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Abstract
In neurodegenerative disorders effective treatments are urgently needed, along with methods to
detect that the treatment worked. In this review we discuss the rapid progress in the understanding
of recessive proximal spinal muscular atrophy and how this is leading to exciting potential
treatments of the disease. Spinal muscular atrophy is a caused by loss of the Survival Motor
Neuron 1 (SMN1) gene and reduced levels of SMN protein. The critical downstream targets of
SMN deficiency that result in motor neuron loss are not known. However, increasing SMN levels
has a marked impact in mouse models, and these therapeutics are rapidly moving towards clinical
trials. Promising preclinical therapies, the varying degree of impact on the mouse models, and
potential measures of treatment effect are reviewed. One key issue discussed is the variable
outcome of increasing SMN at different stages of disease progression.

Spinal Muscular Atrophy
Spinal muscular atrophy (SMA) describes a group of lower motor neuron disorders with
genotypic and phenotypic diversity that can be inherited as dominant, recessive or X-linked
traits. The focus of this review will be on the most common form of SMA, 5q proximal
recessive SMA caused by loss or mutation of the Survival Motor Neuron 1 gene (SMN1) and
retention of the SMN2 gene1. SMA has a frequency of 1/11,000 new births2-4 and carrier
frequencies that range from 1/47-1/72 depending on racial group4. SMA represents the most
common genetic cause of infant death5. Many other types of SMA are related to mutated
genes that are expressed in not just the nervous system but in a wide range of tissues. This is
also the case with SMN expression, and the reason for selective motor neuron or motor
circuit involvement in 5q SMA is not known1, 6. Proximal 5q SMA can be classified
clinically into five subtypes based on severity and onset7. Type 0 is the most severe subtype
and is characterized by weakness at birth. Type 1 is the most common subtype and is
associated with onset prior to 6 months of age and the lack of ability to sit independently.
Without ventilatory support, death usually occurs prior to age 2 in type 1 SMA. Onset of
type 2 occurs between 6-18 months and the ability to sit upright is achieved while
ambulation is not. Type 3 has onset after 18 month of age and ambulation is at least
temporarily achieved. The mildest subtype is type 4 characterized by mild proximal
weakness with adult onset8, 9.

Correspondence: Arthur Burghes, Department of Molecular and Cellular Biochemistry 363 Hamilton Hall, 1645 Neil Ave, Columbus
Ohio 43210, burghes.1@osu.edu Phone 614 688 4759 Fax 614 292 4118.

NIH Public Access
Author Manuscript
Ann Neurol. Author manuscript; available in PMC 2014 September 01.

Published in final edited form as:
Ann Neurol. 2013 September ; 74(3): . doi:10.1002/ana.23995.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Genetics of 5q SMA and phenotype modification in man
The loss or mutation of SMN1 and the retention of SMN2 causes SMA1, 6. SMN1 and SMN2
differ by a single nucleotide in exon7 that does not alter an amino acid but does alter a splice
modulator10-12. The majority of the transcript from SMN2 lacks exon7 thus the resulting
SMN protein does not oligomerize efficiently and is degraded13-16. The copy number of
both SMN1 and SMN2 vary in the population, which is particularly relevant to the severity
of this disease4, 17. Additional copies of the SMN2 gene can modify the SMA phenotype
with an inverse correlation of phenotypic severity and copy number17, 18. Spinal muscular
atrophy has been modeled in mice by placing a human SMN2 transgene on the background
of a homozygous loss of function mouse Smn allele19-21. The introduction of two copies of
SMN2 into a Smn knockout mouse results in a severe SMA like phenotype and death at 5
days. The presence of eight copies of SMN2 on this background results in mice that are
essentially normal. The addition of a transgene expressing SMNΔ7 (SMN lacking the exon7
sequence) along with two copies of SMN2 extends lifespan of the mouse to ∼14 days. In
addition to alterations in the SMN2 copy number, variants in SMN2 gene have been
identified that result in increased full-length SMN production. One such variant is 859G>C
in exon7 of SMN2 that increases full-length transcript by about 20% and is found in patients
with mild SMA22-24. Interestingly, this variant occurs in two copies in milder type 3b
patients, one copy in type 2 patients, and does not occur at all in severe type 1 patients22-24.
This leads to the prediction that a 20% increase in full-length SMN mRNA in 2 copy SMN2
patients will likely result in type 3b SMA and most likely a 25% increase in full-length
SMN mRNA in those same patients would result in no SMA phenotype22, 24.

