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Spectral algorithms are classic approaches to clustering and commu-
nity detection in networks. However, for sparse networks the
standard versions of these algorithms are suboptimal, in some cases
completely failing to detect communities evenwhenother algorithms
such as belief propagation can do so. Here, we present a class of
spectral algorithms based on a nonbacktracking walk on the directed
edges of the graph. The spectrum of this operator is much better-
behaved than that of the adjacency matrix or other commonly used
matrices, maintaining a strong separation between the bulk eigenval-
ues and the eigenvalues relevant to community structure even in the
sparse case. We show that our algorithm is optimal for graphs gen-
erated by the stochastic blockmodel, detecting communities all of the
way down to the theoretical limit. We also show the spectrum of the
nonbacktracking operator for some real-world networks, illustrating
its advantages over traditional spectral clustering.

Detecting communities or modules is a central task in the study
of social, biological, and technological networks. Two of the

most popular approaches are statistical inference, where we fix a
generative model such as the stochastic block model to the network
(1, 2); and spectral methods, where we classify vertices according to
the eigenvectors of a matrix associated with the network such as its
adjacency matrix or Laplacian (3).
Both statistical inference and spectral methods have been

shown to work well in networks that are sufficiently dense, or
when the graph is regular (4–8). However, for sparse networks
with widely varying degrees, the community detection problem is
harder. Indeed, it was recently shown (9–11) that there is a phase
transition below which communities present in the underlying
block model are impossible for any algorithm to detect. Whereas
standard spectral algorithms succeed down to this transition
when the network is sufficiently dense, with an average degree
growing as a function of network size (8), in the case where the
average degree is constant these methods fail significantly above
the transition (12). Thus, there is a large regime in which sta-
tistical inference succeeds in detecting communities, but where
current spectral algorithms fail.
It was conjectured in ref. 11 that this gap is artificial and that

there exists a spectral algorithm that succeeds all of the way to the
detectability transition even in the sparse case. Here, we propose an
algorithm based on a linear operator considerably different from
the adjacency matrix or its variants: namely, a matrix that repre-
sents a walk on the directed edges of the network, with back-
tracking prohibited. We give strong evidence that this algorithm
indeed closes the gap.
The fact that this operator has better spectral properties than,

for instance, the standard random walk operator, has been used
in the past in the context of random matrices and random graphs
(13–15). In the theory of zeta functions of graphs, it is known as
the edge adjacency operator, or the Hashimoto matrix (16). It
has been used to show fast mixing for the nonbacktracking random
walk (17), and arises in connection to belief propagation (18, 19), in
particular to rigorously analyze the behavior of belief propagation
for clustering problems on regular graphs (5). It has also been used
as a feature vector to classify graphs (20). However, we are not
aware of work using this operator for clustering or community
detection.

We show that the resulting spectral algorithms are optimal
for networks generated by the stochastic block model, finding
communities all of the way down to the detectability transition.
That is, at any point above this transition, there is a gap be-
tween the eigenvalues related to the community structure and
the bulk distribution of eigenvalues coming from the random
graph structure, allowing us to find a labeling correlated with
the true communities. In addition to our analytic results on
stochastic block models, we also illustrate the advantages of the
nonbacktracking operator over existing approaches for some
real networks.

Spectral Clustering and Sparse Networks
To study the effectiveness of spectral algorithms in a specific
ensemble of graphs, suppose that a graph G is generated by
the stochastic block model (1). There are q groups of vertices,
and each vertex v has a group label gv ∈ f1; . . . ; qg. Edges are
generated independently according to a q× q matrix p of
probabilities, with Pr½Au;v = 1�= pgu;gv . In the sparse case, we
have pab = cab=n, where the affinity matrix cab stays constant in
the limit n→∞.
For simplicity we first discuss the commonly studied case where

c has two distinct entries, cab = cin if a= b and cout if a≠ b. We take
q= 2 with two groups of equal size, and assume that the network is
assortative, i.e., cin > cout. The section More than Two Groups and
General Degree Distributions below discusses our results in more
general cases.
The group labels are hidden from us, and our goal is to infer

them from the graph. Let c= ðcin + coutÞ=2 denote the average
degree. The detectability threshold (9–11) states that in the limit
n→∞, unless
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cin − cout > 2
ffiffiffi
c

p
; [1]

the randomness in the graph washes out the block structure
to the extent that no algorithm can label the vertices better
than chance. Moreover, ref. 11 proved that below this thresh-
old it is impossible to identify the parameters cin and cout,
whereas above the threshold the parameters cin and cout are
easily identifiable.
The adjacency matrix is defined as the n× n matrix Au;v = 1 if

