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Abstract
Although categorization is fundamental to speech processing, little is known about the learning
systems that mediate auditory categorization and even less is known about changes across the
lifespan. Vision research supports dual-learning systems that are grounded in neuroscience and are
partially-dissociable. The reflective, rule-based system is prefrontally mediated and uses working
memory and executive attention to develop and test rules for classifying in an explicit fashion. The
reflexive, information-integration system is striatally mediated and operates by implicitly
associating perception with actions that lead to reinforcement. We examine the extent to which
dual-learning systems mediate auditory and speech learning in younger and older adults. We
examined auditory category learning when a rule-based strategy (Experiment 1) or information-
integration strategy (Experiment 2) was optimal, and found an age-related rule-based deficit, but
intact information-integration learning. Experiment 3 examined natural auditory category learning,
and found an age-related performance deficit. Computational modeling suggested that this was
due to older adults’ persistent reliance on sub-optimal, uni-dimensional strategies when two-
dimensional strategies were optimal. Working memory capacity was also found to be associated
with improved rule-based and natural auditory category learning, but not information-integration
category learning. These results suggest that dual-learning systems are operative in speech
category learning across the lifespan, and that performance deficits, when present are due to
deficiencies in frontally-mediated, rule-based processes.
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Introduction
Category learning is a fundamental aspect of human cognition that is critically important
during all stages of life. When we judge whether a talker or a musical piece is familiar or
not, an environmental sound indicates danger or not, or a speaker sounds angry or happy, we
are categorizing. Quick and efficient categorization is as important later in life, as it is early,
and thus an understanding of age-related changes in categorization is an important area of
scientific inquiry.

The neurobiological underpinnings of visually-mediated category learning suggest that the
learning of different types of category structures is mediated by different systems that have
unique, but interacting neural substrates (for reviews see, Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Ashby & Maddox, 2005, 2010; Filoteo & Maddox, 2007; Keri, 2003;
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Nomura & Reber, 2008; Poldrack & Foerde, 2008; Price, Filoteo, & Maddox, 2009; Seger,
2008). The COmpetition between Verbal and Implicit Systems (COVIS) model captures this
dual-system framework (Ashby, et al., 1998; Ashby, Paul, & Maddox, 2011). COVIS
postulates that optimal rule-based category learning involves the application of verbalizable
strategies (Bruner, Goodnow, & Austin, 1956; Shepard, Hovland, & Jenkins, 1961) that are
mediated by an explicit, reflective, hypothesis-testing system that relies on working memory
and executive attention, and is highly dependent on the prefrontal cortex (Filoteo et al.,
2005; Lombardi et al., 1999; Monchi, Petrides, Petre, Worsley, & Dagher, 2001; Nomura et
al., 2007; Schnyer et al., 2009; Seger & Cincotta, 2006). Optimal information-integration
category learning, on the other hand, involves strategies that maximize accuracy that cannot
be described verbally and instead involve integrating information from two or more stimulus
dimensions at some pre-decisional stage (Ashby & Waldron, 1999). Information-integration
category learning does not rely on working memory and executive attention and is mediated
by an implicit, reflexive, procedural-based learning system that is highly dependent upon the
striatum (Aron et al., 2004; Filoteo, Maddox, Salmon, & Song, 2005; Maddox & Filoteo,
2001, 2005; Nomura, et al., 2007; Poldrack et al., 2001; Seger, 2008; Seger & Cincotta,
2005).

COVIS posits that in information-integration tasks, learners initially use the reflective (rule-
based) system, but switch to the reflexive (information-integration) system with practice.
Given the extensive literature suggesting frontal and striatal declines with normal aging
(Greenwood, 2000, 2007; Grieve, Williams, Paul, Clark, & Gordon, 2007; Gunning-Dixon
et al., 2003; Park & Reuter-Lorenz, 2009; Raz, 2000; Raz et al., 2003; Reuter-Lorenz &
Park, 2010), it is not surprising that visually-mediated rule-based and information-
integration category learning deficits are associated with normal aging (Filoteo & Maddox,
2004; Filoteo, Maddox, Ing, Zizak, & Song, 2005; Gorlick et al., 2012; Maddox, Pacheco,
Reeves, Zhu, & Schnyer, 2010; Racine, Barch, Braver, & Noelle, 2006; Ridderinkhof, Span,
& van der Molen, 2002).

In contrast to the visual domain, much less is known about the role of the dual-learning
systems in auditory category learning. To our knowledge, no studies have examined
auditory category learning in healthy aging, despite its importance in everyday life.
Anatomical studies in animal models suggest that the primary and association auditory
cortical regions are strongly connected to the reflective and reflexive systems. Retrograde
anatomical labeling studies in primates show that the primary and association cortices are
connected to the prefrontal cortex via dorsal and ventral routes, and form many-to-one
projections to the striatum (Petrides & Pandya, 1988; Yeterian & Pandya, 1998). The
convergent projections from secondary auditory areas connect to the tail and body of the
caudate, as well as the putamen—which are key areas in the reflexive (procedural-based)
learning system (Ashby & Ennis, 2006; Waldschmidt & Ashby, 2011). The primary auditory
cortex, in contrast, is less densely connected to the tail of the caudate. While current
knowledge about the role of dual-learning systems in category learning has been derived
from studies in the visual domain, the anatomical labeling studies lend neurobiological
plausibility to the application of a dual-systems framework in the auditory domain.

The auditory category learning literature has primarily focused on perceptual processes
involved in categorization, but a few studies have applied the dual-systems framework in the
auditory domain. Maddox, Ing and Lauritzen (2006) examined rule-based and information-
integration category learning with artificial auditory stimuli, and Maddox, Molis and Diehl
(2002) applied the dual system approach to data from an auditory vowel categorization task.
More recently, the dual systems framework has been applied to learning of second language
(L2) speech categories {Maddox, 2013 #2870;Chandrasekaran, in press #2903}. Adult,
native speakers of American English were trained to learn Mandarin tone category structures
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with feedback. Mandarin Chinese has four linguistically-relevant tone categories that differ
primarily on the basis of pitch pattern (ma1 ‘mother’ [T1], ma2 ‘hemp’ [T2], ma3 ‘horse’
[T3], ma4 ‘scold’ [T4]), described phonetically as high level, high rising, low falling rising,
and high falling pitch patterns, respectively. Two dimensions (pitch height and pitch
direction) serve as primary cues in categorizing tone patterns, and these cues are
differentially weighted across languages. Successful learners tended to use multidimensional
strategies, whereas less successful learners tended to use simple uni-dimensional strategies.

