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Abstract
Closed-loop insulin delivery continues to be one of most promising strategies for achieving near-normal control 
of blood glucose levels in individuals with diabetes. Of the many components that need to work well for the 
artificial pancreas to be advanced into routine use, the algorithm used to calculate insulin delivery has received 
a substantial amount of attention. Most of that attention has focused on the relative merits of proportional-
integral-derivative versus model-predictive control. A meta-analysis of the clinical data obtained in studies 
performed to date with these approaches is conducted here, with the objective of determining if there is a trend 
for one approach to be performing better than the other approach. Challenges associated with implementing each 
approach are reviewed with the objective of determining how these approaches might be improved. Results of  
the meta-analysis, which focused predominantly on the breakfast meal response, suggest that to date, the 
two approaches have performed similarly. However, uncontrolled variables among the various studies, and 
the possibility that future improvements could still be effected in either approach, limit the validity of this 
conclusion. It is suggested that a more detailed examination of the challenges associated with implementing 
each approach be conducted.
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COMMENTARY

Introduction

The development of a closed-loop insulin delivery system linking continuous glucose sensors with insulin pumps 
is widely acknowledged as one of the most promising strategies for achieving near-normal control of blood glucose 
levels in individuals with type 1 diabetes. Achieving what would be an artificial β-cell will require a substantial 
effort from individuals with diverse backgrounds. Research into many of the components requires specialized 
knowledge and often attracts individuals with similar backgrounds. An exception is the insulin delivery algorithm, 
which often attracts engineers who are trained in modeling and control systems but have little or no medical training, 
and clinicians who are trained in managing diabetes but have no formal training in modeling or control theory.  
The latter will often lack the background to evaluate theoretical arguments put forth by engineers as to why a particular 
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control algorithm should or should not be used for calculating insulin delivery. In the cases where engineers disagree,  
the question for the clinician is how to make an informed choice about competing narratives.

This article presents one-half of an ongoing debate regarding the relative merits of model-predictive control (MPC) 
versus proportional-integral-derivative (PID) control. Only the arguments favoring PID control are presented; however, 
a companion article outlining the arguments favoring MPC has been prepared by my colleague Dr. Wayne Bequette1 
and appears in this issue of Journal of Diabetes Science and Technology. We both agree that PID and MPC should both 
be considered as approaches rather than as specific algorithms. This article will focus on the PID algorithms I have 
developed with my colleagues.2–8 This version did not originate as a “PID” algorithm per se,9 but rather as a model of 
β-cell insulin secretion,10,11 referred to as “physiologic insulin delivery.” It was, however, first implemented2 using only 
the proportional, integral, and derivative terms needed to fit the β-cell response to a hyperglycemic clamp.12 Although it  
was later modified to include terms emulating cephalic-phase insulin release3 and the effect of insulin per se to inhibit 
insulin release,4 the term “PID” in this article can be taken to mean “proportional integral derivative.” 

Returning to the question of how an individual without training in control theory might make an informed choice 
regarding competing control algorithms, the question is not as straightforward as might appear on initial reading. 
The obvious answer is with a prospective randomized clinical trial that will compare the two approaches; however, 
as both PID and MPC algorithms come in multiple flavors, such a trial would necessarily need to focus on a specific 
MPC algorithm and a specific PID algorithm. For the comparison to be meaningful, each algorithm would need to be 
optimized to achieve the same a priori agreed-upon outcomes. Optimizing control algorithms is not a straightforward 
engineering task and it is unlikely there will be agreement as to which clinical outcomes should be used to assess 
performance. There is little agreement on what an ideal meal response should look like or how to factor in the use 
of supplemental carbohydrate to prevent hypoglycemia, or the use of open-loop meal boluses to prevent postprandial 
hyperglycemia, when comparing algorithms.

Review of Available Clinical Data
A comparison of the first studies using the Medtronic PID algorithm (Figure 1A) with the initial reports of MPC 
(Figure 1B; data extracted from published reports using FindGraph version 2.281, Uniphiz Lab) shows that good 
control can be achieved with either approach. Throughout this article, the focus will be on breakfast, as this tends to 
be the most difficult meal to control. Controllers that perform well during breakfast can be expected to perform well 
during other meals and during nighttime when no meals are consumed. The breakfast response with the Medtronic PID 
algorithm improved as modifications to the algorithm were introduced in the first three studies. Peak postprandial 
glucose levels declined from ~250 to 180 mg/dl, and levels 3–4 h postprandial became more stable. Meal responses 
obtained with MPC by teams comprising investigators at the University of Virginia and Padova and at Boston University 
and Massachusetts General Hospital13–16 (Figure 1B) generally showed the peak breakfast response to be similar to the 
initial PID study2. Still, comparing meal responses across studies can be confounded by differences in meal size, 
and averaging data inevitably results in peak postprandial values lower than the average of individual peak values.  
To investigate this further, the mean and standard deviation of individual breakfast meal responses were extracted from 
the published data (Figure 1C) and normalized to meal size (Figure 1D; results shown as mean and 95% confidence 
interval). From this analysis, significant differences in the peak response can be observed among the studies, but given 
the variability among the studies, it is hard to argue a clear advantage with either approach.