ðu; vÞ∈E and 0 otherwise. A typical spectral algorithm assigns
each vertex a k-dimensional vector according to its entries in the
first k eigenvectors of A for some k, and clusters these vectors
according to a heuristic such as the k-means algorithm (often
after normalizing or weighting them in some way). In the case
q= 2, we can simply label the vertices according to the sign of the
second eigenvector.
As shown in ref. 8, spectral algorithms succeed all of the way

down to the threshold 1 if the graph is sufficiently dense. In that
case, A’s spectrum has a discrete part and a continuous part in the
limit n→∞. Its first eigenvector essentially sorts vertices accord-
ing to their degree, whereas the second eigenvector is correlated
with the communities. The second eigenvalue is given by

λc =
cin − cout

2
+
cin + cout
cin − cout

: [2]

The question is when this eigenvalue gets lost in the continuous
bulk of eigenvalues coming from the randomness in the graph.
This part of the spectrum, like that of a sufficiently dense Erd}os–
Rényi random graph, is asymptotically distributed according
to Wigner’s semicircle law (21), PðλÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c− λ2

p
=2πc. Thus, the

bulk of the spectrum lies in the interval ½−2 ffiffiffi
c

p
; 2

ffiffiffi
c

p �. If λc > 2
ffiffiffi
c

p
,

which is equivalent to 1, the spectral algorithm can find the
corresponding eigenvector, and it is correlated with the true
community structure.
However, in the sparse case where c is constant while n is

large, this picture breaks down due to a number of reasons. Most
importantly, the leading eigenvalues of A are dictated by the
vertices of highest degree, and the corresponding eigenvectors
are localized around these vertices (22). As n grows, these
eigenvalues exceed λc, swamping the community-correlated ei-
genvector, if any, with the bulk of uninformative eigenvectors. As
a result, spectral algorithms based on A fail a significant distance
from the threshold given by 1. Moreover, this gap grows as n
increases: for instance, the largest eigenvalue grows as the square
root of the largest degree, which is roughly proportional to
log n=log log n for Erd}os–Rényi graphs. To illustrate this prob-
lem, the spectrum of A for a large graph generated by the block
model is depicted in Fig. 1.
Other popular operators for spectral clustering include the

Laplacian L=D−A, where Duv = duδuv is the diagonal matrix of
vertex degrees, the symmetrically normalized Laplacian
D−1=2LD−1=2, the stochastic random walk matrix Q=AD−1, and
the modularity matrix Muv =Auv − dudv=ð2mÞ. However, like A,
these are prey to localized eigenvectors in the sparse case.
Another simple heuristic is to simply remove the high-de-

gree vertices (e.g., ref. 6), but this throws away a significant
amount of information; in the sparse case it can even destroy
the giant component, causing the graph to fall apart into
disconnected pieces (23). Finally, one can also regularize the
adjacency matrix by adding a small constant term (24); how-
ever, this introduces a tunable parameter, and we have not
explored this here.

Nonbacktracking Operator
The main contribution of this paper is to show how to redeem
the performance of spectral algorithms in sparse networks by
using a different linear operator. The nonbacktracking matrix B

is a 2m× 2m matrix, defined on the directed edges of the graph.
Specifically,

Bðu→vÞ;ðw→xÞ =
�
1 if v=w and u≠ x
0 otherwise:

Using B rather than A addresses the problem described above.
The spectrum of B is not sensitive to high-degree vertices, be-
cause a walk starting at v cannot turn around and return to it
immediately. Other convenient properties of B are that any tree
dangling off the graph, or disconnected from it, simply contrib-
utes zero eigenvalues to the spectrum, because a nonbacktracking
walk is forced to a leaf of the tree where it has nowhere to go.
Similarly, one can show that unicyclic components yield eigen-
values that are either 0, 1, or −1.
As a result, B has the following spectral properties in the limit

n→∞ in the ensemble of graphs generated by the block model.
The leading eigenvalue is the average degree c= ðcin + coutÞ=2.
At any point above the detectability threshold 1, the second ei-
genvalue is associated with the block structure and reads

