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Abstract
Nodes of Ranvier are specialized axonal domains formed in response to a glial signal. Recent
research advances have revealed that both CNS and PNS nodes form by several overlapping
molecular mechanisms. However, the precise nature of these mechanisms and the hierarchy
existing between them is considerably different in CNS vs. PNS nodes. Namely, the Schwann
cells of the PNS, which directly contact the nodal axolemma, secrete proteins that cluster axonodal
components at the edges of the growing myelin segment. In contrast, the formation of CNS nodes,
which are not contacted by the myelinating glia, is surprisingly similar to the assembly of the axon
initial segment and depends largely on axonal diffusion barriers.

Introduction
Myelin is the vertebrates' solution for fast and energetically efficient axonal conduction.
Action potentials generated at the axon initial segment (AIS) are passively transmitted under
the myelin sheath and regenerate in the periodic gaps in the myelin called nodes of Ranvier
(NOR). Thus, for the myelinated nerve to function, voltage gated sodium and potassium
channels (Nav and Kv) must be specifically localized to AIS and NOR where action
potentials take place. In terms of neuronal conduction, the physiological consequences of
having myelin without nodes would probably be more detrimental than not having myelin at
all. It is thus not surprising that several mechanisms have evolved to facilitate and ensure the
correct assembly and stabilization of these highly important axonal domains. In this review
we aim to provide the reader with an up-to-date model for node formation while
emphasizing PNS-CNS differences as well as comparing the formation of the node to that of
its evolutionary “ancestor”, the AIS.

For any specialized membrane domain to form, proteins must first be transported to the cell
membrane then tethered to a particular site on the membrane where they assemble together
by specific protein-protein interactions. Finally, the newly formed protein complex is
stabilized by restricting its lateral diffusion. Each of these steps can be achieved by different
possible mechanisms. The major components of nodes and initial segments are voltage gated
ion channels. All other components, namely cell adhesion molecules (CAMs), extracellular
matrix (ECM) proteins and cytoskeletal proteins serve to cluster and stabilize the channels in
these crucial axonal domains.
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Trafficking of nodal components
Targeting proteins to specific membrane domains is achieved either by selective transport,
or random transport followed by specific retention in the correct domain or removal of
mislocalized proteins. Retention can be accomplished by anchoring to large molecular
scaffolds or by restricting lateral diffusion [1,2]. The ion channels of the AIS and nodes are
initially transported to all parts of the neuron and then anchored and immobilized by ankyrin
G (ankG). Like numerous other axonal proteins, the channels are endoctyosed from the
somatodendritic membrane [3] via two endocytosis signals they possess [4]. Interestingly,
ankG itself may be subjected to a retention/exclusion targeting mechanism as it is apparently
excluded from the submembranous cytoskeleton of the distal axon [5]. Once the AIS is
formed, the high density of membrane proteins and their anchorage to the cytoskeleton
creates a diffusion barrier that immobilizes all AIS components, including small lipid
molecules, regardless of their binding to the cytoskeleton [6,7].

It was recently shown that during PNS node formation, CAMs are initially assembled from a
cell surface pool, whereas the accumulation of Nav and ankG requires vesicular transport
from the cell soma [8]. These results are in line with current models for node formation in
which, according to the removal-retention model, Nav channels targeting to the axolemma is
ankG-dependent, whereas gliomedin-induced CAM clustering requires a mobile surface
pool of CAMs. The Surface expression of Nav channels may also depend on the beta1 and
beta2 auxiliary subunits [9]. These ankyrin-binding proteins enhance the surface expression
of the Nav pore forming alpha subunit [10], and their deficiency results in reduced levels of
Nav channels at the optic nerve NOR [11]. Moreover, beta 2 and 4 possibly associate with
the alpha subunit prior to its transport to the axolemma, since their AIS and nodal
localizations depend on a single extracellular disulfide bond with the alpha subunit [12,13].