While these studies demonstrate the applicability of the dual-systems framework to study
auditory category learning, the population examined has been young adults (age 18–35). The
current goal is to extend this approach to study auditory category learning in healthy aging.
Experiment 1 examines rule-based category learning, and Experiment 2 examines
information-integration category learning. Experiment 3 uses a combination of behavioral
analysis and computational modeling to examine the effect of normal aging on natural
speech category learning (Mandarin tone categories). In Experiments 1 and 2, based on the
visual category learning literature, we would predict deficits in rule-based as well as
information-integration learning in older adults. However, several studies have demonstrated
modality-specific deficits in sensory processes during aging, and fundamental differences in
the role of inhibitory processes across domains (Ceponiene, Westerfield, Torki, &
Townsend, 2008; Guerreiro, Murphy, & Van Gerven, 2010, 2013). This warrants a
systematic examination of auditory category learning across the lifespan. In Experiment 3,
we examine the extent to which aging impacts learning novel speech categories. Using
computational models, we are able to evaluate the extent to which category-learning success
relates to strategy use in younger and older adults. Together, these experiments will
systematically evaluate lifespan changes in auditory category learning across the dual
category learning systems.

Experiment 1
Experiment 1 examines age-related changes in rule-based category learning.

Method
Participants—Seventeen older adults (average age 67.59) from the greater Austin, Texas
community and 21 younger adults from the University of Texas community were paid $10
per hour for their participation. Informed consent was obtained from all participants and the
experiment was approved for ethics procedures using human participants. All participants
passed a hearing-screening test (thresholds of <40 dB HL at frequencies of 500, 1,000,
2,000, and 4,000 Hz) and reported no significant issues related to hearing. Older and
younger adult groups did not significantly differ in musicianship: the age at which the
participant began music practicing, years of practice, and hours practiced per week. Stimuli
were presented at comfortable supra-threshold listening levels, as judged by the participants.

Neuropsychological Testing Procedures—Older adults were given a series of
standardized neuropsychological tests designed to assess general intellectual ability across
attention (WAIS-III Digit Span; WAIS-III Vocabulary; Wechsler, 1997), executive
functioning [Trail Making Test A&B (TMT), (Lezak, 1995); FAS, Wisconsin Card Sorting
Task (WCST), (Heaton, Chelune, Talley, Kay, & Curtiss, 1993)] and memory (California
Verbal Learning Test; CVLT; Delis, Kramer, Kaplan, & Ober, 1987). The tests were
administered over the course of two two-hour sessions spaced approximately a week apart.

Normative scores for each subject were calculated for each neuropsychological test using
the standard age-appropriate published norms. Table 1a shows the means, standard
deviations, and ranges of standardized z-scores on each test for older adults. All WAIS
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subtest percentiles were calculated according to the testing instructions and then converted
to standardized z-scores. The CVLT and WCST standardized t-scores were calculated
according to testing directions then converted to standardized z-scores, and the TMT
standard z-scores were calculated according to the testing instructions. Participants were
excluded from participation if they scored more than two standard deviations below the
standardized mean on more than one neuropsychological test in the same area (memory,
executive functioning, or attention). Only subjects who were within normal ranges were
asked to participate in the experiment.

Stimuli—Stimuli consisted of auditory tones presented via headphones. Each stimulus was
four dimensional with one of two possible values for each dimension being presented (16
stimuli total). The stimuli varied along the four auditory dimensions of pitch (high vs. low;
180 Hz vs. 80 Hz), duration (long vs. short; 500 ms vs. 250 ms), number (1 vs. 2 non-
overlapping tones), and vowel (/a/ vs. /i/). For the rule-based task, categories were defined
by arbitrarily making two stimulus dimensions relevant (e.g., pitch and duration), and two
stimulus dimensions irrelevant (e.g., number and vowel). For the two relevant dimensions
the binary properties of each dimension were arbitrarily given the values 1 or −1 (e.g., high
pitch = 1 and low pitch = −1; long duration = 1 and short duration = −1). Stimuli in category
A were those with values of 1 on both relevant dimensions (high pitch with long duration) or
values of −1 on both relevant dimensions (low pitch with short duration). Stimuli in
category B were those with a value of 1 on one relevant dimension and a value of −1 on the
other relevant dimension (high pitch with short duration or low pitch with long duration). A
schematic of one possible conjunctive rule-based problem is displayed in Figure 1a.

Procedure—Participants performed the experiment on a personal computer in a well-
controlled testing room. Participants wore Sennheiser HD 280 Pro headphones to listen to
the stimuli presented. Participants were informed that they would be listening to sounds that
vary across trials in pitch, duration, vowel, and number of tones. They were informed that
each sound was a member of one of two categories: A or B, and that their task was to
determine the category membership for each sound by using the computer key and pressing
either the “z” button which corresponded to category A or the “m” button which
corresponded to category B. Participants were informed that they would receive feedback
following each response that would state whether their response was “correct” or
“incorrect”. Finally, they were informed that their goal was to generate 10 correct responses
in a row. Once they achieved 10 correct responses in a row, or after 200 trials, whichever
came first, the task would end.

Results
To determine whether there were rule-based performance differences between healthy older
and younger adults we conducted two analyses. First, we compared the number of trials
needed to reach criterion. If an individual did not reach criterion after 200 trials, we assumed
a trials-to-criterion of 200. Figure 2a displays the average trials-to-criterion for the older and
younger adults. A t-test confirmed that older adults (trials-to-criterion = 186) took
significantly longer to learn the task than younger adults (trials-to-criterion = 129) [t(36) =
2.72, p = .01, partial η2 = .171]. Second, we compared the number of older adults who
reached or did not reach criterion with the number of younger adults who reached or did not
reach criterion. Figure 2b displays the proportion of older (.18) and younger (.48) adults who
reached criterion. A χ2 test confirmed that significantly fewer older than younger adults
reached criterion [χ2(1) = 3.75, p = .05].
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Summary
These findings suggest that older adults do show a significant rule-based category learning
deficit relative to younger adults when the stimulus dimensions are presented within the
auditory domain.

Experiment 2
Experiment 2 examines age-related changes in information-integration category learning.

Method
Participants—Seventeen older adults (average age 68.41) from the greater Austin, Texas
community and 19 younger adults from the University of Texas community were paid $10
per hour for their participation. Procedures for informed consent and the hearing screening
were identical to those from Experiment 1.

Neuropsychological Testing Procedures—The neuropsychological testing
procedures were identical to those from Experiment 1. Table 1b shows the means, standard
deviations, and ranges of standardized z-scores on each test for older adults.