μc =
cin − cout

2
: [3]

Moreover, the bulk of B’s spectrum is confined to the disk in the
complex plane of radius

ffiffiffi
c

p
, as shown in Fig. 2. Thus, the second

eigenvalue is well-separated from the top of the bulk, i.e., from
the third largest eigenvalue in absolute value, as shown in Fig. 3.
The eigenvector corresponding to μc is strongly correlated with

the communities. Because B is defined on directed edges, at each
vertex we sum this eigenvector over all its incoming edges. If we
label vertices according to the sign of this sum, then the majority of
vertices are labeled correctly (up to a change of sign, which switches
the two communities). Thus, a spectral algorithm based on B suc-
ceeds when μc >

ffiffiffi
c

p
, i.e., when 1 holds—but, unlike standard

spectral algorithms, this criterion now holds even in the sparse case.
We present arguments for these claims in the next section. We

will also see that the important part of B’s spectrum can be
obtained from a 2n× 2n matrix (16, 25, 26)

B′=
�
0 D− 1

−1 A

�
: [4]

This lets us work with a 2n-dimensional matrix rather than a 2m-
dimensional one, which significantly reduces the computational
complexity of our algorithm.

4 2 0 2 4
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0.20
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Fig. 1. Spectrum of the adjacency matrix of a sparse network generated by
the block model (excluding the zero eigenvalues). Here, n= 4,000, cin = 5, and
cout = 1, and we average over 20 realizations. Even though the eigenvalue
λc = 3:5 given by Eq. 2 satisfies the threshold condition 1 and lies outside the
semicircle of radius 2

ffiffiffi
c

p
= 3:46, deviations from the semicircle law cause it to

get lost in the bulk, and the eigenvector of the second largest eigenvalue is
uncorrelated with the community structure. As a result, spectral algorithms
based on A are unable to identify the communities in this case.
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Reconstruction and a Community-Correlated Eigenvector
In this section we sketch justifications of the claims in the previous
section regarding B’s spectral properties, showing that its second
eigenvector is correlated with the communities whenever 1 holds.
We assume that c=Oð1Þ, so that the graph is locally tree-like.
We start by explicitly constructing a vector g which is corre-

lated with the communities and is an approximate eigenvector
with eigenvalue μc, as defined in Eq. 3. We follow ref. 11, which
derived a similar result in the case of random regular graphs. For
a given integer r, consider the vector gðrÞ defined by

gðrÞu→v = μ−rc
X

ðw;xÞ:dðu→v;w→xÞ=r
σx; [5]

where σu = ±1 denotes u’s community, and dðu→ v;w→ xÞ
denotes the number of steps required to go from u→ v to
w→ x in the graph of directed edges. By the theory of the re-
construction problem on trees (27, 28), if 1 holds, then for every

u→ v, the correlation
D
gðrÞu→v; σu

E
is bounded away from zero in

the limit n→∞.
Next, we argue that if r is large then g is an approximate ei-

genvector of B with eigenvalue μc. As long as the radius-r
neighborhood of v is a tree, we have�

BgðrÞ
�
u→v

= μ−rc
X

ðw;xÞ:dðu→v;w→xÞ=r+1
σx = μcg

ðr+1Þ
u→v : [6]

This is not precisely an eigenvalue equation because gðrÞ ≠ gðr+1Þ;
however, it turns out that they are close with high probability.
Indeed, we may write gðrÞu→v − gðr+1Þu→v as