In addition to meal size, there are other uncontrolled factors in the analysis of Figure 1, one is the fat content in 
individual meals. With PID control, high-fat dinners have been shown to result in substantially elevated meal  
responses compared with low-fat dinners with identical carbohydrate content (Figure 2A, green versus blue curves,  
both obtained with PID control)5. This might be explained by an effect of free fatty acids to inhibit insulin’s ability 
to suppress hepatic glucose output,17 but irrespective of the mechanism, the result suggests that normalizing meal 
responses to the size of the carbohydrate load is a less-than-perfect approach to comparing meal responses. Absent a 
correction for carbohydrate or fat content, the dinner response with PID control5 was lower in this study than the 
dinner response obtained by Russell and coauthors16 with MPC (black line), and the reverse was true during breakfast. 
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Figure 1. Comparison of initial PID and MPC studies. (A) PID study 1 conducted at University of California, Los Angeles without meal bolus;2 
studies 2 and 3 conducted at Yale with (semi-closed loop) and without (closed loop) one-third meal bolus (randomized);3 and study 4 conducted 
at City of Hope with fixed meal bolus (2 U).4 (B) Model-predictive control study 1 conducted at University of Virginia,13 study 2 conducted in 
Padova,14 and studies 315 and 416 conducted at Boston University/Massachusetts General Hospital. Breakfast size in study 4 is assumed to be 
the same as in study 3, as per-day carbohydrate load was reported without delineating separate amounts by meal.16 (C) Mean and standard 
deviation of individual breakfast meals shown in (A) and (B). (D) Mean and 95% confidence interval normalized to meal carbohydrate amount.  
UCLA, University of California, Los Angeles; CL, closed loop; SCL, semi-closed loop; COH, City of Hope; S1, study1; S2, study 2; S3, study 3; 
S4, study 4; UVA, University of Virginia; BU/MGH, Boston University/Massachusetts General Hospital; SD, standard deviation; CI, confidence 
interval; CHO, carbohydrate.

At best, the data argue a definitive answer as to which of these specific MPC and PID algorithms has the better meal 
response will require a properly controlled prospective randomized study. 

Although not a comparison of PID versus MPC per se, Figure 2B highlights two additional issues related to the 
comparison of meal responses. All the data in the panel are from MPC studies—the green curve being from the same 
study by Russell and coauthors16 shown in Figure 2A (repeated from Figure 1B) and the red and blue curves from 
studies performed by Hovorka and coauthors.18,19 The first issue is how to compare two “closed-loop” algorithms in 
which one of the algorithms relies on a meal announcement with an open-loop meal bolus. The second, less obvious 
issue is how to decide which meal response is better—one that that goes up and down or one that remains flat. A flat 
meal response can be obtained with a sufficiently high premeal insulin bolus; however, as insulin has both metabolic 
and mitogenic effects,10 it is not clear that the “optimal” response is the same as the smallest response. We originally 
argued that the optimal meal response should emulate the response obtained in a normal, glucose-tolerant subject 
consuming the identical meal10—the comparative group in the 2006 study of PID control2—but the idea has gained 
little traction among advocates of MPC who tend to favor optimization of predefined mathematical cost functions. 
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Confounding comparisons of different control approaches 
is the use of glucagon to prevent or correct hypoglycemia.  
The group at Boston University/Massachusetts General 
Hospital has advocated the use of glucagon throughout 
development of their MPC algorithm,15,16 whereas the 
PID algorithm developed at Medtronic,2–4 and variations 
evaluated at Boston Children’s Hospital/Joslin Diabetes 
Center,5,6 have been developed for use with insulin alone. 
The use of glucagon is not strictly speaking an MPC versus  
PID question, as glucagon can be used with PID control. 
Castle and coauthors20 included glucagon in their fading 
memory proportional derivative controller (Figure 2C, 
blue and light blue lines, with PID and MPC results from 
previous panels included for reference), albeit the fading 
memory proportional derivative algorithm does not—
as is evident in the name—include integral action.  
A discussion of the benefit of integral action is deferred 
until later in this report. Here, it is noted only that the use 
of glucagon does not ensure prevention of hypoglycemia 
and that repeated use might not be tolerated by all 
subjects. Generally, the hypoglycemic incidence rate with 
PID control has gone down as the meal response has 
improved, with studies by Weinzimer and coauthors21,22 
on the use of PID with insulin feedback (PIDIFB) and the 
use of PIDIFB with or without pramlintide showing zero 
incidences in what are admittedly small studies.