In addition to variants within the SMN2 gene there are also modifiers of SMA that lie
outside the SMN locus. This is clear from haploidentical siblings with the same copy
number of SMN2 that have different SMA severities17, 25-27. While families with type 2 and
3 SMA siblings are most common, a similar phenomenon also occurs with type 1 and type 2
SMA siblings28, 29. Plastin 3 mRNA has been reported to be markedly elevated in some
milder siblings and is suggested to be a modifier of SMA30. However, high Plastin 3 mRNA
levels are also found in female siblings with the more severe SMA phenotype31. One
possibility is the Plastin 3 modifier is female dependent and incompletely penetrant. An
alternative theory is that Plastin 3 is not a critical modifier of SMA phenotype. The role of
Plastin 3 in SMA remains uncertain as no DNA changes in the Plastin 3 gene itself, nor any
activator of Plastin 3 expression that segregates with the mild sibling, have been reported.
The regulators of splicing in the SMN1 and SMN2 genes that alter incorporation of exon7
have been studied extensively. Numerous sites have been found that bind either a negative
or a positive regulator of splicing32. Within some of these regulators exists a series of
variants in the single nucleotide polymorphism databases. These variants could alter the
activity of the splicing regulator. While to date it has not been reported, at least one
possibility to explain the alteration of SMN expression in haploidentical discordant siblings
could be a mutation in one of the numerous regulators of SMN2 splicing.

SMN Function
SMN has a clear canonical function in the assembly of Sm proteins onto snRNAs33. Thus it
is not surprising that complete loss of SMN is lethal both to an organism and to a cell, since
the assembly of snRNAs is essential in splicing6, 19, 34, 35. It remains unclear whether
disruption of SMN's essential splicing function, an additional axonal SMN function, an
unknown function, or some combination thereof is critical for the SMA phenotype. We have
previously discussed the potential mechanisms of SMA in a review6. Understanding the
mechanism of SMA is of critical importance for therapeutic development of clinically
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applicable targets directly downstream of SMN. The investigation of downstream genes will
provide valuable targets that can be altered to improve SMA disease phenotype.

Assays of the ability of SMN to perform assembly of Sm proteins onto snRNA show a very
tight correlation to SMA phenotypic severity in cells and extracts from SMA mouse spinal
cord36, 37. Furthermore, there is a correlation with ability to perform snRNP assembly and
the ability of a transgene to correct SMA6, 38. The predicted outcome of reduced snRNP
assembly is an alteration in gene splicing due to reduced snRNP levels6, 39. As the snRNPs
most affected by SMN reduction are those involved in splicing minor introns, genes
containing minor introns are predicted to be the primary target of reduced snRNP
assembly37-39.

Splicing has been examined in tissues where SMN is reduced and, provided samples are
assayed early in the SMA disease progression, there are minimal splicing changes40. Thus it
appears that SMN deficiency does not produce a plethora of splicing changes40. We do not
consider small (2-5%) changes likely to have any major consequence on the cell. Using laser
capture microdissection Ruggi et al have shown that the amount of full-length SMN from
SMN2 is lower in motor neurons in normal mice than in other neuronal cell types, providing
a partial explanation of why motor neurons are selectively affected41. To date there is no
comprehensive data on the splice changes that occur specifically in SMA motor neurons. It
is likely that there are only a few critical downstream targets altered upon SMN deficiency
as it appears that not all, or even most genes, are significantly affected by reduced SMN.