Stimuli—The stimuli were identical to those used in Experiment 1 however Experiment 2
used an information-integration category structure. To create the information-integration
category structures we first made one stimulus dimension irrelevant (e.g. pitch). Then for the
three remaining relevant stimulus dimension, the possible properties of each stimulus were
given a value of 1 or −1 (e.g. for duration, long = 1 and short = −1). Then, each category
structure was created by the following mathematical formula (where the three relevant
stimulus dimensions are X, Y, and Z):

If X + Y + Z > 0, then “A,” else “B.”

A schematic of one possible information-integration problem is displayed in Figure 1b.

Procedure—The procedures were identical to those used in Experiment 1.

Results
We used the same data analytic approach used in Experiment 1. Figure 3a displays the
average trials-to-criterion for the older and younger adults. Older adults (trials-to-criterion =
141) took slightly longer to learn the task than younger adults (trials-to-criterion = 129), but
this difference was non-significant [t(34) = .52, p = .61, partial η2 = .008]. Figure 3b
displays the proportion of older (.53) and younger (.58) adults who reached criterion.
Although slightly fewer older adults than younger adults reached criterion, a χ2 test
confirmed that this difference was non-significant [χ2(1) = .09, p = .77].

As with any information-integration category learning task, rule-based strategies exist that
can yield good, albeit non-optimal, performance. In the current task, a uni-dimensional rule
can accurately classify 12 of the 16 stimuli. Thus, it is possible that learners (i.e., those who
generated 10 correct responses in a row) are not utilizing the optimal information-integration
strategy but rather are using a uni-dimensional strategy on a run of 10 trials for which the
uni-dimensional rule yields perfect performance. As a test of this hypothesis we computed
the accuracy rate predicted by the optimal information-integration rule during the final 10
trials for learners, which by definition is 100%, and compared that with accuracy rate
predicted by the most accurate uni-dimensional rule. If the accuracy rate predicted by the
most accurate uni-dimensional rule is 100% for a given participant, then it is equivocal
whether that participant used the optimal information-integration rule or a uni-dimensional
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rule. The results were clear. For 14 of the 20 learners, the responses during the final 10 trials
were inconsistent with a uni-dimensional rule (7 of 9 older adult learners and 7 of 11
younger adult learners) suggesting that learners were using information-integration
strategies at a much higher rate than uni-dimensional strategies.

Interestingly though, there was evidence that some non-learners were using uni-dimensional
strategies. Specifically, 10 of the 16 non-learners’ data was better accounted for by a uni-
dimensional rule than by the optimal information-integration rule. This finding is expected
since sub-optimal information-integration performance often results when individuals fail to
transition from rules to information-integration strategies.2

Summary
The results from Experiments 1 and 2 suggest an age-related rule-based, but not
information-integration category learning deficit. This suggests that within the auditory
category learning domain, age-related performance deficits emerge with respect to frontal,
rule-based processes but not striatal, procedural learning processes. Experiments 1 and 2 use
artificially constructed category structures. In Experiment 3, we examine natural speech
category learning in older and younger adults.

Experiment 3
Learning new speech categories in adulthood is known to be a difficult task. Many theories
have been proposed to account for such difficulty. In general, the difficulty may arise
because learners tend to attend to dimensions that are relevant in their native language (L1)
and are less focused on dimensions that are more relevant in the second language (L2).
Previous studies suggest that speech categories are optimally learned implicitly, although
listeners do tend to use a variety of strategies when learning speech categories
(Chandrasekaran, Yi, & Maddox, in press; Lim & Holt, 2011; Seitz et al., 2010). However,
this work has entirely focused on young adults. The strategies used by older adults in
learning L2 speech categories has not been systematically examined.

In the current experiment we examine novel speech category learning in younger and older
adults using exemplars from Mandarin Chinese, a tone language. Two dimensions, pitch
height, and pitch direction are important for discerning tone categories across languages. For
example, on the pitch height-pitch direction continuum, the four Mandarin tone categories
can be differentiated as “high-level”, “low-rising”, “low-dipping”, and “high-falling”. The
pitch height dimension (average pitch across the syllable) is important for distinguishing low
tones from high tones; the pitch direction dimension is important in distinguishing rising
tones from falling tones, as well as documenting changes within the syllable. We use
Mandarin tonal categories as a test-bed to examine strategy differences across the lifespan.
Based on Experiments 1 and 2, one possibility is that speech category learning success does
not differ between older and younger adults, given that speech categories are reflexive-

2Another possibility is that learners are using a rule-plus exception strategy in which they classify 12 of the 16 stimuli using a uni-
dimensional rule and then memorize the remaining 4 stimuli. Importantly, because the rule-plus-exception and optimal information-
integration strategies yields identical responses, they are mathematically equivalent and thus cannot be teased apart based on the
behavioral responses. Even so, there are two reasons to believe that the rule-plus-exception hypothesis in not viable in the present
case. First, in a recent paper, Davis, Love and Maddox (2012) found that older adults show performance deficits in category learning
when the optimal strategy is a rule-plus-exception strategy. In particular, older adults struggle to learn the exceptions. Second, the
pattern of correlations between information-integration performance and working memory capacity argue against the use of a rule-
based strategy in the information-integration task. A rule-plus-exception strategy would put a heavy demand upon working memory
and thus good performance should be associated with high working memory capacity. Instead, we find that good performance is
associated with low working memory capacity. Thus, although one must always be aware of the possibility that participants might use
rule-based strategies when solving an information-integration task, learners in the present study appear to be relying upon information-
integration strategies.
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optimal. However, given the rule-based category learning deficit seen in Experiment 1, one
possibility is that older adults may perseverate with simple uni-dimensional rules (rules
based on pitch height or pitch direction), and unable to use verbal rules with multiple
dimensions (pitch height and pitch direction), or implicitly integrate across dimensions. Note
that COVIS posits that natural category learning is initially dominated by the reflective
system, irrespective of whether category structure is reflective or reflexive-optimal.
Therefore, if simple uni-dimensional rules persist, the learner may not be able to transition
to more optimal strategies.

To test these possibilities, we not only evaluate accuracy measures, which will discern
performance difference between younger and older adults, but also evaluate strategy
differences between the two groups. We will evaluate strategy differences by using
neurobiologically inspired computational models of reflective and reflexive learning.