A number of clinical studies using approaches that do 
not fall into either PID or MPC categories have appeared 
in the literature. These include the nighttime-only results 
obtained by Phillip and coauthors23 using MD-Logic 
(a type of fuzzy-logic control) and results obtained by 
Breton and coauthors24 comparing what the authors refer 
to as standard control-to-range (sCTR) and enhanced 
control-to-range (eCTR)—the latter being modified 
to include an MPC component. While a complete 
discussion of the relative advantages and disadvantages 
of controlling to a range versus controlling to a target 
is beyond the scope of this article, as is any theoretical 
discussion of fuzzy logic, the results obtained with the 
approaches are included for completeness. Figure 3A 

Figure 2. (A) Effect of fat content in closed-loop PID meal response5 

(high-fat dinner shown in green curve, with low-fat dinner with 
identical carbohydrate shown in blue) together with response obtained 
with MPC in a study by Russell and coauthors16 without use of meal  
boluses (black curve). (B) Same MPC curve from the study by 
Russell and coauthors16 shown in panel A (black line) together with 
MPC curves obtained from studies performed by Hovorka and 
coauthors18,19 with open-loop meal boluses. (C) Use of glucagon in 
closed-loop control fading memory proportional derivative control  
with and without glucagon20 (blue and light blue lines) with PID control 
obtained with insulin feedback4 and MPC results without meal bolus.16 
S4, study 4; BU/MGH, Boston University/Massachusetts General 
Hospital; HFD, high-fat dinner; LFD, low-fat dinner; FMPD, fading 
memory proportional derivative; GN, glucagon; COH, City of Hope;  
D, dinner; B, breakfast; L, lunch.

shows the glucose interquartile ranges (IQRs) obtained with MD-Logic23 (red-shaded area), eCTR24 (gray-shaded area), 
and PIDIFB

4 (magenta-shaded area).

The results obtained with MD-Logic23 in particular represent a seminal advance in the quest to achieve closed-loop 
control in that they were obtained outside of the clinic. Further, while the results are for nighttime only, a nighttime-
only controller is widely believed to be a more realistic goal for the first closed-loop device to be made widely available. 
Nonetheless, the nighttime results were not better than the nighttime results obtained with the initial PID controller 
modified with insulin feedback (PIDIFB).4 The IQR of glucose values was higher (Figure 3A) as  was the reported 
incidence of hypoglycemia (7 events in 27 nights with MD-Logic versus 0 events in 9 nights of control with PIDIFB,4  
or 6 events in 35 nights if the first three PID studies2–4 shown in Figure 1 are combined). While the sCTR algorithm24 
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had the lowest incidence of nighttime hypoglycemia 
(Figure 3C), the rate was achieved at the expense of 
having the highest nighttime glucose IQR (Figure 3B). 
The eCTR algorithm reduced the nighttime glucose IQR24 
but did so with a nighttime incidence of hypoglycemia 
more than twice that observed with MD-Logic23 or the 
first three PID studies combined.2–4

A comparison of the dinner glucose response with 
eCTR algorithm24 with that obtained with PIDIFB

4 shows 
that the eCTR also had an upper IQR well above that 
obtained with PIDIFB despite the two studies having 
comparable carbohydrate loads (1.08 ± 0.24 g/kg body 
weight for eCTR versus a median of 59.5 g with a range 
of 35–103 g for PID; body mass index but not body weight 
is reported in Reference 24). Here, the reader should 
only consider the responses between hours 19 and 22,  
as the eCTR protocol included a snack at hour 22 and the 
PIDIFB protocol did not. Still, considering the initial 3 h 
of the meal, and the fact that eCTR had more than twice 
the nighttime incidence of hypoglycemia during the 
night following dinner, it is hard to justify any statement 
as to the superiority of MPC over PID. Finally, while 
meal responses were not reported in the study using 

Figure 3. (A) Median and IQR range for dinner and nighttime control 
effected with PIDIFB algorithm4 superimposed with median and IQR 
for the enhance control to range eCTR study performed by Breton 
and coauthors24 and MD-Logic nighttime-only study performed by 
Phillip and coauthors.23 (B) Median and IQR for nighttime glucose 
values reported in the MD-Logic study by Phillip and coauthors.23 
(C) Standard control-to-range versus eCTR study performed by Breton 
and coauthors.24 CI, confidence interval.

MD-Logic (fuzzy logic), a study using a fuzzy logic controller has reported on meals.25 The study with meals (30 g 
breakfast and 60 g lunch)25 reported 10 subjects being enrolled, with 7 completing and 2 subjects being discontinued 
due to hypoglycemia. Average glucose levels were 165 mg/dl.

