U test.
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domains (.[S]..F) located at A110-F114 and N130-F134, flanking the 
FHA motif (Fig. 7D).

To determine which ATM domain(s) are required for interac-
tions with TPD52, we employed a series of GST-tagged ATM 
proteins spanning the full-length of ATM and SK-BR-3 lysates 
prepared from cells with or without prior exposure to 6 Gy IR 
(Fig. 8A). GST pull-down assays identified fragments ATM-1 
(aa 1–247) and ATM-4 (aa 772–1102) as binding to TPD52, 
with weaker binding detected with fragment ATM-3 (aa 523–
769). After normalizing to the input of respective GST-ATM 

protein, the TPD52 binding capacity of ATM aa 772–1102 is 
about 1.5-fold higher compared with aa 1–247. Irradiation did 
not obviously affect the binding capacity in both cases (Fig. 8A).

To confirm direct interactions between TPD52 and ATM, 
we synthesized TPD52 using the TnT® Quick Coupled 
Transcription/Translation System. The resulting TPD52 pro-
tein was subjected to GST pull-down assays using GST-tagged 
ATM-1 (aa 1–247), ATM-2 (aa 250–522), or GST tag alone 
(Fig. 8B). Only GST-tagged ATM-1, but not ATM-2 or GST 
tag, recovered synthesized TPD52 protein, further suggesting 

Figure 4. Stable tpD52 expression decreased Atm protein but not transcript levels in mouse 3t3 cells. (A) Western blot analyses of vector- and TPD52-
transfected 3t3 cell lines with antisera to the proteins shown (left). α-tubulin served as a loading control. Results are representative of 3 independent 
experiments. (B) Densitometry analyses of western blots obtained in (A). Mean ± SD of Atm levels relative to α-tubulin are plotted on Y-axis with vec-
tor control set as 1. **P = 0.0060 (D52-1-12); P = 0.0033 (D52-2-7); *P = 0.0159 (D52-2-1); Student t test. (C) Immunofluorescence analyses of endogenous 
Atm (left). Nuclei were counterstained using DApI (right). Scale bar = 25 μm. (D) total RNA from 3t3 cells (parental), 3 vector control (Vector-1, Vector-2, 
Vector-3) and 3 tpD52-expressing cell lines (D52-1-12, D52-2-1, D52-2-7) was subjected to cDNA synthesis and Rt-pCR to amplify Atm products 279 bp or 
270 bp. Gapdh was amplified as a control gene. N.C., negative control in which cDNA was replaced by water.
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Figure 5. Stable tpD52 expression disrupted γH2AX focus formation post-IR. Vector and D52-2-7 cells were treated with 2 Gy IR, fixed after 30 min and 
subjected to immunofluorescence analyses. (A) γH2AX foci were visualized using immunofluorescence and quantitated using Metamorph. Scatter plots 
of the numbers of γH2AX foci/cell from 3 independent experiments obtained as described in Figure 3. ***P < 0.0001 (n = 1168; Mann–Whitney U test). 
(B) Co-staining of γH2AX and tpD52, or (C) γH2AX and Atm, with nuclei counterstained using DApI. Arrows highlight cells lacking nuclear Atm staining 
and γH2AX focus formation. Scale bar = 25 μm.
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a direct interaction between ATM aa 1–247 and TPD52. We 
next examined whether endogenous ATM and TPD52 form a 
complex. As shown in Figure 8C, ATM-immunoprecipitation 
recovered TPD52 from SK-BR-3 cell lysates, whereas nonspecific 
immunoglobulin did not. Together, the results suggest that ATM 
and TPD52 directly interact in vitro and form a complex in cul-
tured cells.