One change with SMN reduction that has been reported in both Drosophila and mouse is the
splicing of the minor intron in the stasimon gene39, 42. The stasimon gene shows an
approximately 30% reduction of a spliced isoform in motor neurons and 40% in
proprioceptive neurons of the SMA mouse39. In Drosophila with reduced SMN the total
larvae shows a similar level of splice alteration (30%). The exact level of alteration in either
the Drosophila proprioceptive neurons or motor neurons is not clear39. Expression of
stasimon in the SMN deficient fly does correct some of the larval NMJ defects but not all. In
addition, it is not clear whether the exon deficient isoform shows any rescue ability as
opposed to the full-length isoform39. While this data clearly shows that a U11/U12 intron is
affected in SMA mice, the crucial nature of the target in SMA needs to be confirmed by
additional experiments. For instance, does knockdown of stasimon in vivo in mouse neurons
produce an SMA like phenotype or does replacement of stasimon in the SMA mouse have
any effect?

In Drosophila the mutant SMN alleles are non-functional, and the larvae are reliant on
maternal SMN43. SMN deficient Drosophila show decreased movement, defective motor
rhythm and abnormal neurotransmitter release at the neuromuscular junction in larva42.
These phenotypes can be corrected by expression of SMN in cholinergic neurons, but not by
expression of SMN in glutamatergic or GABAergic neurons42. In Drosophila the motor
neuron is glutamatergic whereas the proprioceptive neuron is cholinergic. Previous studies
in the SMA mouse have suggested the importance of the proprioceptive neurons in effecting
the output of the motor neuron44. In addition, correction of SMN in just motor neurons or
just muscle of SMA mice does not have a major impact on survival yet correction in all
neurons does45-47. Interestingly, the expression of SMN in motor neurons can correct the
neurotransmitter release properties at the NMJ and restore the synaptic stripping on the
motor neuron46, 47. Importantly, removal of SMN from the motor neuron in the presence of
two copies of SMN2 does result in a clear motor neuron phenotype although the mice do
survive longer than Δ7SMA mice48. There is profound reduction in muscle bulk and
changes in developmental markers of muscle in SMA49. This has led to the suggestion that
high SMN levels above those from two copies of SMN2 are required in muscle tissue. While
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this is possible, it is difficult to separate the indirect atrophic effects of denervation from
direct effects of SMN deficiency on muscle atrophy and development. High expression of
SMN in just muscle does not correct the SMA phenotype in mice45. Whether complete
SMA treatment will require expression of high SMN levels in multiple tissues including
muscle remains to be determined.

The mouse and human have considerably more introns than lower organisms. Therefore it
remains very important to obtain a complete catalogue of splice alterations in neurons. In
this regard, it is essential to have RNA-seq data on motor neurons along with suppression
and knockdown studies using scAAV9 delivery in SMA mice. This will allow the definition
of critical downstream targets. Induced pluripotent stem cells have been developed from
SMA patients and neurons/motor neurons do show a mild phenotype50 These cells are being
used in screens to identify drug compounds. Again RNA-seq data from these cells would be
useful along with the identification of factors that suppress phenotypes in these cells. This
will afford the opportunity to compare the changes occurring in vivo in animal models of
SMA with those found in vitro in human cells.

SMN has been reported to interact with a large number of proteins. Whether all these
interactions really contribute to a function in the cell remains debatable6. It is important to
note that biochemical studies using SMN missense mutations in vitro in culture need to be
interpreted with care due to the ever present full-length wild-type SMN in the cell. In vivo in
the mouse, mild SMN missense mutants interact with wild-type SMN to form functional
complexes (complementation) whereas SMN missense mutants on their own are
nonfunctional38.