Although it is difficult to compare the meal response in this latter fuzzy-logic study25 with that obtained with any of 
the PID studies given the substantial difference in meal sizes, it is interesting to note that control was achieved without 
meal announcement. This is interesting insofar many investigators have concluded that meals cannot be controlled 
without open-loop bolus despite the fact that the initial 2006 PID study2 did not include meal announcement and 
showed peak meal responses that were generally within 15–25 mg/dl of those observed in normal glucose-tolerant 
subjects who consumed the identical diet.2 While Weinzimer coauthors21,22 showed the peak response obtained with 
PID could be improved by giving one-third the normal meal bolus 15 min in advance of the meal, the reliance on 
meal boluses has steadily declined in subsequent PID studies.4,5,6 The first report of PIDIFB used only a small fixed 
bolus (2 U for all meals; Figure 3C).4 This was later reduced to an even smaller bolus related to the subject’s total 
daily dose of insulin (0.5, 1.0, and 1.5 U in subjects using <15, 15–30, and >30 U)5 and then eliminated altogether in a 
study in children less than seven years old.6 The study in children less than seven years old argued specifically that 
the bolus should not be given in children for safety reasons, as children may not always consume the anticipated 
carbohydrates. Arguably, investigators should approach this issue with equipoise until a definitive study demonstrates 
that an adequate meal response cannot be obtained without the meal bolus and until the disadvantages of including the 
bolus are fully considered.

Use of Metabolic Models to Compare Control Algorithms
Still another approach to comparing control algorithms is to use model simulations. Model-based comparisons are 
inherently attractive in that everything other than variable of interest can be controlled, the number of simulations 
can be large, and any outcome of interest can be precisely calculated. Simulations can also be performed without 
putting patients at risk. The Food and Drug Administration has approved a simulator for replacing animal studies in 
preclinical investigational device exemptions,26 and the simulator has shown several model-based control algorithms 
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to outperform PID.27,28 Of the two studies showing poor PID performance,27,28 one showed substantial overnight 
hyperglycemia with PID (Figure 4A, individual subject data28) and one showed substantial hypoglycemia, with the 
average minimum glucose of 54 mg/dl (Figure 4B, 100 subjects with 1000 simulations27). However, in using a model 
to compare MPC to PID control, it is critically important to understand how the model used for simulation differs from 
the model used for control and—this should go without saying—how the PID controller used in the simulation was 
configured. It is equally important to note that numerous models capable of simulating closed-loop control have been 
proposed29–31 and that each model can be expected to produce a different answer as to whether PID control or MPC  
is the preferred control approach. These issues are addressed in the following paragraphs, beginning first with the 
choice of simulation model.

Figure 4. Use of model simulation to compare PID to model-based algorithms (A) PID versus MPC per se28 and (B) PID versus linear-quadratic-
Gaussian control.27 LQG, linear quadratic Gaussian.

Differences in simulation models relate primarily to the number of differential equations used to describe the glucose 
and insulin kinetics (model order), how intraday and interday variability in insulin requirement is characterized, 
and whether or not the model was developed from data obtained in individuals with type 1 or type 2 diabetes.32,33 
Generally, advocates of MPC have favored the use of high-order models for simulation and low-order models for the 
MPC algorithm, arguing that the inconsistency in model order approximates the differences that might be observed 
between a patient and a model. However, differences 
that arise from a difference in model order are not 
guaranteed to reflect differences between human and 
model or achieve statistical significance when assessing 
differences in ability to describe clinical data (F-test 
comparing sum square errors). This is particularly true 
when the high-order simulation model includes “near 
unobservable” terms. Most engineers will be familiar 
with the technical definition of observability as it relates  
to pole-zero cancellations;9 clinicians reading this report  
can simply take the phrase to refer to model components 
that do change the insulin pharmacokinetic (PK)/
pharmacodynamic (PD) curve by a clinically significant 
amount. Figure 5 shows an example of a near 
unobservable higher-order model effect that results in 
differences that are unlikely to be considered clinically 
significant. In the example, a low-order two-compartment 
model is fit to the higher-order model insulin PK curve 
taken from one of the subjects used in evaluating  
PID control with the University of Virginia model.  
The curve is taken from a simulation study conducted 

Figure 5. (A) Differences between model used for simulation (red 
curve) and model used for control (blue curve) assuming University 
of Virginia simulation model and low second-order model used for 
control (blue curve). (B) Residual runs analysis indicating statisticaly 
significant residuals that may or may not be clinically or control 
relevant (see text). UVa, University of Virginia.
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at the U.S. Department of Defense.26 While the difference between the low- and high-order model does result in 
statistically significant residuals (p < 0.001 by runs test) and is technically observable, it is unlikely that the difference 
is clinically or control relevant.