Proteasome inhibitor MG132 did not increase Atm protein 
levels in BALB/c 3T3 cell lines

As TPD52 decreased Atm protein but not transcript levels 
in 3T3 cell lines, and TPD52 directly interacted with ATM, we 

investigated whether TPD52 was involved in ATM degradation. 
We identified a potential PEST motif located at ATM residues 
R832-K892 using the PEST-FIND algorithm, which is consid-
ered to be a proteolytic signal.30 Therefore, vector- and TPD52-
expressing cell lines (D52-1-12 and D52-2-1) were treated with 
50 μM MG132 for up to 8 h, the Atm half-life determined in 
mouse embryonic fibroblasts (MEFs).31 Although western blot 
analyses revealed that MG132 treatment stabilized p53 protein 
levels in a time-dependent manner, Atm levels were unchanged 
post-MG132 treatment (Fig. 9 and data not shown). We also 
did not detect ubiquitinated forms of Atm following Atm 

Figure 6. Stable tpD52 expression sensitized cells to γ-ray irradiation. (A) 3t3 vector cell line and 2 tpD52-expressing cell lines (D52-1-12, D52-2-7) were 
untreated or exposed to the indicated doses of IR, and clonogenic survival assays were then performed. Images shown are representative of those 
obtained from 3 independent experiments. (B) Colonies with > 50 cells/ colony were counted and mean ± Se of survival fraction for each dose per cell 
line plotted on the Y-axis, with no treatment control set as 1. Vector v. D52-1-12: ns (not significant, 1 Gy); P = 0.0012 (2 Gy); P = 0.0015 (3 Gy); P = 0.0006 (4 
Gy). Vector v. D52-2-7: ns (1 Gy); P = 0.0183 (2 Gy); P = 0.0002 (3 Gy); P = 0.0007 (4 Gy), Student t test.
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immunoprecipitation (data not shown), which indicates that 
the ubiquitin-proteasome pathway, a major proteolytic pathway 
in the degradation of abnormal and short-lived regulatory pro-
teins,32 might not contribute to this regulation.

Discussion

A swift and effective DDR is essential for the maintenance of 
genome stability and integrity, which is fundamental to cell sur-
vival. Defects in the DDR network result in a variety of diseases, 
ranging from severe genomic instability syndromes to chronic 
diseases, cancer predisposition, and accelerated aging.33 On the 
other hand, DNA repair ability of tumor cells prevents the accu-
mulation of lethal DNA damage from cytotoxic agents and ion-
izing radiation, which leads to tumor resistance.34,35 Therefore, 
DDR plays a central role in tumorigenesis and cancer therapy.

The ATM protein kinase acts as an important safeguard to 
DNA damage, particularly in response to DNA double-strand 
breaks. While ATM represents a low-penetrance risk factor in 
hereditary breast and ovarian cancers,36,37 inactivation of ATM is 
a frequent event in the development of certain common sporadic 

cancers. ATM is frequently altered in hematological cancers, 
where T-cell prolymphocytic leukemia, B-cell chronic lympho-
cytic leukemia, and mantle cell lymphoma are all character-
ized by high rates of inactivating mutations, and/or deletion of 
ATM.38 Reduced ATM protein levels have also been reported in 
breast cancer,39 glioblastoma,40 gastric cancer,41 and colorectal 
cancer,42 yet the cellular mechanisms that lead to deregulation of 
ATM expression are poorly understood. In sporadic breast can-
cer, although loss of heterozygosity (LOH) in the region of ATM 
on chromosome 11q22.3 has been reported in up to 40% cases, 
somatic mutations of ATM are infrequent.38,43 Hypermethylation 
of the ATM promoter44 and gene-body ATM methylation have 
also been shown in breast cancer samples and associated with 
lower steady-state ATM mRNA levels.45 However, these mecha-
nisms could only occur in a small proportion of breast cancers, 
whereas downregulation of ATM is observed in up to 75% cases.39

Interestingly, increased TPD52 expression has been identified 
in many different types of cancer, including breast cancer,46-48 
colorectal cancer,49 leukemia, and lymphoma,50-52 which over-
lap with the spectrum of ATM-deficient malignancies. It is of 
particular interest that increased TPD52 expression has been 