It is important to consider functions other than snRNP assembly that could be involved in
the development of SMA. SMN is found in low amounts in the axon and reduction of SMN
leads to reduced β -actin mRNA transport and axon defects51-53. This has led to the
suggestion that SMN has a unique function and interacts with some different proteins in the
axon. The question that arises include: What is this axonal complex and can it be assayed
biochemically? Certainly it is possible that the Lsm proteins54 or others could be assembled
onto mRNA for transport down the axon. If this is the case this assembly reaction can be
measured and correlated to reduced Sm assembly in SMA6. SMN has been reported to
interact with the golgi adaptor protein Alpha Cop55, 56 as well as HuD57, 58. These proteins
are present in some RNA granules in the axons yet it is difficult to reconcile the significance
of these SMN complexes when relatively few particles in the axon show complete overlap.
Furthermore, how are these various complexes maintained in equilibrium in the cytoplasm
where different SMN partners are competing with each other for the same spot on SMN?
Finally, overexpression of these binding partners should act in dominant negative manner to
compete out the other SMN functions if these multiple complexes do in fact occur in the
same cell. If transport of mRNA is a critically affected function in SMA then it becomes
important to determine what will suppress the phenotype. Our preference is that a clear
strong suppression of the SMA phenotype be obtained in the mouse. For example,
overexpression of HuD has been reported to suppress axonal defects in cultured cells but
this finding has not been tested in vivo by scAAV9 delivery into the SMA mouse57. If strong
suppression can be shown then this is both a new target for therapeutics and evidence for the
importance of that particular mechanism in SMA.

Current therapies and what has been tested in SMA
The clinical management of SMA is designed to address the secondary effects of muscle
weakness, and the standards of care for SMA have been described elsewhere59. Outside of
supportive care, there are currently no effective therapeutic interventions available for SMA.
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A number of drug compounds have been tested in SMA clinical trials, but to date none have
proven clearly effective. These studies include both presumed neuroprotective agents and
those expected to induce SMN. Studies with gabapentin and riluzole for neuroprotective
effects showed no benefit60, 61. Several small molecule compounds, some of which are
available clinically for other non-SMA related FDA-approved indications, have been shown
to promote inclusion of exon7 in SMN2 transcripts by alteration of splicing and or induction
of SMN expression levels. However in all cases these compounds were found by induction
of SMN in patient fibroblast lines. Given this is a dividing cell and not a motor neuron the
possibility exists that these compounds do not induce SMN in vivo in the required cell types.
Indeed we have found this to be the case for a number of molecules when tested in mice
(unpublished observation). Of the compounds reported to induce SMN in cultured cells,
phenylbutyrate, hydroxyurea, and valproic acid have been taken to clinical trial without
evidence of clinical benefit62-67. Salbutamol increased full-length SMN protein production
in fibroblasts from SMA patients68, but clinical trials showed only a modest effect and
blinded, placebo controlled studies have not been performed69. There are multiple factors
that could contribute to the failure of these clinical trials. First and foremost would be the
lack of clear data that the compounds induce SMN in the required cell types in vivo. Second
is the inappropriate timing of treatment delivery (i.e. in late symptomatic patients). It is
increasingly becoming clear that at least in SMA model mice there is a therapeutic window
when increased SMN protein is needed for motor neuron survival and an improvement in
phenotype70, 71. Most SMA patients enrolled in these trials have possibly been outside this
therapeutic window where increasing SMN levels would be predicted to have an effect. One
key aspect that is not fully understood is the requirement for increased SMN in the different
types of SMA, and whether increasing SMN later in the course of disease in type 2 and 3
patients will allow the remaining motor neurons to function better or not. The timing of
motor neurons loss in SMA type 2 and 3 and whether there is a specific window of
development which overlaps type 1 is not known. To get complete answers to these
questions will require human clinical trials with the strong SMN restoring agents that have
recently been developed. While we cannot be certain that early induction of SMN is required
for correction of SMA in humans, understanding the biology of SMA and the consideration
of this possibility is important in clinical trial design and interpretation. Although there have
been problems with the initial drug compounds evaluated, there are now SMN inducers in
the pipeline that clearly have a major impact on the SMA mouse models in vivo.