Assembly
The scaffold protein ankG was first described as a master regulator for AIS assembly 15
years ago when Bennet and colleagues showed that cerebellar Purkinje cells lack AIS in the
absence of ankG [14]. Almost a decade later, ankG was shown to be crucial for NOR
formation [15] and remains the only protein whose correct localization is consistently both
necessary and sufficient for AIS and NOR assembly [16]. This is not surprising as ankG can
bind and cluster most if not all of the known axonal proteins that these domains contain
(Table 1), namely Nav and Kv channels, the CAMs neurofascin 186 isoform (NF186) and
NrCAM, as well as bIV spectrin, an actin binding scaffold protein. βIV spectrin thus
connects the ankG-organized AIS and nodal protein complexes to the submembranous actin
cytoskeleton.

For nodes and AIS to form, ankG has to be tethered to the membrane at specific sites. The
specific locations are determined by the neurons alone (AIS) or by the myelinating glial cell,
which is the oligodendrocyte in the CNS and the Schwann cell in the PNS. One major
difference between CNS and PNS nodes is that PNS nodes are contacted by microvillar
processes sent from the Schwann cells that myelinate the flanking internodes. In the CNS,
however, the myelinating cells themselves do not contact the nodes which are to some
degree contacted by astrocyte processes [17]. The second major difference is the
extracellular proteins, mostly ECM, that interact with the nodal axolemma (Table 1). These
differences are reflected in the way in which nodes form in the CNS and PNS tissues, as
depicted in Figure 1.

PNS nodes
During PNS myelination, heminodal clustering of Nav channels, i.e. their accumulation at
the edges of a growing myelin segment, depends on the interaction of axonal NF186 with
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glial gliomedin and NrCAM [18,19]. Gliomedin incorporates into the nodal ECM where it
creates high avidity CAM-binding multimolecular complexes that drive the accumulation of
NF186 in the underlying axolemma [20]. AnkG is recruited to NF186 complexes, followed
by bIV spectrin and Nav [15,18,21,22]. A recent paper by Zhang et al provides an elegant
support for this model showing that initial accumulation of NF186 at heminodes as well as
its internodal clearance requires its ectodomain, while its stabilization in mature nodes
requires its cytoplasmic ankG binding domain. This is in contrast to the AIS where the ankG
binding domain is sufficient for early clustering of NF186 [8].

Flanking the nodes are the paranodal junctions (PNJ) that form between the terminal loops
of the glia and the axon. These junctions form after the formation of nodes in the PNS [23].
Nevertheless the PNJ themselves, serving as diffusion barriers that limit the lateral diffusion
of membrane proteins, can drive the assembly of PNS nodes in the absence of a functioning
heminodal clustering mechanism (e.g. in gliomedin or NrCAM null mice). Consequently,
only in the absence of both heminodal and paranodal mechanisms, nodes would not form.
Thus in the PNS clustering of nodal components is induced by a glial signal at the
heminodes. A second mechanism, which depends on intact paranodal junctions, ensures
nodal assembly [19].

CNS nodes
A different sequence of events is observed is the developing CNS node:the PNJ appear first
[24], followed by ankG which in turn recruits the nodal CAMs and Nav [25]. Therefore, The
primary inductive signal does not appear at the nascent nodes themselves (which lack
oligodendrocyte contact), but at the PNJ driving the accumulation of ankG in the adjacent
nodal axolemma. In a recent paper Suzuki et al show that similarly to the PNS, CNS nodes
form byseveral mechanisms [26]. This paper focuses on three elements known to be
involved in node formation: The PNJ, NF186-binding ECM proteins, and the spectrin-based
cytoskeleton. By generating mice lacking different pairs of nodal elements, as well as testing
the function of mutant NF186 constructs, they unraveled the existence of a hierarchy
between the different mechanisms that control node formation. They concluded that the PNJ
play the primary role during CNS node formation, while the ECM components, which as
they show are the last to appear in the node, play a role in stabilizing rather than assembling
the nodes. In addition they show that linkage to the actin-spectrin cytoskeleton contributes to
CNS nodal assembly. This is in contrast to the PNS, as mice lacking both paranodal and
spectrin-based mechanisms had normal PNS nodes [26]. These results demonstrate that
while ECM-based interactions play a primary role in PNS node formation, in the CNS,
paranodal and cytoskeletal (rather than ECM-based) mechanisms collaborate to assemble
nodes. Notably, in both PNS and CNS, removing the primary assembly mechanisms would
not result in nodal loss due to the compensation by the other mechanisms [19,26,27]. Thus,
the crucial importance of the NOR for neural function has prompted the evolution of a fail-
safe system for assembling nodes, using multiple mechanisms with mutual backup
capacities.