Although differences in model order can generate difference between the model used for simulation and the model 
used for control, an alternative method to introduce differences is to have the simulation model include time-
varying model parameters, as was done in the model used as an aid in developing the Medtronic PID algorithm.33  
Time-varying model parameters are necessary when describing individuals with type 1 diabetes using pumps to 
manage their glucose levels, as the majority of these subjects use different basal rates during the day, and there is 
substantial anecdotal evidence that the basal rates that work on one day may not work on another day. Generally, 
changes in the required basal rate reflect changes in model parameters related to insulin sensitivity or endogenous 
glucose production,32,33 and sudden changes in either can present a substantial challenge to both the MPC and PID 
control approaches. This is particularly so during periods where the subject is initially at target glucose and stable 
(rate of glucose change equal zero) and the basal requirement decreases, as it is during these times that the risk of 
hypoglycemia is greatest. Importantly, the only indication available to either algorithm that the basal requirement has 
decreased will be when glucose levels begin to decline. Understanding the differences in how an MPC versus a PID 
controller responds to such a challenge is critical to making an informed choice as to which algorithm is preferred.

The main challenge for an MPC controller is to identify the model parameters responsible for the decrease in basal 
requirement while at the same using those parameters to effect control. Generally, MPC algorithms use recursive least 
squares (RLS) to identify the parameters responsible for the change in insulin requirement. Control engineers should 
be familiar with the RLS algorithm; clinicians reading this commentary can simply consider the algorithm to be an 
efficient approach for obtaining the same parameters that would be obtained from regular least squares approach. 
Important points to consider are that, once the model parameters change, the algorithm will require at least as many 
new data points as there are model parameters and that, in practice, substantially more points are needed to keep 
the estimates from being overly sensitive to measurement error. As more points are added to the identification, a 
forgetting factor is needed to minimize the effect of earlier points (reflecting conditions before the change). This 
increases the time needed to converge on the new parameter values, reflecting need for less insulin. Optimal 
parameter identification requires glucose values and insulin values to be constantly changing—so called persistent 
excitation34—which decreases sensitivity to measurement noise. However, persistently changing glucose level is counter 
to the objectives of the control.

In contrast, PID control relies primarily on derivative action to suspend delivery once the initial fall in glucose from 
target is detected and on integral windup protection to prevent further insulin delivery until the risk of hypoglycemia 
subsides. Again, engineers reading this report should be familiar with integral windup protection; clinicians reading 
the report can simply consider the algorithm to be analogous to insulin-on-board calculations used to prevent 
overbolusing. The challenge for the PID controller is to assess when the initial fall in glucose is sufficient to warrant 
suspending the pump when the risk of rebound hyperglycemia is sufficient to justify restarting it and what basal rate 
should be used once restarted.

Returning to the question of how model simulations might be used to compare MPC and PID control, I would argue 
that simulations can be invaluable. For an MPC algorithm, simulations can characterize how fast the algorithm can 
identify changes in model parameters and determine the impact of using model parameters that have not converged 
to their new values on predictions of future glucose values as well as the impact of errors in calculating insulin 
delivery from those predictions. For PID control, simulations can be used to assess how reliable the derivative is 
at suspending insulin delivery, how effective the integral windup protection algorithms are in preventing rebound 
hyperglycemia, and whether an appropriate new basal rate is established. However, for the simulations to be of 
value, the simulator needs to include time-varying parameters. Moreover, any comparison of PID and MPC needs to 
state what model parameters will change and how fast the changes will occur. Generally, simulations in which the 
parameters change slowly favor MPC, whereas simulations with parameters that change rapidly favor PID control. 
With slowly changing parameters, RLS is able to track the parameters with sufficient accuracy to effect control based 
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on the estimated parameter values. With rapidly changing parameters, the derivative action within a PID controller 
is more likely to rapidly suspend delivery in response to a rapid decrease in glucose or deliver insulin in response 
to a rapid unanticipated increase. Ideally, the simulations should include parameter changes that result in prolonged 
changes in the underlying basal requirement, as this can be used to confirm that the control algorithm can re-establish 
target without error. The integral component of the PID controller can be assured of re-establishing target glucose 
levels at whatever basal rate is required, provided the rate does not exceed the maximum rate the pump can deliver.

The last statement represents what is likely the single most compelling reason that, “Despite all the progress in 
advanced control, the PID remains the most popular controller.”35 This phrase is taken verbatim from a report by the 
IEEE Control Systems Society, “The Impact of Control Technology,” in which the authors go on to note, “A remarkable 
property of a controller with integral action is that it gives the correct steady state, if a steady state exists, even for 
nonlinear processes.”35 I would add that this is true irrespective of the choice of parameters used to define the 
relative contribution of the proportional, integral, and derivative components (control gain Kp; U/h per mg/dl above 
target; integration time TI in minutes, and derivative time TD, also in minutes). For the clinician reading this report, 
parameter TI can be taken to affect how long it will take to achieve target, and parameter TD can be taken to affect 
how well the PID algorithm compensates delay in the insulin PK/PD curve. Although it is true that steady state 
target will be achieved irrespective of the values chosen for Kp, TI, and TD, the values will affect other aspects of the 
control performance such as meal excursions, incidence of nighttime hypoglycemia, and, most importantly, stability. 
Thus, any comparison of PID versus MPC—simulation or clinical—needs to state how the parameters were obtained. 
Comparisons in which the PID controller is poorly configured are inherently flawed and counterproductive to the 
goal of achieving closed-loop control.