Method
Participants—Thirty-five older adults (average age 68.14) from the greater Austin, Texas
community and 38 younger adults from the University of Texas community were paid $10
per hour for their participation. Exact hearing thresholds were recorded in approximately
half of the participants (17 older adults and 21 younger adults). We used this subset of the
data to conduct additional analyses to evaluate the influence of hearing status on category
learning accuracy. Procedures for informed consent and the hearing screen were identical to
those from Experiments 1 and 2. Groups did not significantly differ with respect to the age
at which the participant began music practicing, years of practice, and hours practiced per
week.

Neuropsychological Testing Procedures—The neuropsychological testing
procedures were identical to those from Experiments 1 and 2. Table 1c shows the means,
standard deviations, and ranges of standardized z-scores on each test for older adults.

Stimulus Characteristics—Stimuli consisted of natural native exemplars of the four
Mandarin tones, tone 1 (T1), tone 2 (T2), tone 3 (T3), and tone 4 (T4). Monosyllabic
Mandarin Chinese words (bu, di, lu, ma, and mi) that are minimally contrasted by the four
tone categories were used in the experiment. Since these syllables exist in the American
English inventory, the use of these stimuli circumvents the need to learn phonetic structures
additional to the tone distinction (Alexander, Wong, & Bradlow, 2005). By using different
segments and multiple talkers, our aim is to expose learners to variability inherent in natural
language. Each of these syllables was produced in citation form with the four Mandarin
tones. Talkers consisted of native speakers (N = 2; 1 f) of Mandarin Chinese originally from
Beijing. Stimuli were RMS amplitude and duration normalized (70 dB, 0.4 s) using the
software Praat (Alexander, et al., 2005; Perrachione, Lee, Ha, & Wong, 2011; Wong,
Perrachione, Gunasekera, & Chandrasekaran, 2009). Duration and amplitude envelope are
potentially useful cues to disambiguate lexical tones. However, behavioral studies (Howie,
1976) as well as multidimensional scaling (MDS) analyses have shown that dimensions
related to pitch, especially height and direction, are used primarily to distinguish tone
categories (Francis, Ciocca, Ma, & Fenn, 2008). In fact, phonetically, Mandarin tones are
described using these two dimensions as ‘high-level’, ‘low-rising’, ‘low-dipping’, and ‘high-
falling’ respectively. Five native speakers of Mandarin were asked to identify the tone
categories (they were given four choices) and rate their quality and naturalness. High
identification (>95%) was achieved across all 5 native speakers. Speakers rated these stimuli
as highly natural. A scatter-plot of the 40 stimuli in the pitch height-pitch direction space is
displayed in Figure 4a.
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Procedure—On each trial, participants were presented with a single exemplar from one of
four Mandarin tone categories (T1, T2, T3, or T4) and instructed to categorize the stimulus
into one of four categories. Participants were given feedback on each trial and exposed to
multiple talkers throughout the training program. Participants listened to 40 stimuli per
block (4 tone categories × 5 syllables × 2 talkers). The talkers were randomized within a
block. Each participant completed five 40-trial blocks of training and was instructed to
categorize sounds into four equally likely categories. Further, participants were instructed
that high accuracy levels are possible. Participants generated a response by pressing one of
four number button keys on the left side of the computer keyboard, labeled “1”, “2”, “3”, or
“4”. Corrective feedback was provided for 1 s on the screen immediately following the
button press and consisted of the word “Correct.” or “No.” followed by the label of the tone
that was actually presented. For example, on a correct T2 trial the feedback display was as
follows: “Correct, that was a category 2”. On an incorrect response trial where T3 was the
correct response the feedback display was as follows: “No, that was a category 3”. A 1-s ITI
followed the feedback.

Accuracy Results
We first present accuracy analyses comparing block-by-block performance across older and
younger adults, and then we present model-based analyses to explore the types of strategies
that participants use to solve the task.

Learning curves for the younger and older adults are presented in Figure 5a. We begin with
a 2 participant group (younger vs. older adults) × 5 block mixed design ANOVA on the
accuracy data. The main effect of participant group was significant [F(1, 71) = 24.45, p < .
001, partial η2 = .256] and suggested an age-related deficit in performance. The main effect
of block was also significant [F(4, 284) = 46.06, p < .001, partial η2 = .393]. Finally, the
interaction between participant group and block was significant [F(4, 284) = 5.59, p < .001,
partial η2 = .073]. Post hoc analyses suggested that the older adult performance deficit
emerged in all blocks of trials (all p’s < .005), but that the learning rate was lower in older
than in younger adults.

To rule out a confounding role of hearing status, we ran a 2 participant group (younger vs.
older adults) × 5 block ANOVA on the accuracy data with left and right pure tone average
(PTA; average of thresholds 500, 1000, and 2000 Hz) as covariates. Note that we used a
smaller subset for whom exact thresholds were collected (17 older adults and 21 younger
adults). Adding these covariates did not significantly alter the pattern of results. That is, the
main effect of participant group was significant [F(1, 33) = 5.27, p =0.028, partial η2 = .138]
and suggested an age-related deficit in performance. The main effect of block was also
significant [F(4, 284) = 46.06, p < .001, partial η2 = .393]. Finally, the interaction between
participant group and block was significant [F(4, 132) = 3.706, p = .007, partial η2]. Post
hoc analyses suggested that the older adult performance deficit emerged in all blocks of
trials (all p’s < .005), but that the learning rate was lower in older than in younger adults.
The covariates were not significant (p>0.6) and did not significantly interact with block.
Further, correlations between PTA (left and right) and final block accuracy was not
significant for older adults (p>0.5). Taken together, these data suggest that differences in
hearing status between older and younger adults do not confound task performance.

Modeling Results
The accuracy based analyses suggest an age-related performance deficit in Mandarin tone
category learning, but tell us nothing about the nature of this age-related performance
deficit; in particular, whether older and younger adults use similar strategies for solving the
task, but with older adults using a more sub-optimal version of that strategy, or whether
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older and younger adults use qualitatively different strategies to solve the task. Model-based
analyses provide this window onto cognitive processing.

Computational Modeling—We fit a series of decision-bound models on a block-by-
block basis at the individual participant level because of problems with interpreting fits to
aggregate data (Ashby, Maddox, & Lee, 1994; Estes, 1956; Maddox, 1999). We assume that
the two-dimensional space (pitch height vs. pitch direction) displayed in Figure 4 accurately
describes the perceptual representation of the stimuli. We acknowledge that this is a
reductionist approach, given the number of cues that differentiate tone categories (as with
any speech category). However, our previous work (Maddox & Chandrasekaran, 2013)
revealed significant insights (over traditional accuracy measures) that validate this
innovative approach. Note that as long as the major dimensions are known, these modeling
procedures can be applied to any type of speech category structure. For example, Maddox et
al. (2002) found that the Striatal Pattern Classifier (SPC; Ashby & Waldron, 1999), a
computational model of processing in the procedural based learning system that will be
described next provided good fits for vowel category structures.