AnkG-based mechanisms
Nav1 channels contain an ankyrin binding motif, that binds both ankB, expressed along
distal axons, and ankG [28]. This sequence was shown to be sufficient for targeting proteins
to AIS [28,29] and NOR [30]. Phosphorylation by the protein kinase CK2 dramatically
increases the affinity of this site specifically to ankG [31]. AIS localization of CK2 and
ankG are mutually dependent and are both necessary for microtubule stabilization at AIS
[32], which in turn is necessary for the preservation of AIS integrity and neuronal polarity
[33]. A CK2-ankG mutual dependence makes it hard to conclude whether CK2 is truly
necessary for Nav-ankG association in this domain. However, using mutants of full length
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Nav1.6 alpha subunit, Gasser et al showed that while Nav1.6 interaction with ankG is
crucial for its AIS and NOR localization, its phosphorylation by CK2 is not critical but
serves to facilitate channel clustering at these domains [30]. They attribute the apparent
discrepancy with previous publications to the different reporter protein that were used. In
this paper, the use of the full length alpha subunit ratherthan a kv2.1/Nav1.2 chimera also
revealed that Nav-ankG interactions are necessaryand sufficient for Nav clustering at both
AIS and NOR, as no other protein-protein interaction can substitute for the loss of ankG
binding [30]. Interestingly, ankG can associate to the MDCK cell membrane independently
of its binding partners E-cadherin and βII spectrin. This membrane association depends on
ankG's palmitoylation at Cys-70, which was shown to be crucial for its function as the AIS
organizer [34]. As a C70A mutant could localize to AIS in WT but not in ankG-deficient
neurons, this may indicate that ankG initially accumulates in the forming AIS via its Cys-70
plamitate modification [34].

NF186
Owing to its capacity to bind both ankG [35] and ECM proteins [20,26], NF186 plays a key
role during node formation in both CNS and PNS [36-38]. In contrast, it is mostly involved
in stabilization rather than formation of the AIS [39-41]. In the PNS, secretion of glial
gliomedin and NrCAM at the nodal gap initiates node assembly [18]. Different binding sites
for gliomedin and NrCAM on NF186 probably allow the multimolecular glial complexes to
cluster axonal NF186 at heminodes rapidly and efficiently [42].

Can the PNJ-induced mechanism for node formation compensate for NF186 deficiency or is
it NF186-dependent as well? The fact that NF186 accumulates at mature nodes in both PNS
[19] and CNS [26] ECM mutants implies that NF186 may be involved in the PNJ-mediated
node formation. Using neuron-specific ablation of neurofascin (as the glial isoform 155 is
necessary for PNJ formation) it was concluded that NF186 is necessary for both CNS and
PNS node formation [38]. On the other hand, using a NF155 transgene that recovers PNJ in
neurofascin-null animals, it was shown that NF186 was necessary for PNS but not for CNS
node formation [36,37]. Finally, Feinberg et al showed that in DRG myelinating cultures,
NF186 is not necessary for node formation when the PNJ is intact. The apparent
discrepancies between these papers most probably arise from the different models that were
studied. In [38], the neuronal specific ablation of neurofascin was only partial. As a result,
nodal counting was based on N186-negative nodes, which could result in a bias towards the
less stable node population. The finding that in DRG cultures, representing an early
developmental stage, NF186 is dispensable, could suggest that NF186 is crucial for early
stabilization of the node and not for its assembly, two processes that are hard to distinguish.