As indicated earlier, the choice of parameter TI affects how long it may take to achieve target. Combining the 
proportional and integral components of a PID algorithm allows the user to set a desired rate of glucose change as the 
difference from target divided by TI. Higher values of TI will increase the time needed to normalize glucose but reduce 
the likelihood of hypoglycemia. The choice of TD affects how the PID compensates for delay. Generally, combining the 
proportional and derivative components allows any one delay in the PK/PD response to be perfectly compensated by 
choosing the derivative time equal to that delay. Using all three terms together makes tuning more complicated, but 
the principle is the same—integration time affects how long it takes to respond to changes in basal requirement and 
derivative time affects how well the algorithm adjusts for PK/PD delay. While it is true that combining proportional 
and derivative components can only effect perfect compensation for one PK/PD delay, modifications to the 
algorithm such as insulin feedback can limit the impact of all delays in the PK/PD response.36 Thus the often-stated 
argument made by advocates of MPC that PID control cannot address delay whereas MPC can is simply untrue and 
counterproductive. There are multiple mechanisms for compensating for delay when using PID; neither MPC nor PID 
can make the delays disappear. 

How are the PID parameters chosen? Typically, PID parameters are obtained empirically in much the same way as 
open-loop basal rates, carbohydrate-to-insulin ratios, and other open-loop parameters are chosen. This is not optimal. 
A detailed discussion of how the optimal tuning might be achieved is beyond the scope of this article; however, it 
is noted here that optimization is typically done with the aid of a model. Virtually all standard textbooks on control 
theory contain multiple problems in which a model of the system to be controlled is provided and the student is 
asked to design a PID controller to achieve specified criteria. This returns us to the question of what the appropriate 
model is.  It is inevitable that a poor choice of model will result in poor PID performance. 

Summary
Superimposing and/or placing side-by-side the clinical results obtained with the MPC and PID approaches studied 
to date shows no evidence of MPC being superior to PID control. Results of simulation studies showing superiority 
are based on simulation models that lack interday and intraday variability in insulin requirement. Arguments 
presented here favoring PID control point to a better meal response and a lower incidence of nighttime hypoglycemia.  
These arguments are independent of arguments that PID control reproduces what the β-cell naturally does, although 
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modeling the β-cell may still be a viable approach for optimizing control.11 Although there are challenges with changing 
the delivery site from the portal vein to a subcutaneous site, the clinical results achieved to date with PID control have 
improved as changes in the algorithm have been effected to meet those challenges. Conversely, the limitations related 
to MPC are rarely addressed by advocates of the algorithm. Specifically, what happens when the predicted future 
glucose values are based on parameters that are rapidly changing or change in the timeframe used in the prediction 
horizon? PID studies conducted to date have not used optimal PID parameters and it is unreasonable to expect the 
results obtained with the empirically derived values to be the best results that can be achieved.

Response to Comments Raised by Dr. Bequette
During the preparation of the MPC versus PID debate papers, Dr. Bequette and I exchanged preliminary versions 
of our paper and discussed format. We agree on many points; however, a “debate” in which the two sides agree 
on everything is not interesting. What do the authors disagree on? Dr. Bequette comments that simulation studies 
performed to date have included both model “parameter uncertainty” and “structure uncertainty.” While true,  
I would counter that the structural uncertainty likely introduced errors that were neither clinically nor control relevant. 
Having the blue line be the “model used for control” in Figure 5 and the red line be the “model used for simulation” 
is a meaningless structural uncertainty. Moreover,  the “parameter uncertainty” introduced was a one-time-only event, 
meaning the parameters could easily be identified during breakfast on Monday and then used to control lunch on 
Monday. The real-challenge with “parameter uncertainty” only occurs when the uncertainty is repeatedly introduced, 
i.e., if the parameters for lunch on Monday are not the same as for breakfast on Monday or if the parameters for 
breakfast on Tuesday are not the same as the parameters for breakfast on Monday. Still another disagreement is the 
statement put forth by my colleague that “the advanced control approach most commonly used in industry is model 
predictive control.”1 It is difficult to reconcile this with the statement by Åström and coauthors that, “Despite all the 
progress in advanced control, the PID remains the most popular controller.”35 Dr. Bequette and I have had numerous 
discussions on this point, and we agree that 90–95% of controllers used in industry are in fact PID. Dr. Bequette’s 
statement is true if the qualifier “advanced” is taken to mean “non-PID.” I agree that, of the 5–10% of non-PID loops, 
most are likely MPC but would disagree that PID is limited to non-advanced problems. I would argue that real-world 
complex control problems are routinely addressed by PID control and put forth as evidence patent literature describing 
complex problems such as spacecraft maneuvering (U.S. Patent 8352101) and missile control (US Patent 8436283) 
that use PID control. A close look at such patents suggests that the engineers have chosen PID control not because 
they are unfamiliar with the putative advantages of MPC, but because they are familiar with the disadvantages of  
the approach. 