Figure 7. Interactions between tpD52 and AtM. (A) GSt pull-down assays using GSt-tagged full-length mouse tpd52 or human tpD52 or GSt tag, and 
MCF-7 (left) or SK-BR-3 (right) cell lysates. Upper and middle panels show the results of western blot analyses using AtM antibody and tpD52L1 antisera, 
respectively. the lower panel shows ponceau S staining to reveal GSt-tpd52/tpD52 (arrowheads) or GSt tag (arrow). At least 3 independent experiments 
were performed. (B) Schematic representations of deleted tpd52 recombinant proteins. Amino acid coordinates for each motif/domain are indicated. 
(C) pull-down assays using thioredoxin-6His-tagged tpd52-deleted proteins and SK-BR-3 cell lysates. Upper and middle panels show results of western 
blot analyses using AtM antibody and tpD52L1 antisera, respectively. the lower panel shows ponceau S staining to reveal His-tpd52 proteins or His-
thioredoxin tag (arrow). Results shown are representative of those obtained from 3 independent experiments. (D) Sequence of tpD52 aa 109–134 with 
broken lines indicating FHA and BRCt motifs as predicted through eLM. S111 and S131 are underlined.
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Figure 9. MG132 treatment did not increase Atm levels in 3t3 cell lines. Vector and tpD52-expressing (D52-1-12) cell lines were treated with 50 μM 
MG132 (4 h, 6 h, 8 h) or DMSo vehicle (0 h) and harvested at the indicated time points. total proteins were subjected to western blot analyses with the 
indicated antisera (left). Results shown are representative of 3 independent experiments.

Figure 8. AtM directly interacted with tpD52. (A) GSt pull-down assays using GSt-tagged deleted AtM recombinant proteins (1–12, amino acid coordi-
nates for each protein are indicated) and SK-BR-3 cell lysates with or without prior exposure to 6 Gy IR. Arrowheads highlight GSt-AtM proteins where 
multiple bands were detected. (B) GSt pull-down assays using either GSt, GSt-AtM-1, or GSt-AtM-2 and in vitro translated tpD52. the upper panel 
shows the results of western blot analyses using tpD52 antisera with tpD52 band indicated (*), and the lower panel shows ponceau S staining of the same 
membrane, highlighting GSt-AtM proteins, or the GSt tag protein (arrowheads). Five % of synthesized tpD52 is shown. (C) Co-immunoprecipitations 
performed with SK-BR-3 cell lysates, using AtM antibody or rabbit IgG as a negative control. the arrowhead indicates tpD52. *IgG light chain. All results 
are representative of 3 independent experiments.

associated with radiosensitivity in independent studies using 
lymphocytes or lymphoblastoid cell lines,23,24 indicating that 
variations in TPD52 levels could alter radiosensitivity in nor-
mal cells. It has also been reported that TPD52 expression was 

significantly upregulated in HeLa cells stably transfected with a 
specific BRCA1 mutant (S1841N),53 which produced microsatel-
lite instability and impairment in the binding between BRCA1 
and the mismatch repair protein MLH1 in the same cell line.54
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To better understand the biological functions of TPD52 in 
DDR, we investigated the effects of TPD52 expression on the 
cellular response to DNA damage. Neutral comet assays dem-
onstrated that DNA repair capacity was profoundly compro-
mised in ectopic TPD52-expressing SK-BR-3 cells, indicated by 
a significant increase in the mean olive tail moments compared 
with vector-expressing cells at 16 h post-IR (Fig. 1). Consistent 
with these results, γH2AX focus formation following IR was 
significantly impaired in ectopic TPD52-expressing SK-BR-3 
cells (Fig. 2). These results confirmed the association of TPD52 
expression with cellular responses to DSBs.23,24

As ATM plays a central role in sensing and signaling DSBs 
induced by IR, we assessed ATM-mediated signaling pathways 
according to TPD52 expression status. Ectopic TPD52 expres-
sion significantly decreased phospho-ATM (S1981) levels, as well 
as that of its substrates phospho-p53 (S15) and phospho-CHK2 
(T68) post-IR, while TPD52 knockdown showed opposite effects 
(Figs. 2C and 3A). Taken together with the effects on γH2AX 
foci formation detected by immunofluorescence analyses, our 
results suggest that TPD52 expression regulates cellular response 
to DSBs through an ATM-mediated pathway.