The paranodal junction
How do the PNJ drive the accumulation of ankG in the developing node? The role of the
transverse bands, intercellular densities at the paranodal junction, is unknown. Recently it
was shown that in contrast to previous hypotheses, this structure does not create an
extracellular seal [43]. However, using electron tomography on thin sections of mouse
corpus callosum, Nans et al identified an extensive network of filamentous linkers in the
paranodal axoplasm. These linkers interconnected the three cytoskeletal systems of the axon
to one another as well as to the transverse bands, making the PNJ a center of cytoskeletal
connections. In addition they revealed that various membranous organelles, including
transport vesicles, were tethered to the PNJ by short filaments. These observations support a
role for the PNJ as a diffusion barrier fencing the NOR, and suggest an additional role in
targeted trafficking of proteins to the nodes [44]. Additional support for a role for
cytoskeletal connections in the paranodes comes from two different papers showing that the
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association of caspr and the actin-spectrin cytoskeleton via protein 4.1B is necessary for an
efficient paranodal membrane barrier [45,46].

In addition to their role in creating diffusion barriers, cytoskeletal structures may promote
node formation in various other ways. One such mechanism has recently been introduced for
AIS formation by Galiano et al. Searching for cellular cues that localize ankG at the forming
AIS, these authors found that in young unmyelinated neurons, a submembranous
cytoskeleton consisting of ankB, αII-Spectrin, and βII-Spectrin defines an intra-axonal
boundary that precedes and localizes ankG at the developing AIS [5]. Moreover 4.1B,
another spectrin binding protein, was shown to be involved in the segregation between the
AIS and the first myelin segment [47]. These cytoskeletal components are also present in
PNJ [48]. It would thus be interesting to test whether the paranodal localization of these
proteins precedes nodal ankG. If this were the case, then CNS nodes would form very
similarly to the AIS, differing only in the initiating signal, i.e., an axoglial contact vs. a cell-
autonomous process.

Maintenance
AnkG appears to play a major role not only in the assembly but also in the maintenance of
AIS and nodes. Knock down of ankG in fully polarized neurons resulted in AIS
disintegration, as well as loss of neuronal polarity [49]. In the AIS, NF186 and NrCAM
accumulate late and depend on ankG for their localization [50]. Although both CAMs are
probably dispensable for the assembly of AIS and CNS nodes [37,39], NF186 is critical for
the maintenance of the AIS and PNS nodes [8,41], but not for the maintenance of CNS
nodes [41]. The authors also show that the NF186 turnover rate is much slower at the node
than at AIS, which suggests that nodes are much less plastic than the AIS, which emerges as
a highly plastic domain [51,52]. Interestingly, the authors note that the stabilization of the
AIS requires NF186 as a linker between extracellular proteins (e.g. brevican) and the
axolemma, similarly to its role at the NOR.

In the CNS, perinodal ECM components accumulate after the nodes had assembled, and thus
probably play a stabilizing role [26]. This highly variable and redundant ECM always
contains BralI which is a brain specific link protein that stabilize the binding of lecticans and
hyaluronic acid [53]. In BralI KO mice, changes in the nodal ECM (e.g. brevican,
versicanV2 and hyaluronan are missing), do not result in changes in Nav channel clustering
at the node. However, BralI mice exhibit slower salutatory conduction [54], probably since
the BralI-associated ECM serves as an extracellular ion pool that facilitates nodal action
potentials. Thus the nodal ECM, at least in the CNS, is crucial for maintaining functional
nodes. These results also emphasize the importance of conducting physiological tests when
dealing with nodal mutants, as there is often much discrepancy between histological and
physiological observations. Although the mechanisms operating to stabilize PNS nodes are
still under investigation, it seems that they constitute very stable domains similarly to their
CNS counterparts [8]. Given the analogy between CNS and PNS nodes, it is likely that
additional “late-arriving” ECM components that bind NF186 are involved in stabilization
and maintenance of PNS nodes.