The Appendix provides details of each model, as well as the model fitting and model
comparison procedure. Here we provide a brief description of each model, as well as an
interpretation of the model results. Each model assumes that decision-bounds were used to
classify stimuli into each of the four Mandarin tone categories (T1, T2, T3, or T4). We
applied three classes of models. The first class is computational models of the implicit,
procedural based learning category learning system. This is instantiated with the Striatal
Pattern Classifier (SPC). The SPC is a computational model whose processing is consistent
with the neurobiology of the procedural based category learning system and is thought to
underlie information-integration (II) classification performance (Nomura, et al., 2007; Seger
& Cincotta, 2005). The second class is models of the explicit, hypothesis-testing system
(Maddox, Ashby, & Bohil, 2003; Maddox, Filoteo, Hejl, & Ing, 2004). A number of
conjunctive and uni-dimensional rule-based (RB) models were examined. Conjunctive RB
models assume that the participant sets criteria along the pitch height and pitch direction
dimensions that are then combined to determine category membership. Uni-dimensional RB
models assume that the participant sets criteria along the pitch height or pitch direction
dimension that are then used to determine category membership. The third model is a
random responder (RR) model that assumes that the participant guesses on each trial.

In a previous study we found that many learners use separate male and female perceptual
spaces during category learning (Maddox & Chandrasekaran, 2013). We therefore also
examined talker separation models. The model procedure described before assumes that
each model is applied to a block of 40-trials using the 40 stimuli displayed in Figure 4a is
effectively a modeling procedure that assumes no Talker Separation (hereafter referred to as
Non-Separation models). To model the presence of Talker Separation (hereafter referred to
as Separation models), we assumed that the participant converted the 40 stimulus perceptual
space in Figure 4a into two separate perceptual spaces, one that characterizes the 20 stimuli
spoken by the male talker and one that characterizes the 20 stimuli spoken by the female
talker. A scatterplot of the stimuli associated with the male and female sub-perceptual
spaces are displayed in Figures 4b and 4c, respectively. We fit each of the models outlined
above separately to the 20-trials with a female speaker and the 20-trials with the male
speaker.

Distribution of the Best Fitting Non-Separation and Separation Model—Because
Talker Separation is hypothesized to improve performance, we predicted that the number of
participants whose data is best fit by one of the Separation models will increase with
experience relative to the number of participants whose data is best fit by one of the Non-
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Separation models. Table 2 displays the number of younger and older participants whose
data was best fit by a Separation or Non-Separation model in each block. As a formal test of
our hypothesis, we compared the number of Separators and Non-Separators across the first
and final block separately for younger and older adults. A χ2 test suggested that the number
of Separators did increase while the number of Non-Separators did decrease from the first to
the final block of trials for younger [χ2(1) = 12.05, p < .001] and older adults [χ2(1) = 16.57,
p < .001]. To determine whether the rate of change in the number of Separators and Non-
Separators differed as a function of age, we compared the number of younger and older
Non-Separators across the first and last block. A χ2 test suggested that age did not affect the
distribution of Non-Separators across the first to the final block of trials [χ2(1) = .001, p = .
97], nor did it affect the distribution of Separators across the first to the final block of trials
[χ2(1) = .63, p = .43]. Thus, older and younger adults did not differ in their ability to use
talker-dependent strategies that more effectively parse out the four categories.

Rule-Based and Information-Integration Strategies and Accuracy Rates for
Final Block Separator—Although we did not find differences in the proportion of
Separators and Non-Separators across age groups there is reason to believe that we will see
differences in the types of strategies used. In this section we examine performance for the
reflective, rule-based and reflexive, information-integration strategies used by older and
younger adults whose final block of data was best fit by a Separation model. Of the 25 older
adult final block Separators, 7 were best fit by the SPC, 1 by the Conjunctive rule-based
model, 13 by the Uni-dimensional_Height model, and 4 by the random responder model. Of
the 29 younger adult final block Separators, 11 were best fit by the SPC, 9 by the
Conjunctive rule-based model, and 7 by the Uni-dimensional_Height model, and 2 by the
random responder model. Because the SPC and Conjunctive rule-based strategies often yield
similar accuracy rates, they can be difficult to tease apart. However, both involve processing
of both stimulus dimensions, in contrast to the uni-dimensional model that involves the
processing of only a single dimension. In light of these facts, we combined the SPC and
Conjunctive rule-based model frequencies and compare those with the combined uni-
dimensional and random model frequencies. We found a significant age group difference in
the distribution of model strategies [χ2(1) = 7.35, p < .01]. This difference suggests that
younger adults are more likely to use two-dimensional strategies (n=20) than one-
dimensional or random strategies (n=9), whereas older adults are more likely to use one-
dimensional or random strategies (n=17) than two-dimensional strategies (n=8).

Because the optimal strategy clearly requires a two-dimensional strategy, we also predicted
that participants using a two-dimensional strategy would outperform those using a one-
dimensional or random strategy. As a test of this hypothesis, and to determine whether this
might account for the age-based performance difference, we conducted a 2 age group × 2
strategy group (two-dimensional vs. one-dimensional) ANOVA. These data are presented in
Figure 5b. As expected we observed a main effect of age group [F(1, 50) = 18.69, p < .001,
partial η2 = .272] with younger adults outperforming older adults. We also observed a main
effect of strategy group [F(1, 50) = 39.02, p < .001, partial η2 = .438] with participants using
a two-dimensional strategy outperforming those using a one-dimensional or random model
strategy. These were qualified by a significant interaction [F(1, 50) = 7.96, p < .01, partial η2

= .137]. Post hoc analyses suggested that there was a large and significant age-based
performance difference for participants using the two-dimensional strategy [t(26) = 5.36, p
< .001], but not for the participants using the one-dimensional or random strategies [t(24) =
1.00, = .33].
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Summary
Experiment 3 revealed an age-based Mandarin tone category learning deficit across 200
trials of training. The model-based analyses suggested that older adults were able to separate
by talker at the same rate as younger adults, but were much less likely to learn and apply a
two-dimensional strategy to solve the task, instead relying heavily on sub-optimal uni-
dimensional strategies (for a similar finding in the visual domain see Maddox, et al., 2010).