Notably, the steady-state levels of ATM but not CHK2 or 
p53 levels showed a negative association with TPD52 levels. 
Quantification indicated that an approximate 50% reduction in 
total ATM levels was detected in HA-TPD52 transfected SK-BR-3 
cells, whereas TPD52 knockdown increased ATM levels by 
1.8–2 fold. This association was further confirmed in 3 TPD52-
expressing BALB/c 3T3 cells, with the cell line with the high-
est TPD52 expression (D52-2-7) showing the greatest reduction 
in Atm levels. Immunofluorescence analyses also highlighted a 
lack of distinctive Atm nuclear staining, and significantly reduced 
γH2AX focus formation post-IR in D52-2-7 cells. Accordingly, 
TPD52-expressing cells showed significantly increased radiation 
sensitivity in response to DSBs induced by IR, as evaluated by 
colony-formation assays. Therefore, reduced steady-state ATM 
protein levels in TPD52-expressing cells might be responsible for 
their compromised cellular responses to DNA damage.

The fact that no significant change in Atm levels was noted in 
TPD52-expressing BALB/c 3T3 cells, and interactions between 
TPD52 and ATM were identified by GST pull-down assays 
and co-immunoprecipitations suggested that TPD52 might 
be involved in ATM degradation. A potential PEST motif was 
also identified to be located at ATM residues R832-K892 using 
the PEST-FIND algorithm. However, the proteasome inhibitor 
MG132 did not restore Atm levels in TPD52-expressing BALB/c 
3T3 cells. Interestingly, Takai et al. reported that TEL2 (telo-
mere maintenance 2) regulates the stability of all 6 PIKK fam-
ily members, including ATM, and also found that proteasome 
inhibitors (MG132 and lactacystin) did not stabilize PIKKs in 
Tel2-deficient MEFs.31

TPD52 detectably bound ATM on fragments aa 1–247 and 
aa 772–1102, which have been identified as an N-terminal sub-
strate-binding site interacting with substrates such as NBN, p53, 
and BRCA1,4 and a binding site (aa 811–950) with β-adaptin, 
a component of the AP-2 adaptor complex involved in clathrin-
mediated endocytosis of receptors,55 respectively. Interaction 

domain mapping also indicated that the fragment aa 111–131 in 
TPD52 but not the coiled-coil motif, was essential for TPD52 
and ATM binding. This fragment is predicted to contain a FHA 
motif and 2 BRCT motifs flanking the FHA motif. FHA domains 
are exclusively phosphothreonine-binding domains found in pro-
teins involved in transcription, DNA damage signaling, and cell 
cycle regulation.56 BRCT (BRCA1 C-terminal) domains are often 
found as tandem repeats within a single protein, and essentially 
all BRCT domain-containing proteins have roles in DNA dam-
age signaling and DNA repair.56 Many DNA damage repair pro-
teins, such as MDC1 and NBN, both ATM-interacting proteins, 
contain both domains, which allow these proteins to function as a 
core scaffolds and mediate events downstream.56 Moreover, since 
TPD52 could form homo- or heterodimers through its coiled-coil 
motif,11 TPD52 could serve as an adaptor to mediate the interac-
tions between ATM and its substrates, or for ATM in vesicle-
associated processes, irrespective of irradiation.