μ−rc
X

ðw;xÞ:dðu→v;w→xÞ=r

"
σx − μ−1c

X
y∈NðxÞ∖fwg

σy

#
:

Now, there are (in expectation) cr terms in this sum, each of
which, conditioned on the σx s, has mean zero and constant

variance. Hence, E
h�
gðrÞu→v − gðr+ 1Þ

u→v
	2i=Oðcrμ−2rc Þ. Summing over

u and v, we have E


gðrÞ − gðr+ 1Þ

2 =Oðcrμ−2rc jEjÞ. If 1 holds then

μc >
ffiffiffi
c

p
and so with high probability the error term tends to zero for

large r. Because


gðrÞ

 is bounded above zero, Eq. 6 then becomes



BgðrÞ − μcg
ðrÞ

= oð1Þ

gðrÞ

;

so gðrÞ is indeed an approximate eigenvector for B with eigenvalue
μc. Because, as we will discuss shortly, the bulk of B’s spectrum is
bounded away from μc, it follows that the true eigenvector with
eigenvalue μc is close to gðrÞ, and so it may be used for community
detection. Specifically, if we label vertices according to the sign of
this eigenvector (summed over all incoming edges at each vertex)
we obtain the true communities with significant accuracy.
Summing over incoming and outgoing edges also lets us relate

B’s spectrum to that of B′ (Eq. 4). Given a 2m-dimensional
vector g, define gout and gin as the n-dimensional vectors

goutu =
X

v∈NðuÞ
gu→v  and  ginu =

X
v∈NðuÞ

gv→u:

If we apply B to g, each incoming edge v→ u contributes du − 1
times to u’s outgoing edges. Similarly, each edge w→ v with w≠ u
contributes to the incoming edge v→ u. As a result, we have

ðBgÞoutu = ðdu − 1Þginu   and  ðBgÞinu =
X

v∈NðuÞ
ginv − goutu ;

or more succinctly, �ðBgÞout
ðBgÞin

�
=B′

�
gout

gin

�
:

Now suppose that Bg= μg. If gout and gin are nonzero, then
ðgout; ginÞ is an eigenvector of B′ with the same eigenvalue μ. In
that case, we have

μgin = Agin − gout =
�
A− μ−1ðD− 1Þ	gin;

so μ is a root of the quadratic eigenvalue equation

det
�
μ21− μA+ ðD− 1Þ�= 0: [7]

This equation is well known in the theory of graph zeta functions
(16, 25, 26). It accounts for 2n of B’s eigenvalues, the other
2ðm− nÞ of which are ±1.
Next, we argue that the bulk of B’s spectrum is confined to the

disk of radius
ffiffiffi
c

p
. First note that for any matrix B,X2m

i= 1

jμij2r ≤ tr  BrðBrÞT :

On the other hand, for any fixed r, because G is locally tree-like
in the limit n→∞, each diagonal entry ðu→ v; u→ vÞ of BrðBrÞT

1 1 2 3

1.5
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0.5

0.5

1.0

1.5

Fig. 2. Spectrum of the nonbacktracking matrix B for a network generated
by the block model with same parameters as in Fig. 1. The leading eigen-
value is at c= 3, the second eigenvalue is close to μc = ðcin − coutÞ=2= 2, and
the bulk of the spectrum is confined to the disk of radius

ffiffiffi
c

p
=

ffiffiffi
3

p
. Because μc

is outside the bulk, a spectral algorithm that labels vertices according to the
sign of B’s second eigenvector (summed over the incoming edges at each
vertex) labels the majority of vertices correctly.
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sqrt(3)

Fig. 3. First, second, and third largest eigenvalues μ1, μ2, and jμ3j, re-
spectively, of B as functions of cin − cout. The third eigenvalue is complex, so we
plot its modulus. Values are averaged over 20 networks of size n= 105 and
average degree c= 3. The green line in the figure represents μc = ðcin − coutÞ=2,
and the horizontal lines are c and

ffiffiffi
c

p
, respectively. The second eigenvalue μ2 is

well-separated from the bulk throughout the detectable regime.
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is equal to the number of vertices exactly r steps from v, other
than those connected via u. In expectation this is cr , so by line-
arity of expectation E  tr  BrðBrÞT = 2mcr . In that case, the 2rth
moment in the spectral measure obeys E

�jμj2r	≤ cr .
Because this holds for any fixed r, we conclude that almost all

of B’s eigenvalues obey jμj≤ ffiffiffi
c

p
. Proving that all the eigenvalues

in the bulk are asymptotically confined to this disk requires
a more precise argument and is left for future work.
Finally, the singular values of B are easy to derive for any

simple graph, i.e., one without self-loops or multiple edges.
Namely, BBT is block-diagonal: for each vertex v, it has a rank-
one block of size dv that connects v’s outgoing edges to each
other. As a consequence, B has n singular values dv − 1, and
its other 2m− n singular values are 1. However, because B is
not symmetric, its eigenvalues and its singular values are differ-
ent—whereas its singular values are controlled by the vertex
degrees, its eigenvalues are not. This is precisely why its spectral
properties are better than those of A and related operators.