Concluding remarks
The picture emerging from recent studies indicate that the AIS and CNS nodes probably
form by similar mechanisms (Figure 1). In both cases, accumulation of ankG is induced by
an intra axonal barrier formed autonomously or by axoglial contact, respectively. The
extremely long and large caliber axons of the PNS probably require a more rapid and robust
nodal assembly, thus in the PNS, ankG-Nav complex formation is catalyzed by a gliomedin-
NrCAM glial signal that binds axonal NF186. Interestingly, in both CNS nodes and AIS,
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although not crucial for their formation, NF186-ECM interactions are essential for the
stabilization and functionality of these domains. It is thus plausible that these NF186-
binding ECM proteins are subjected a spatial and/or temporal regulation, possibly by matrix
proteinases.

Node formation requires the cooperation between neurons and glia for the formation of
diffusion barriers as well as clustering of membrane proteins in a specific time and place. It
is thus tempting to speculate that these two intimately connected cells may communicate on
additional levels. Vesicle exchange between cells was shown to be a means of sharing
proteins, microRNAs, mRNAs and ribosomes between neighboring cells [55]. Moreover,
transfer of ribosomes from Schwann cells to injured axons has been recently described
[56-58], raising the possibility that the formation and maintenance of remote peripheral
nodes may be aided by supplies from the ensheathing Schwann cells.
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Highlights

• Nodes of Ranvier form by several overlapping mechanisms.

• Node assembly is induced differently by the myelinating glia of the PNS and
CNS.

• Axonal barriers drive the assembly of both CNS nodes and the AIS.

• Secreted glial molecules drive the assembly of PNS nodes.
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Figure 1.
Current models for the formation of nodes and AIS. A-B. AIS and CNS nodes. The
assembly of both the AIS and CNS nodes starts by the formation of a diffusion barrier
marked by ankB and 4.1B. For nodes, this occurs at the base of the formed paranodal
junction. In the adjacent AIS or nodal axolemma, accumulation of ankG results in the
clustering of Nav and of NF186. ECM is the last to appear, and together with NF186, is
probably required for the stabilization of AIS and nodal complexes. An asctrocyte process
may contact CNS nodes late in development, although the exact timing is still to be
determined. C. PNS nodes. The assembly of PNS nodes is induced by glial gliomedin and
NrCAM that cluster NF186 on the axolemma, resulting in the accumulation of ankG and
Nav. Linkage of the forming complex to the submembranous actin cytoskeleton likely
occurs earlier in CNS nodes formation [26] and later in AIS and PNS nodes [7,26]. See table
1 for additional components not described here.
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Table 1

Molecular components of nodes and AIS.

Cell adhesion AIS CNS NOR PNS NOR

NF186 [59] + + +

NrCAM [59] + + +

Navb1-4 [9] + + +

Caspr2 [9,60] + - -

TAG1 [61] + - -

ADAM22 [62] + - -

Dystroglycan [63] - - +

Ion channels

Nav1 [16,64] + + +

KCNQ2,3 [65,66] + + +

Kv1 [60,61] + - -

Kv3.1b [67] - + +

ECM

Gliomedin [18] - - +

Syndecan-3,4 [68] - - +

Collagen XXVII [69] - - +

Perlecan [70] - - +

Collagen V [71] - - +

Brevican [39,72] + + -

Versican V2 [73,74] + + -

Versican V1 [71] - - +

Neurocan [39,75] -/+ + -

BralI [54,73] nd + -

Phosphacan [72] nd + -

Tenascin-R [72,76] nd + -

Hyaluronan [73,76] + + -

NG2 [77,78] nd + +

Scaffolds

AnkG-scaffold [79] + + +

βIVspectrin [79] + + +

PSD93 [61] + - -

Signaling

IQCJ-SCHIP-1 [80] + + +

CK2 [30,31] + + +

FHFs [81-83] + + +
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