It has been shown that ATMIN (ATM interacting protein) 
interacts with ATM and stabilizes ATM reciprocally; however, 
the ATM/ATMIN complex is disrupted by IR.57 Recent stud-
ies have also reported that TEL2 forms a 2-MDa complex with 
TTI1, TTI2, and Hsp90 chaperones, which is required for PIKK 
stability.58,59 These studies indicate that TEL2 interacts with newly 
synthesized PIKKs and does not associate efficiently with the acti-
vated, mature form of ATM. Another group also reported that the 
(AAA+) family proteins RuvB-like 1 (RUVBL1) and RUVBL2 
control PIKK abundance at least at the mRNA level, and also form 
a complex with Hsp90.60,61 In addition to these proteins which 
enhance ATM abundance, our results add TPD52 protein as a 
negative regulator of ATM protein levels irrespective of IR status.

TPD52 transcript and protein levels show wide variations in 
breast cancer samples and cell lines,17,28,47 and as a gene amplifi-
cation target, TPD52 has been predicted to acquire oncogenic 
functions through overexpression. Our data here further support 
this prediction, with TPD52 reducing ATM levels in cell lines 
with varying TPD52 levels. While SK-BR-3 cells are TPD52-
amplified,25 TPD52 has been previously detected immunohisto-
chemically at higher levels in breast cancer cells in situ, compared 
with SK-BR-3 cells present on the same tissue microarrays,17 
which supports the use of SK-BR-3 cells as a model for inter-
rogating TPD52 function. Similarly, exogenous TPD52 levels 
achieved in the 3T3 cell lines employed in this study were com-
parable with those detected in MCF-7 breast cancer cells,17 which 
show moderate TPD52 levels.28 That variations in TPD52 levels 
in normal cells may also be significant is suggested by associa-
tions between increased TPD52 expression and radiosensitivity 
in independent studies using lymphocytes23 or lymphoblastoid 
cell lines,24 indicating that variations in TPD52 levels could also 
alter radiosensitivity in normal cells.

In summary, this study identified TPD52 as a novel negative 
regulator of ATM protein levels, which, in turn, impacts ATM-
mediated cellular responses to DNA damage. This highlights 
the possibility that increased TPD52 expression might represent 
an alternative, possible widely used mechanism of inactivating 
ATM in different types of cancer, and might contribute to tumor 
development by facilitating genomic instability. Since cells with 
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reduced ATM displayed increased sensitivity to radiation ther-
apy62 and DNA damaging agents such as poly-ADP ribose poly-
merase (PARP) inhibitors, which have been shown effective in 
the treatment of human malignancies characterized by deficien-
cies in the DNA damage repair proteins BRCA1 and BRCA2,63,64 
our results also indicate that elevated TPD52 levels in tumor may 
represent a marker of sensitivity to DNA damaging agents such 
as PARP inhibitor and/or radiation therapy.

Materials and Methods

Cell lines and cell culture
Human breast carcinoma cell lines (SK-BR-3, MCF-7, 

MDA-MB-231) were cultured in GIBCO® RPMI 1640 (Life 
technologies) medium supplemented with 10% FBS (Life tech-
nologies), 6 mM L-glutamine (Life technologies), and 10 μg/
ml insulin (Sigma-Aldrich) (MCF-7) in a humidified atmosphere 
containing 5% CO

2
 at 37 °C. Cell line identities were confirmed 

through short tandem repeat profiling by CellBank Australia. 
The vector- or TPD52-transfected BALB/c 3T3 cell lines have 
been previously reported.17