More than Two Groups and General Degree Distributions
The arguments given above regarding B’s spectral properties gen-
eralize straightforwardly to other graph ensembles. First, consider
block models with q groups, where for 1≤ a≤ q group a has frac-
tional size na. The average degree of group a is ca =

P
bcabnb. The

hardest case is where ca = c is the same for all a, so that we cannot
simply label vertices according to their degree.
The leading eigenvector again has eigenvalue c, and the bulk

of B’s spectrum is again confined to the disk of radius
ffiffiffi
c

p
. Now B

has q− 1 linearly independent eigenvectors with real eigenvalues,
and the corresponding eigenvectors are correlated with the true
group assignment. If these real eigenvalues lie outside the bulk,
we can identify the groups by assigning a vector in Rq−1 to each
vertex, and applying a clustering technique such as k means.
These eigenvalues are of the form μ= cν, where ν is a nonzero
eigenvalue of the q× q matrix

Tab = na
�cab
c
− 1
�
: [8]

In particular, if na = 1=q for all a, and cab = cin for a= b, and cout
for a≠ b, we have μc = ðcin − coutÞ=q. The detectability threshold
is again μc >

ffiffiffi
c

p
, or

jcin − coutj> q
ffiffiffi
c

p
: [9]

More generally, if the community-correlated eigenvectors have
distinct eigenvalues, we can have multiple transitions where some of
them can be detected by a spectral algorithm whereas others cannot.
There is an important difference between the general case and

q= 2. Whereas for q= 2 it is literally impossible for any algorithm
to distinguish the communities below this transition, for larger
q the situation is more complicated. In general (for q≥ 5 in the
assortative case, and q≥ 3 in the disassortative one) the threshold

9 marks a transition from an ‘‘easily detectable’’ regime to a
‘‘hard detectable’’ one. In the hard detectable regime, it is the-
oretically possible to find the communities, but it is conjectured
that any algorithm that does so takes exponential time (9, 10).
In particular, we have found experimentally that none of B’s
eigenvectors are correlated with the groups in the hard regime.
Nonetheless, our arguments suggest that spectral algorithms
based on B are optimal in the sense that they succeed all of the
way down to this easy–hard transition.
Because a major drawback of the stochastic block model is that

its degree distribution is Poisson, we can also consider random
graphs with specified degree distributions. Again, the hardest case
is where the groups have the same degree distribution. Let ak
denote the fraction of vertices of degree k. The average branching
ratio of a branching process that explores the neighborhood of
a vertex, i.e., the average number of new edges leaving a vertex v
that we arrive at when following a random edge, is

~c=
P

kkðk− 1ÞakP
kkak

=


k2
��hki− 1:

We assume here that the degree distribution has bounded second
moment so that this process is not dominated by a few high-degree
vertices. The leading eigenvalue ofB is~c, and the bulk of its spectrum
is confined to the disk of radius

ffiffiffi
~c

p
, even in the sparse case where ~c

does not grow with the size of the graph. If q= 2 and the average
numbers of new edges linking v to its own group and the other group
are ~cin=2 and ~cout=2, respectively, then the approximate eigenvector
described in the previous section has eigenvalue μ= ð~cin −~coutÞ=2.
The detectability threshold 1 then becomes μ>

ffiffiffi
~c

p
, or

~cin −~cout > 2
ffiffiffi
~c

p
. The threshold 9 for q groups generalizes similarly.