Conclusion
Although the objective of this debate article was to argue the merits of PID control over MPC, the clinical data available 
to date indicate that both approaches work and that the debate would do well to include even more approaches. 
What is needed are fewer broadly sweeping statements about the putative weakness of any one approach and more 
constructive debate about the strengths and weakness inherent in all approaches. To this end, I thank my opponent in 
this debate, Dr. Bequette, for the many thoughtful discussions on the relative merits of the MPC and PID approaches 
in particular.

Funding:

Garry Steil is supported by a grant from the JDRF (1-2011-581, Closed-Loop Control Utilizing Model-Based PK/PD Compensation).

Disclosures:

Garry Steil serves on the medical advisory board for BD. No BD devices were used in the conduct of this study. Dr. Steil is a former employee of 
Medtronic MiniMed and is presently an investigator on a study for which Medtronic MiniMed provides devices.



1630

Algorithms for a Closed-Loop Artificial Pancreas: The Case for Proportional-Integral-Derivative Control Steil

www.jdst.orgJ Diabetes Sci Technol Vol 7, Issue 6, November 2013

References:

1. Bequette BW. Algorithms for a closed-loop artificial pancreas: the case for model predictive control. J Diabetes Sci Technol. 2013;7(6):1632–43.

2. Steil GM, Rebrin K, Darwin C, Hariri F, Saad MF. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes. 
2006;55(12):3344–50.

3. Weinzimer SA, Steil GM, Swan KL, Dziura J, Kurtz N, Tamborlane WV. Fully automated closed-loop insulin delivery versus semiautomated 
hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care. 2008;31(5):934–9.

4. Steil GM, Palerm CC, Kurtz N, Voskanyan G, Roy A, Paz S, Kandeel FR. The effect of insulin feedback on closed loop glucose control. J Clin 
Endocrinol Metab. 2011;96(5):1402–8.

5. Wolpert HA, Atakov-Castillo A, Smith SA, Steil GM. Dietary fat acutely increases glucose concentrations and insulin requirements in 
patients with type 1 diabetes: implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care. 
2013;36(4):810–6.

6. Dauber A, Corcia L, Safer J, Agus MS, Einis S, Steil GM. Closed-loop insulin therapy improves glycemic control in children aged <7 years:  
a randomized controlled trial. Diabetes Care. 2013;36(2):222–7.

7. Wintergerst KA, Deiss D, Buckingham B, Cantwell M, Kache S, Agarwal S, Wilson DM, Steil G. Glucose control in pediatric intensive care unit 
patients using an insulin-glucose algorithm. Diabetes Technol Ther. 2007;9(3):211–22.

8. Agus MS, Steil GM, Wypij D, Costello JM, Laussen PC, Langer M, Alexander JL, Scoppettuolo LA, Pigula FA, Charpie JR, Ohye RG, Gaies MG; 
SPECS Study Investigators. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2012;367(13):1208–19.

9. Ogata K. Modern control engineering. 4th ed. Englewood Cliffs: Prentice Hall; 2002.

10. Steil GM, Panteleon AE, Rebrin K. Closed-loop insulin delivery-the path to physiological glucose control. Adv Drug Deliv Rev.  
2004;56(2):125–44.

11. Steil GM, Grodsky GM. The artificial pancreas: is it important to understand how the β cell controls blood glucose? J Diabetes Sci Technol. 
2013;7(5):1359–69.

12. Steil GM, Rebrin K, Janowski R, Darwin C, Saad MF. Modeling beta-cell insulin secretion--implications for closed-loop glucose homeostasis. 
Diabetes Technol Ther. 2003;5(6):953–64.

13. Clarke WL, Anderson S, Breton M, Patek S, Kashmer L, Kovatchev B. Closed-loop artificial pancreas using subcutaneous glucose sensing and 
insulin delivery and a model predictive control algorithm: the Virginia experience. J Diabetes Sci Technol. 2009;3(5):1031–8.

14. Bruttomesso D, Farret A, Costa S, Marescotti MC, Vettore M, Avogaro A, Tiengo A, Dalla Man C, Place J, Facchinetti A, Guerra S, Magni L, 
De Nicolao G, Cobelli C, Renard E, Maran A. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and  
a model predictive control algorithm: preliminary studies in Padova and Montpellier. J Diabetes Sci Technol. 2009;3(5):1014–21.

15. El-Khatib FH, Russell SJ, Nathan DM, Sutherlin RG, Damiano ER. A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci Transl 
Med. 2010;2(27):27ra27.

16. Russell SJ, El-Khatib FH, Nathan DM, Magyar KL, Jiang J, Damiano ER. Blood glucose control in type 1 diabetes with a bihormonal bionic 
endocrine pancreas. Diabetes Care. 2012;35(11):2148–55.

17. Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose 
output in dogs. J Clin Invest. 1996;98(3):741–9.

18. Murphy HR, Elleri D, Allen JM, Harris J, Simmons D, Rayman G, Temple R, Dunger DB, Haidar A, Nodale M, Wilinska ME, Hovorka R. 
Closed-loop insulin delivery during pregnancy complicated by type 1 diabetes. Diabetes Care. 2011;34(2):406–11.

19. Hovorka R, Kumareswaran K, Harris J, Allen JM, Elleri D, Xing D, Kollman C, Nodale M, Murphy HR, Dunger DB, Amiel SA, Heller SR, 
Wilinska ME, Evans ML. Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised 
controlled studies. BMJ. 2011;342:d1855.

20. Castle JR, Engle JM, El Youssef J, Massoud RG, Yuen KC, Kagan R, Ward WK. Novel use of glucagon in a closed-loop system for prevention of 
hypoglycemia in type 1 diabetes. Diabetes Care. 2010;33(6):1282–7.

21. Ruiz JL, Sherr JL, Cengiz E, Carria L, Roy A, Voskanyan G, Tamborlane WV, Weinzimer SA. Effect of insulin feedback on closed-loop glucose 
control: a crossover study. J Diabetes Sci Technol. 2012;6(5):1123–30.

22. Weinzimer SA, Sherr JL, Cengiz E, Kim G, Ruiz JL, Carria L, Voskanyan G, Roy A, Tamborlane WV. Effect of pramlintide on prandial glycemic 
excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care. 2012;35(10):1994–9.

23. Phillip M, Battelino T, Atlas E, Kordonouri O, Bratina N, Miller S, Biester T, Stefanija MA, Muller I, Nimri R, Danne T. Nocturnal glucose control 
with an artificial pancreas at a diabetes camp. N Engl J Med. 2013;368(9):824–33.

24. Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, Dalla Man C, Place J, Demartini S, Del Favero S, Toffanin C,  
Hughes-Karvetski C, Dassau E, Zisser H, Doyle FJ 3rd, De Nicolao G, Avogaro A, Cobelli C, Renard E, Kovatchev B; International Artificial 
Pancreas Study Group. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. 
Diabetes. 2012;61(9):2230–7.

25. Mauseth R, Hirsch IB, Bollyky J, Kircher R, Matheson D, Sanda S, Greenbaum C. Use of a “fuzzy logic” controller in a closed-loop artificial 
pancreas. Diabetes Technol Ther. 2013;15(8):628–33.

26. Laxminarayan S, Reifman J, Steil GM. Use of a food and drug administration-approved type 1 diabetes mellitus simulator to evaluate and 
optimize a proportional-integral-derivative controller. J Diabetes Sci Technol. 2012;6(6):1401–12.



1631

Algorithms for a Closed-Loop Artificial Pancreas: The Case for Proportional-Integral-Derivative Control Steil

www.jdst.orgJ Diabetes Sci Technol Vol 7, Issue 6, November 2013

27. Patek SD, Breton MD, Chen Y, Solomon C, Kovatchev B. Linear quadratic gaussian-based closed-loop control of type 1 diabetes. J Diabetes Sci 
Technol. 2007;1(6):834–41.

28. Magni L, Raimondo DM, Bossi L, Man CD, De Nicolao G, Kovatchev B, Cobelli C. Model predictive control of type 1 diabetes: an in silico trial.  
J Diabetes Sci Technol. 2007;1(6):804–12.

29. Steil GM, Clark B, Kanderian S, Rebrin K. Modeling insulin action for development of a closed-loop artificial pancreas. Diabetes Technol Ther. 
2005;7(1):94–108.

30. Steil GM, Reifman J. Mathematical modeling research to support the development of automated insulin-delivery systems. J Diabetes Sci 
Technol. 2009;3(2):388–95.

31. Steil GM, Hipszer B, Reifman J. Update on mathematical modeling research to support the development of automated insulin delivery systems. 
J Diabetes Sci Technol. 2010;4(3):759–69.

32. Kanderian SS, Weinzimer S, Voskanyan G, Steil GM. Identification of intraday metabolic profiles during closed-loop glucose control in 
individuals with type 1 diabetes. J Diabetes Sci Technol. 2009;3(5):1047–57.

33. Kanderian SS, Weinzimer SA, Steil GM. The identifiable virtual patient model: comparison of simulation and clinical closed-loop study results.  
J Diabetes Sci Technol. 2012;6(2):371–9.

34. Norton JP. An introduction to identification. Mineola: Dover Publications; 2009.

35. Åström KJ, Hägglund T. Auto-tuners for PID controllers. In: Samad T, Annaswamy AM, eds. The impact of control technology. IEEE Control 
Systems Society; 2011.

36. Kanderian S, Steil G. Apparatus and method for controling insulin infusion with state varible feedback. Patent publication number 
US2007/0173761.