Plasmid constructs
The pHM6 HA-tagged TPD52 and control vectors have been 

previously described.65 The pBluescript SK- vector encoding full-
length TPD52 cDNA (GenBank NM_005079.2) was digested 
with SmaI and EcoRV to produce a 3.3 kb fragment which was 
subcloned into pcDNA3.1 (Life Technologies) using the EcoRV 
site. The pGEX-6P-1 TPD52 plasmid was constructed by ligat-
ing full-length TPD52 cDNA digested with BamHI and XhoI 
from pcDNA3.1-TPD52 into the same sites of pGEX-6P-1 (GE 
Healthcare). Glutathione S-transferase (GST)-tagged full-length 
mouse Tpd52 (pGEX-3X-6His) and a series of thioredoxin-6His-
tagged truncated Tpd52 constructs (pET32a) were described 
elsewhere.11,66 The 12 GST-ATM deletion constructs that span 
the full-length ATM sequence have been previously described.67

Transient plasmid transfection
Cells were seeded into 6-well plates or 24-well plates 24 h 

before transfection and transfected at ~50–60% confluency 
by adding pHM6 vector or HA-TPD52 plasmid DNA with 
TransIT-LT1 transfection reagent (Mirus) at a ratio of 1:3, 
according to the manufacturer’s instructions. Cells were main-
tained at 37 °C in a 5% CO

2
 humidified atmosphere for 72 h 

before further analyses.
Single-cell DNA electrophoresis (neutral comet assay)
pHM6 vector- or HA-TPD52-transfected SK-BR-3 cells 

were untreated or treated with 2 Gy of γ-ray irradiation using 
a Gammacell 3000 Elan irradiator (MDS Nordion) at a dose 
rate of 1.3 Gy/min, harvested at the indicated time points, and 
subjected to Neutral Comet Assays using the CometAssay® 
kit (Trevigen) according to the manufacturer’s protocol. Slides 
were stained with SYBR green and visualized using an Olympus 
BX50 microscope with a 40× objective lens. Images were quanti-
fied using CometScore freeware (TriTek Corp). DNA damage 
was expressed as the olive tail moment (percentage of tail DNA 
x distance between the center of the head and the center of the 
tail).

Indirect immunofluorescence analyses and quantitation of 
γH2AX foci

Cells were untreated or treated with the indicated doses 
of IR, fixed in 3% paraformaldehyde in PBS at the indicated 
time points, then permeabilized in 0.2% Triton X-100 in PBS. 
Cells were stained using phospho-Histone H2A.X (S139) mouse 
monoclonal (JBW301) antibody (1:2000, Millipore), ATM rab-
bit polyclonal antisera (1:200, Millipore), and affinity-purified 
rabbit polyclonal TPD52 antisera (1:100).46 Alexa Fluor®488 
anti-mouse IgG (Life Technologies) and Cy3-conjugated anti-
rabbit IgG (Jackson ImmunoResearch Laboratories Inc) were 
utilized as secondary antibodies. DNA was counterstained 
using 4›,6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI, 
Sigma-Aldrich). Samples were viewed with a Leica SP5 II confo-
cal microscope using a 63× objective lens. To allow for direct 
comparisons, all treatments for each experiment were pro-
cessed simultaneously, and all images were captured using the 
same parameters. γH2AX foci numbers were quantitated using 
MetaMorph software 7.6.5 (Molecular Devices).

Transient small interfering RNA transfection
Two sets of TPD52 siRNA duplexes were synthesized by 

Dharmacon RNAi Technologies (Thermo Fisher Scientific).17 
The targeted sequences were:

5′-GCGGAAACUUGGAAUCAAU-3′ (Si-D52-1), and 
5′-GGAGAAGUCUUGAAUUCGG-3′ (Si-D52-2). Non-
targeting siRNA (Allstar Negative Control siRNA) was pur-
chased from QIAGEN.

SK-BR-3 cells were seeded at 8 × 104 cells/well in duplicate 
into 24-well plates, or at 5 × 105 cells/well onto glass coverslips 
in 6-well plates. After 24 h incubation, cells were transfected 
with 100 nM siRNA duplexes using TransIT-TKO transfection 
reagent (Mirus) in complete media according to the manufac-
turer’s instructions. After 72 h incubation, cells were treated with 
γ-irradiation, or not, and subjected to further analyses.