Deriving B by Linearizing Belief Propagation
The matrix B also appears naturally as a linearization of the
update equations for belief propagation (BP). This linearization
was used previously to investigate phase transitions in the per-
formance of the BP algorithm (5, 9, 10, 29).
We recall that BP is an algorithm that iteratively updates

messages ηv→w along the directed edges. These messages represent
the marginal probability that a vertex v belongs to a given com-
munity, assuming that the vertex w is absent from the network.
Each such message is updated according to the messages ηu→v that
v receives from its other neighbors u≠w. The update rule depends
on the parameters cin and cout of the block model, as well as the
expected size of each community. For the simplest case of two
equally sized groups, the BP update (9, 10) can be written as

η+v→w

η−v→w
:= e−h

∏u∈NðvÞ−w
�
η+u→wcin + η−u→wcout

	
∏u∈NðvÞ−w

�
η+u→wcout + η−u→wcin

	: [10]

Here, + and − denote the two communities. The term eh, where
h= ðcin − coutÞðnBP+ − nBP− Þ and nBP± is the current estimate of the
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Fig. 4. Accuracy of spectral algorithms based on differ-
ent linear operators, and of BP, for two groups of equal
size. (Left) We vary cin − cout while fixing the average
degree c=3; thedetectability transitiongivenby1occurs
at cin − cout = 2

ffiffiffi
3

p
∼ 3:46. (Right) We set cout=cin = 0:3

and vary c; the detectability transition is at c∼3:45. Each
point is averaged over 20 instances with n=105. Our
spectral algorithm based on the nonbacktracking matrix
B achieves an accuracy close to that of BP, and both re-
main largeallof thewaydowntothetransition.Standard
spectral algorithms (applied to the giant component of
each graph, which contains all but a small fraction of the
vertices) based on the adjacency matrix, modularity ma-
trix, Laplacian, normalized Laplacian, and the random
walk matrix all fail well above the transition, giving a re-
gime where they do no better than chance.
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fraction of vertices in the two groups, represents messages from
the nonneighbors of v. In the assortative case, it prevents BP
from converging to a fixed point where every vertex is in the
same community.
The update in Eq. 10 has a trivial fixed point ηv→w = 1=2, where

every vertex is equally likely to be in either community. Writing
η±
u→v = 1=2± δu→v and linearizing around this fixed point gives the
following update rule for δ:

δ :=
cin − cout
cin + cout

Bδ: [11]

More generally, in a block model with q communities, an affinity
matrix cab, and an expected fraction na of vertices in each com-
munity a, linearizing around the trivial fixed point and defining
ηau→v = na + δau→v gives a tensor product operator

δ := ðT⊗BÞδ; [12]

where T is the q× q matrix defined in Eq. 8.
This shows that the spectral properties of the nonbacktracking

matrix are closely related to BP. Specifically, the trivial fixed
point is unstable, leading to a fixed point that is correlated with
the community structure, exactly when T⊗B has an eigenvalue
greater than 1. However, by avoiding the fixed point where all
of the vertices belong to the same group, we suppress B’s
leading eigenvalue; thus the criterion for instability is νμ2 > 1,
where v is T’s leading eigenvalue and μ2 is B’s second eigen-
value. This is equivalent to Eq. 9 in the case where the groups
are of equal size.
In general, the BP algorithm provides a slightly better agree-

ment with the actual group assignment, because it approximates
the Bayes-optimal inference of the block model. On the other
hand, the BP update rule depends on the parameters of the
block model, and if these parameters are unknown they need to
be learned, which presents additional difficulties (12). In con-
trast, our spectral algorithm does not depend on the parameters
of the block model, giving an advantage over BP in addition to its
computational efficiency.

Experimental Results and Discussion
In Fig. 4, we compare the spectral algorithm based on the non-
backtracking matrix B with those based on various classical
operators: the adjacency matrix, modularity matrix, Laplacian,
normalized Laplacian, and the random walk matrix. We see that
there is a regime where standard spectral algorithms do no better
than chance, whereas the one based on B achieves a strong cor-
relation with the true group assignment all of the way down to the
detectability threshold. We also show the performance of BP,
which is believed to be asymptotically optimal (9, 10).
We measure the performance as the overlap, defined as 

1
n

X
u

δgu ;~gu −
1
q

!,�
1−

1
q

�
: [13]

Here, gu is the true group label of vertex u, and ~gu is the label
found by the algorithm. We break symmetry by maximizing over all
q! permutations of the groups. The overlap is normalized so that it
is 1 for the true labeling, and 0 for a uniformly random labeling.
In Fig. 5 we illustrate clustering in the case q= 3. As described

above, in the detectable regime we expect to see q− 1 eigen-
vectors with real eigenvalues that are correlated with the true
group assignment. Indeed, B’s second and third eigenvectors are
strongly correlated with the true clustering, and applying k
means in R2 gives a large overlap. In contrast, the second and
third eigenvectors of the adjacency matrix are essentially un-
correlated with the true clustering, and similarly for the other
traditional operators.