Working Memory Correlates of OA Performance
In this section we explore the working memory correlates of performance in each of the
three experiments using the classic digit span task as our measure of capacity. The
predictions for the rule-based (Experiment 1) and information-integration (Experiment 2)
tasks are straightforward. Rule-based category learning is heavily dependent on working
memory, whereas information-integration category learning is not. Thus, we predict that
working memory capacity will correlate with rule-based category learning performance but
not with information-integration category learning performance. In a recent study using
younger adults and visually presented stimuli, DeCaro et al. (2008; however see
Lewandowsky, Yang, Newell, & Kalish, 2012; Tharp & Pickering, 2008) found that
working memory capacity was positively correlated with rule-based performance but was
negatively correlated with information-integration performance.

We also correlated category learning performance with a number of other measures from our
neuropsychological battery. These include: Trails A, Trails B, total number of errors in the
WCST, and Stroop interference. Although no strong a priori predictions are offered for these
measures, these are included for completeness. The correlations for all three Experiments
are presented in Table 3 with correlations that are significant at the .05 level in bold type.

The results are clear. In the Experiment 1 rule-based task, high working memory capacity
was associated with fewer trials needed to learn the task. In the Experiment 2 information-
integration task, on the other hand, high working memory was associated with slower
learning, although this result did not reach significant. In the Experiment 3, speech category
learning task, high working memory was associated with better final block accuracy.
Finally, in all studies, none of the other measures correlated significantly with category
learning performance. Taken together, these results support the previous work suggesting
working memory correlates of rule-based but not information-integration category learning,
and extend it to the auditory realm and to healthy aging.

General Discussion
To our knowledge, this study represents the first attempt to comprehensively examine age-
related changes in auditory category learning. The aim was to examine the extent to which
the dual-systems model accounts for auditory category learning across the lifespan. We
examined age-related changes in learning of simple auditory sounds that were grouped into
rule-based (Experiment 1) or information-integration (Experiment 2) category structures. In
Experiment 3, we examined age-related changes in learning of non-native tone categories.
Finally, we examined working memory correlates of performance in the older adults across
all three experiments.

Our results demonstrate a clear age-related rule-based category learning deficit with more
young adults learning the rule-based task, relative to older adults, and young adults learning
the task faster than older adults. However, we found that older and younger adult
participants did not differ significantly in the speed or proportion learning the information-
integration task. This suggests that older adults have may preserved reflexive, procedural
based learning ability, although clearly more work is needed. Interestingly, this is
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inconsistent with a previous study by Ashby and colleagues that used the same information-
integration category structure but with visual stimuli (Ashby, Noble, Filoteo, Waldron, &
Ell, 2003). We hypothesize that these may reflect differences in the neurobiology of the two
sensory domains. Connectivity to the primary auditory cortex, a region that shows large age-
related changes, is sparse. In contrast, connectivity to the secondary auditory cortex is large
but diffuse. The diffuse nature of the connectivity patterns may potentially preserve learning
across the lifespan. However, such a proposal needs to be tested with greater rigor. Indeed,
although the difference in information-integration learning ability did not significantly differ
between the two groups, younger adults were numerically faster than older adults to reach
the learning criteria. Future studies are needed to establish the nature of this preserved
ability, in the context of deficits in visual information-integration learning.

While Experiments 1 and 2 examined artificially created categories controlled to be rule-
based or information-integration optimal, in Experiment 3, we examined age-related effects
on natural auditory category learning. In Experiment 3, monolingual older and younger
participants learned to distinguish Mandarin tone categories with feedback. Accuracy data
revealed a clear age-related accuracy deficit across all blocks of learning. We further
examined the nature of this deficit using computational models. We found that older adults
were able to separate by talker at the same rate as younger adults but older adults tended to
use more sub-optimal, uni-dimensional strategies. That is, older adults showed less
effectiveness in utilizing both cues (pitch height and pitch direction), and instead
predominantly used the pitch height cue (for a related finding in vision see Maddox, et al.,
2010). Pitch height is an important cue in English, that distinguishes talker sex (e.g., low
pitch=’male’; high pitch=’female’). However, the persistent use of this cue is sub-optimal.
As seen in Figures 4 and A1, the use of rules based on pitch height would lead to confusions
between tone 2 and tone 4, which are distinguished based on pitch direction (tone 2 is
‘rising’; tone 4 is ‘falling’), but have similar pitch height. Younger adults, on the other hand,
use pitch height and pitch direction either in conjunction (reflective strategy) or integrate
these two dimensions (reflexive strategy). Thus, they predominantly use both dimensions,
which likely requires a refocus (either attentionally in the form of a conjunctive rule, or
predecisionally in the form of reflexive SPC strategy) from language-specific strategies.

Taken together, the results from the three experiments suggest that the reflective system,
which uses verbal rules to develop hypothesis about category structure is more affected by
systemic aging than the ‘procedural-based’ reflexive system. These findings parallel results
from studies examining language processing in older adults. Dual-system models in the
language domain have posited that grammar learning is predominantly procedural-based,
while vocabulary learning uses the declarative system (Morgan-Short, Finger, Grey, &
Ullman, 2012; Morgan-Short, Sanz, Steinhauer, & Ullman, 2010). Extrapolating from our
results, an interesting question is the extent to which aging affects vocabulary learning
relative to grammar learning. Indeed, consistent with our findings, a recent study showed
preserved implicit grammar learning ability in older adults relative to younger adults
(Kurten, De Vries, Kowal, Zwitserlood, & Floel, 2012). In contrast, vocabulary learning is
impaired in older adults, relative to younger adults (Service & Craik, 1993).

The computational modeling results can inform the development of more optimal training
strategies for older adults. The use of a large number of talkers and high talker variability,
may lead to more reliance on pitch direction as a dimension. On the other hand, the use of
high variability ensures that a uni-dimensional rule is less rewarded and allows older adults
to switch to a more reflexive, procedural strategy. Since reflexive learning appears to be
better preserved, this may effectively enhance category learning success. Future work should
explore this possibility. Another fruitful approach would be to include test items (not
presented during training) that can be used to rigorously test between reflective rule-based
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and reflexive information-integration strategies, as in work by Mata and colleagues (Mata,
von Helversen, Karlsson, & Cupper, 2012). As outlined above, information-integration and
conjunctive strategies yield very similar accuracy rates in the Experiment 3 stimulus set. The
inclusion of additional test trials could be used to more accurate tease apart these two
strategies.

We also explored the relationship between working memory capacity and performance in
older adults by correlating the backward span score with trials-to-criterion in Experiments 1
and 2, and final block accuracy in Experiment 3. As predicted from recent work in the visual
domain (DeCaro, et al., 2008; however see Lewandowsky, et al., 2012; Tharp & Pickering,
2008) we found that increased working memory capacity was significantly predictive of
good rule-based category learning and was predictive of poor information-integration
category learning, although the latter effect was not statistically significant. In the tone
category learning experiment we found that increased working memory capacity was
significantly correlated with good performance, which is in line with the modeling results
that suggest the persistent use of simple one-dimensional rules (mostly pitch height) in older
adults (Maddox, et al., 2010).