Western blot analyses and antibodies
Cells were lysed in 3% SDS lysis buffer as described previ-

ously28 or in NETN lysis buffer (150 mM NaCl, 5 mM EDTA, 
50 mM Tris⋅HCl pH 7.5, 0.5% [v/v] Nonidet P-40) containing 
phosphatase and protease inhibitors (50 mM sodium fluoride, 1 
mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluo-
ride (PMSF), and EDTA-free Protease Inhibitor Cocktail Tablets 
from Roche Applied Science).68 Between 30–60 μg total pro-
tein were resolved by SDS-PAGE on 12.5% mini polyacrylamide 
gels, 6% large polyacrylamide gels, or gradient NuPAGE® Novex 
4–12% Bis-Tris or NuPAGE® Novex 3–8% Tris-Acetate gels 
(Life Technologies). Densitometry analyses employed ImageJ 
1.45s freeware to quantify fold changes in protein levels relative 
to loading controls.

ATM (D2E2) rabbit monoclonal antibody, phospho-p53 
(S15) (16G8) mouse monoclonal antibody, CHK2 (1C12) mouse 
monoclonal antibody, phospho-CHK2 (T68) rabbit polyclonal 
antibody, and p53 (1C12) mouse monoclonal antibody were pur-
chased from Cell Signaling Technology and used at a dilution of 
1:1000. Phospho-ATM (S1981) (10H11.E12) mouse monoclonal 
antibody (1:1000) was purchased from Millipore. Pantropic p53 
(DO-1, 1:500) and GST (1:10 000) antibodies were purchased 
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from Calbiochem and Novagen, respectively. Affinity-purified 
rabbit polyclonal TPD52 (1:100) and TPD52L1 (1:100) anti-
sera were raised in-house.28,46 Mouse monoclonal α-tubulin anti-
body (DM1A) (1:5000; Sigma-Aldrich) and mouse monoclonal 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody 
(6C5) (1:5000; Life Technologies) were used as loading controls.

Total RNA extraction, cDNA synthesis, and reverse-tran-
scriptase (RT)-PCR

Total RNA was extracted from 3T3 cell lines using TRIzol 
LS reagent (Life Technologies) and 1 μg RNA was subjected to 
cDNA synthesis using the SuperScript III First-Strand Synthesis 
System for RT-PCR kit (Life Technologies) according to the 
manufacturer’s instructions. The resulting cDNA was ampli-
fied using Taq DNA polymerase (QIAGEN) and 2 sets of Atm 
primers: Atm-2, sense 5′-TGCTAGATCTTCTGAGAGCG-3′ 
and antisense 5′-TATTGTTGAGGGCAGTCAGC-3′; Atm-
3, sense 5′-CTGTATCTACAGCAGAGACC-3′ and antisense 
5′-TCACACCCAAGCTTTCCATC-3′, which amplified 
mouse Atm (GenBank NM_007499) mRNA sequence frag-
ments at nt 5040–5318 and nt 9071–9340, respectively. Gapdh 
(GenBank NM_008084) was amplified using sense primer 
5′-TGCACCACCAACTGCTTAGC-3′ and antisense primer 
5′-GGAAGGCCATGCCAGTGA-3′. RT-PCR reactions were 
performed using a Veriti® 60-well Thermal Cycler (Applied 
Biosystems). Thermal cycling conditions comprised an initial 
denaturation step at 94 °C for 3 min, 30 cycles of (94 °C for 30 s, 
55 °C for 30 s, and 72 °C for 30 s), followed by 7 min at 72 °C.

Clonogenic survival assays
Cell survival was evaluated by colony formation assays. 3T3 

cell lines (Vector, D52-1-12, and D52-2-7) were seeded at 500 
cells/well in triplicate into 6-well plates. After 24 h incubation at 
37 °C in a 5% CO

2
 humidified atmosphere, cells were untreated 

or treated with indicated doses of γ-ray irradiation. Cells were 
grown for 14 d and resulting colonies were fixed, stained with 
0.4% crystal violet in 20% ethanol, and colonies with >50 cells/
colony were counted. Data from 3 independent experiments were 
subjected to statistical analyses.