Finally, we turn to real networks to illustrate the advantages of
the nonbacktracking matrix in practical applications. In Fig. 6 we
show B’s spectrum for several networks commonly used as
benchmarks for community detection. In each case we plot
a circle whose radius is the square root of the largest eigenvalue.
Even though these networks were not generated by the sto-
chastic block model, these spectra look qualitatively similar to
the picture discussed above (Fig. 2). This leads to several very
convenient properties. For each of these networks we ob-
served that only the eigenvectors with real eigenvalues are
correlated to the group assignment given by the ground truth.
Moreover, the real eigenvalues that lie outside of the circle
are clearly identifiable. This is very unlike the situation for the
operators used in standard spectral clustering algorithms,
where one must decide which eigenvalues are in the bulk and
which are outside.
In particular, the number of real eigenvalues outside the circle

seems to be a natural indicator for the true number of clusters in
the network, just as for networks generated by the stochastic
block model. This suggests that in the network of political books
there might be 4 groups rather than 3, in the blog network there
might be more than 2 groups, and in the NCAA football network
there might be 10 groups rather than 12. However, we note that
some real eigenvalues may correspond to small cliques.

A Matlab implementation with demos that can be used to re-
produce our numerical results can be found at http://panzhang.
net/dea/dea.tar.gz.

Conclusion
Although recent advances have made statistical inference of
network models for community detection far more scalable
than in the past (e.g., refs. 9, 24, 36, 37), spectral algorithms
are highly competitive because of the computational efficiency
of sparse linear algebra. However, for sparse networks there
is a large regime in which statistical inference methods such
as BP can detect communities, whereas standard spectral algo-
rithms cannot.
We closed this gap by using the nonbacktracking matrix B

as a starting point for spectral algorithms. We showed that for
sparse networks generated by the stochastic block model, B’s
spectral properties are much better than those of the adjacency
matrix and its relatives. In fact, it is asymptotically optimal in the
sense that it allows us to detect communities all of the way down
to the detectability transition. We also computed B’s spectrum
for some real-world networks, showing that the real eigenvalues
are a good guide to the number of communities and the correct
labeling of the vertices.
Our approach can be straightforwardly generalized to spec-

tral clustering for other types of sparse data, such as weighted
graphs with real-valued similarities sðu; vÞ between vertices:
then Bðu→vÞ;ðw→xÞ = sðu; vÞ if v=w and u≠ x, and 0 otherwise. We
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Fig. 5. Clustering for three groups of equal size. (Left) Scatter plot of the
second and third eigenvectors (X and Y axis, respectively) of the non-
backtracking matrix B, with colors indicating the true group assignment.
(Right) Analogous plot for the adjacency matrix A. Here, n= 3× 104, c= 3,
and cout=cin = 0:1. Applying k means gives an overlap 0.712 using B, but
0.0063 using A.
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believe that, as for sparse graphs, there will be important regimes
in which using B will succeed where standard clustering algorithms
fail. Given the wide use of spectral clustering throughout the
sciences, we expect that the nonbacktracking matrix and its
generalizations will have a significant impact on data analysis.
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Fig. 6. Spectrum of the nonbacktracking matrix in the complex plane for some real networks commonly used as benchmarks for community detection, taken
from refs. 30–35. The radius of the circle is the square root of the largest eigenvalue, which is a heuristic estimate of the bulk of the spectrum. The overlap is
computed using the signs of the second eigenvector for the networks with two communities, and using k means for those with three and more communities.
The nonbacktracking operator detects communities in all these networks, with an overlap comparable to the performance of other spectral methods. As in
the case of synthetic networks generated by the stochastic block model, the number of real eigenvalues outside the bulk appears to be a good indicator
of the number q of communities.
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