Conclusions
This represents the first study to comprehensively examine age-related changes in auditory
category learning. We found an age-related deficit in rule-based category learning, but not in
information-integration category learning. We found an age-related deficit in natural
auditory category learning that was due to older adults’ persistent reliance on sub-optimal,
uni-dimensional strategies when two-dimensional strategies were optimal. Working memory
capacity was found to correlate with perform in the rule-based and natural auditory category
learning tasks, but not in the information-integration task. The implications of this work for
second language learning in older adults were discussed.
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Appendix

Model Details
Three classes of models were applied to the data and were used to classify stimuli into each
of the four Mandarin tone categories (T1, T2, T3, or T4). The first provides a model of the
implicit, procedural based learning category learning system and is instantiated with the
Striatal Pattern Classifier (SPC). The SPC is a computational model whose processing is
consistent with the neurobiology of the procedural based category learning system and is
thought to underlie optimal information-integration (II) classification performance (Nomura,
et al., 2007; Seger & Cincotta, 2005). The SPC assumes that stimuli are represented
perceptually in higher-level auditory areas, such as the superior temporal gyrus. Because of
the massive many-to-one (approximately 10,000-to-1) convergence of afferents from the
cortex to the striatum (Ashby & Ennis, 2006; Wilson, 1995), a low-resolution map of
perceptual space is represented among the striatal units. During feedback-based learning,
the striatal units become associated with one of the category labels, so that, after learning is
complete, a category response label is associated with each of a number of different regions
of perceptual space. In effect, the striatum learns to associate a response with clumps of cells
in the auditory cortex. The SPC assumes that there is one striatal “unit” in the pitch height-
pitch direction space for each category, yielding a total of four striatal units. Because the
location of one of the units can be fixed, and since a uniform expansion or contraction of the
space will not affect the location of the resulting response region partitions, the SPC
contains six free parameters--5 that determine the location of the units, and one that
represents the noise associated with the placement of the striatal units. Fig. A1a displays a
scatterplot of the responses and response regions for the four tone categories in Fig. 4a
generated from a hypothetical participant using one version of the Striatal Pattern Classifier.
It is important to be clear that the SPC is a computational model that is inspired by what is
known about the neurobiology of the striatum. Because of this fact, the striatal “units” are
hypothetical and could be interpreted within the language of other computational models
(e.g., as "prototypes" in a multiple prototype model like SUSTAIN; Love, Medin, &
Gureckis, 2004).

The second class of models instantiate explicit, hypothesis-testing strategies (Maddox, et al.,
2003; Maddox, et al., 2004). A number of conjunctive and uni-dimensional rule-based (RB)
models were examined. A conjunctive RB model assumes that the participant sets two
criteria along the pitch height dimension and one criterion along the pitch direction
dimension. The model assumes that the two criteria along the pitch height dimension are
used to separate the stimuli into those that are of low, medium or high pitch height. Stimuli
with low pitch are classified as T3 and high pitch height items are classified as T1. If an item
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is classified as of medium pitch height then the pitch direction is examined to discern
between T2 and T4 (making this a conjunction of the two dimensions). Stimuli with medium
pitch height and negative slopes are classified as T4 and those with medium pitch height and
positive slopes are classified as T2. Fig. 6b displays a scatterplot of the responses and
response regions for the four tone categories in Fig. 4a generated from a hypothetical
participant using one version of the Conjunctive model. This model contains four free
parameters—three criteria and one noise parameter. A Uni-Dimensional_Height rule-based
model that assumes that the participant sets three criteria along the pitch height dimension
was also applied to the data. The model assumes that the three criteria along the pitch height
dimension are used to separate the stimuli into those that are of low, medium-low, medium-
high, or high pitch height. This model ignores the pitch direction dimension. We will
examine the 8 most reasonable variants of the model that differ only in the assignment of
categories to response regions (low, medium-low, medium-high and high). Fig. A1c displays
a scatterplot of the responses and response regions for the four tone categories generated
from a hypothetical participant using one version of the Uni-Dimensional_Height model.
We also examined a Uni-Dimensional_Direction model that separated the direction
dimension into four response regions while ignoring pitch height. Figure A1d displays a
scatterplot of the responses and response regions for the four tone categories from a
hypothetical participant using one version of the Uni-Dimensional_Direction model. The
Uni-Dimensional models each contain four free parameters—three criteria and one noise
parameter and ignore the second dimension.

The third model is a random responder (RR) model that assumes that the participant guesses
on each trial.

Model Fitting and Model Comparison
As outlined above, each model was fit to the data from each participant on a block-by-block
basis. The models were fit to the Mandarin tone category learning data from each trial by
maximizing negative log-likelihood. We used Akaike weights to compare the relative fit of
each model (Akaike, 1974; Wagenmakers & Farrell, 2004). Akaike weights are derived
from Akaike’s Information Criterion (AIC), which is used to compare models with different
numbers of free parameters. AIC penalizes models with more free parameters. For each
model, i, AIC is defined as:

(A-1)

where Li is the maximum likelihood for model i, and Vi is the number of free parameters in
the model. Smaller AIC values indicate a better fit to the data. We first computed AIC
values for each model and for each participant’s data in each block. Akaike weights were
then calculated to obtain a continuous measure of goodness-of-fit. A difference score is
computed by subtracting the AIC of the best fitting model for each data set from the AIC of
each model for the same data set:

(A-2)

From the differences in AIC we then computed the relative likelihood, L, of each model, i,
with the transform:

(A-3)

Finally, the relative model likelihoods are normalized by dividing the likelihood for each
model by the sum of the likelihoods for all models. This yields Akaike weights:
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(A-4)

These weights can be interpreted as the probability that the model is the best model given
the data set and the set of candidate models (Wagenmakers & Farrell, 2004). Akaike weights
range from 0 to 1.0 with an Akaike weight of 0 implying that the given model is the best
model with probability 0, and an Akaike weight of 1 implying that the given model is the
best model with probability 1.0. Equivocal evidence in support of a given model is
associated with an Akaike weight of 1/n where n denotes the number of models being
compared. For example, with two models, an Akaike weight of 0.5 implies equivocal
support for the given model.