Pull-down assays
Mouse or human TPD52 fusion proteins were produced in the 

BL21 E. coli strain following the induction of log-phase cultures 
with 100 mM IPTG (isopropyl-β-D-thiogalactopyranoside, 
Sigma-Aldrich) for 3 h at 29 °C. Proteins were isolated by lys-
ing bacterial samples in lysis buffer (20 mM Tris⋅HCl pH 7.4, 
250 mM NaCl, 1 mg/ml lysozyme, 1 mM PMSF, 20 μg/ml leu-
peptin, 1 mg/ml DNase I, 1% [v/v] Triton X-100) and bound 
to GSH-agarose (Glutathione Sepharose 4B, GE Healthcare) or 
Ni-NTA agarose (Qiagen).11,66 GST-ATM fusion proteins were 
isolated as previously described.69 Purified proteins were assessed 
by SDS-PAGE. SK-BR-3 or MCF-7 cells were lysed in high-salt 
lysis buffer (250 mM NaCl, 5 mM EDTA, 50 mM Tris⋅HCl 
pH 7.5, 0.1% [v/v] Nonidet P-40) or NETN buffer containing 
phosphatase and protease inhibitors as described above, with 
the addition of 25 u/ml Benzonase nuclease (Sigma-Aldrich). 
Recombinant Tpd52/TPD52 proteins (5–10 μg/100 μl GSH-
agarose or Ni-NTA agarose) were incubated with cell lysates as 
indicated. Purified ATM proteins were incubated with SK-BR-3 

cell lysates prepared from non-irradiated cells or from cells irra-
diated with 6 Gy IR, and harvested 15 min after irradiation. 
Matrices were washed extensively, and bound proteins eluted into 
SDS sample buffer.

In vitro transcription/translation
Coupled in vitro transcription/translation of TPD52 protein 

was performed using the TnT® Quick Coupled Transcription/
Translation System (Promega) according to the manufacturer’s 
instructions. Briefly, 1 μg pcDNA3.1-TPD52 plasmid was mixed 
with TNT T7 Quick Master Mix and incubated at 30 °C for 
90 min. Synthesized TPD52 protein was then subjected to GST 
pull-down assays with GSH-agarose conjugated ATM proteins 
(ATM-1, ATM-2), or GST only.

Immunoprecipitation
SK-BR-3 cells were lysed in NETN lysis buffer and 5 mg total 

protein extract were immunoprecipitated using 2 μg ATM (Ab-3) 
polyclonal rabbit antibody (Calbiochem) or 2 μg normal rabbit 
IgG (Sigma-Aldrich). Immunoprecipitates were washed, then 
resuspended in SDS sample buffer, and analyzed by SDS-PAGE.

Proteasome inhibition
3T3 cells (Vector, D52-1-12, and D52-2-1) were cultured to 

80–90% confluence and split into 6-well plates at 1:4 or 1:5 
ratios. After 2 h incubation at 37 °C, 50 μM MG132 (Sigma-
Aldrich) in DMSO or equal volumes of DMSO (0.5% v/v) were 
added. Protein samples were extracted at the indicated time 
points using NETN lysis buffer and subjected to western blot 
analyses.

Statistical analysis
GraphPad Prism 4.03 (GraphPad Software) was used for 

graph generation and statistical analyses. Comparisons of olive 
tail moment and the kinetics of γH2AX foci formation between 
vector- and HA-TPD52 transfected cells, cell survival fractions, 
as well as fold changes in protein levels were made using 2-tailed, 
unpaired Student t test. The Mann–Whitney U test was used to 
compare the numbers of γH2AX foci/cell between groups.
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