Best Fitting Model vs. Random Responder Model
We began by comparing the Akaike weights from the best fitting uni-dimensional,
conjunctive or SPC model that assumed Non-Separation or Separation with the best fitting
Random Responder model. This comparison allowed us to determine whether the best fitting
model is capturing noise or is capturing meaningful strategic responding. The results were
clear. The resulting Akaike weights for older adults were .781, .759, .820, .827, and .865 in
blocks 1 – 6, respectively. The resulting Akaike weights for younger adults were .868, .
893, .917, .945, and .935 in blocks 1 – 6, respectively. In every case these values were
significantly above 0.5 based on a one-sample t-test (all p’s < .01) which denotes that the
best fitting models are effectively fitting the data.

Best Fitting Non-Separation Model vs. Best Fitting Separation Model
Next we compared the Akaike weights from the best fitting Separation model against the
best fitting Non-Separation model. This comparison allows us to determine whether the best
fitting model is truly capturing additional strategic responding or just more noise. Again the
results were clear. When a Separation model provided the best account of the data, the
Akaike weights ranged from .806 – .899 for older adults and from .905 – .958 for younger
adults and in every block were significantly above 0.5 based on a one-sample t-test (all p’s
< .01). When a Non-Separation model provided the best account of the data, the Akaike
weights ranged from .758 – .908 for older adults and from .806 – .879 for younger adults
and in every block were significantly above 0.5 based on a one-sample t-test (all p’s < .01).
These findings suggest that the best fitting model (separation or non-separation) is capturing
meaningful strategic variance in the data and not just random noise.

Maddox et al. Page 19

Psychol Aging. Author manuscript; available in PMC 2013 December 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(A) A schematic of one possible conjunctive rule-based problem in which the pitch (High or
Low) and duration (Long or Short) dimensions are relevant. (B) A schematic of one possible
information-integration problem in which the duration dimension (Long or Short) is
irrelevant.
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Figure 2.
(A) Trials-to-criterion for younger and older adults in the rule-based category learning
condition. Standard error bars included. (B) Proportion of younger and older adult learners
in the rule-based category learning condition.
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Figure 3.
(A) Trials-to-criterion for younger and older adults in the information-integration category
learning condition. Standard error bars included. (B) Proportion of younger and older adult
learners in the information-integration category learning condition.
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Figure 4.
(A) Scatterplot of all stimuli from Experiment 3. (B) Scatterplot of male-talker stimuli from
Experiment 3. (C) Scatterplot of female-talker stimuli from Experiment 3. Stimuli
dimensions (Pitch Height and Pitch Direction) were normalized between 0 and 1.
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Figure 5.
(A) Proportion correct for younger and older adults in the Mandarin tone category learning
task. (B) Final block proportion correct for younger and older adult Separators as a function
of model type. Standard error bars included.
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Figure A1.
Scatterplots of the responses along with the decision boundaries that separate response
regions from a hypothetical participant using a version of the (A) Striatal Pattern Classifier,
(B) Conjunctive rule-based, (C) Uni-Dimensional_Height, and (D) Uni-
Dimensional_Direction models as applied to the female talker stimuli shown in Fig 4C.
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Table 1

Z-scores Summary for each Neuropsychological Exam

A

Neuropsychological Test
Experiment 1

Mean (SD) Range

WAIS Vocabulary 0.54 (0.78) −0.3–2.0

Digit Span −0.02 (0.74) −1.0–1.3

CVLT Delayed Recall (Free) 0.82 (0.93) −0.5–2.0

CVLT Immediate Recall (Free) 0.97 (0.91) −1.0–2.0

CVLT Delayed Recall (Cued) 0.50 (0.97) −1.0–2.0

CVLT Immediate Recall (Cued) 0.71 (0.90) −1.0–2.5

CVLT Recognition False Positives −0.38 (0.72) −1.0–1.0

CVLT Recognition True Positives 0.03 (0.84) −1.5–1.0

FAS −0.21 (1.06) −2.0–1.7

Trails A −0.36 (0.93) −1.3–1.9

Trails B −0.47 (0.50) −1.1–1.0

WCST Errors 0.48 (1.14) −1.5–2.1

WCST Perseveration 0.75 (1.11) −1.0–3.0

Demographic Information

Age 67.59 (5.18) 60–82

Years of Education 16.71 (3.02) 10–25

B

Neuropsychological Test
Experiment 2

Mean (SD) Range

WAIS Vocabulary 0.67 (0.88) −1.3–1.7

Digit Span 0.39 (1.02) −1.3–2.7

CVLT Delayed Recall (Free) 0.44 (0.93) −1.0–2.0

CVLT Immediate Recall (Free) 0.53 (0.78) −0.5–2.0

CVLT Delayed Recall (Cued) 0.38 (0.84) −1.0–2.0

CVLT Immediate Recall (Cued) 0.38 (0.89) −1.5–2.0

CVLT Recognition False Positives −0.18 (1.12) −1.0–3.0

CVLT Recognition True Positives 0.00 (0.77) −1.5–1.0

FAS −0.00 (1.07) −2.6–1.3

Trails A −0.32 (0.77) −1.3–1.2

Trails B −0.31 (0.72) −1.2–1.2

WCST Errors 0.11 (1.19) −2.3–1.8

WCST Perseveration 0.42 (0.69) −0.5–2.1
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B

Neuropsychological Test
Experiment 2

Demographic Information

Age 68.41 (4.65) 60–78

Years of Education 16.76 (1.71) 12–19

C

Neuropsychological Test
Experiment 3

Mean (SD) Range

WAIS Vocabulary 0.72 (0.85) −1.3–2.0

Digit Span 0.48 (0.92) −1.3–2.7

CVLT Delayed Recall (Free) 0.43 (0.91) −1.0–2.5

CVLT Immediate Recall (Free) 0.43 (0.81) −1.0–2.5

CVLT Delayed Recall (Cued) 0.33 (0.76) −1.0–2.0

CVLT Immediate Recall (Cued) 0.36 (0.85) −1.5–2.5

CVLT Recognition False Positives −0.14 (1.03) −1.0–3.0

CVLT Recognition True Positives −0.13 (1.02) −3.0–1.0

FAS 0.02 (0.98) −2.6–1.7

Trails A −0.41 (0.95) −1.8–3.1

Trails B −0.43 (0.70) −2.1–1.2

WCST Errors 0.26 (0.96) −2.3–2.1

WCST Perseveration 0.46 (0.68) −0.5–2.5

Demographic Information

Age 68.14 (5.78) 60–83

Years of Education 16.71 (2.27) 10–22

Note: Mean z-scores for each exam with standard deviation in parenthesis and z-score range.
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