Therapeutic Pipeline for SMA in 2013
Currently the main targets for therapeutics in SMA are increasing SMN from SMN2 or
restoration of SMN levels using gene therapy. Other therapeutic possibilities such as stem
cells that can differentiate into motor neurons, neuroprotective strategies and the use of
targets downstream of SMN deficiency (once defined) are significantly behind the progress
of SMN restoration. The effects of stem cell therapies, to date, are related to trophic support
of the motor neurons rather than functional motor neuron replacement72-74. The requirement
of implantation of stem cells along the full length of the spinal cord and establishment of
synaptic connections remain significant challenges, and currently this is an experimental
concept requiring much further development. The required targets of neuroprotective
therapies remain unknown, and to date, in SMA and other neurological disorders, impressive
results are lacking.

Therapies targeting SMN protein restoration levels are the best supported by preclinical
work and hold the most promise for an effective treatment (table 1 and 2). When SMN is
restored early in SMA mouse models, a clear rescue of SMA phenotype and increase of
survival occurs71, 75, 76. Approaches to increase SMN include gene therapy for SMN
replacement, antisense oligonucleotides (ASO) to modify SMN2 splicing, small molecule
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therapies targeting modification of SMN2 splicing, extending the stability of SMN protein,
and activating the SMN2 promoter (Table 1 and Table 2). Earlier reports of gene therapy in
the SMA mouse demonstrated transduction of SMN to the motor neurons in the lumbar
spinal cord after delivery to multiple muscles and retrograde delivery of the rabies G
pseudotyped virus to the motor neurons. However this transduction is not as efficient as
subsequent studies, and the lentivirus studies produced a minimal impact on survival in the
SMA mouse77.

In 2010/2011 dramatic and successful rescue of the SMA mice was reported by four groups
using gene therapies to replace SMN with an adeno-associated virus-based vector76, 78-80.
The AAV used was serotype 9 and self-complementary or scAAV9, this virus has the ability
to cross the blood brain barrier and results in rapid expression. Various routes of delivery of
scAAV9 SMN including intravenous, intracerebroventricular, and combined routes have
been investigated79, 81, 82. The combined findings of preclinical work support that sufficient
viral titer and transduction within the central nervous system will be critical in future clinical
trials. The delivery of scAAV9 has been explored in larger animals including both primates
and the pig. In large animals, scAAV9, when introduced into the vasculature, crosses the
blood brain barrier and results in efficient transduction of motor neurons in various regions
of the spinal cord83-85. Preclinical toxicology studies in both primates and mice indicate
good safety of scAAV9-SMN, and in the near future an IND will be filed on scAAV9-SMN
for an initial clinical trial in type 1 SMA using vascular delivery (Brian Kaspar and Jerry
Mendell, personal communication). In addition to vascular delivery, intrathecal delivery has
been investigated in large animals; again this results in efficient transduction of motor
neurons and allows for a reduced viral dose to be used85-87. Studies are underway to fully
optimize this route of delivery and to obtain the required toxicology studies to move this
treatment to clinical trials. Gene therapy is well placed for the treatment of SMA with clear
preclinical efficacy and a good toxicology profile. Autoimmunity against restored SMN, as
seen in other gene therapy trials, is not predicted to occur in SMA due to the presence of
endogenous SMN levels. scAAV9-SMN offers the potential one-time dosing without the
requirement of repeated treatment. The main disadvantage currently is the production of the
large amount of virus required for treatment.

Antisense oligonucleotides (ASOs) are powerful tools for therapeutic and investigative
applications. Utilizing complementary base pair recognition to bind mRNA, ASOs can be
used for gene suppression (blocking translation of RNA to protein) or modification of RNA
processing and therefore exon content. ASO therapy for SMA can be designed to modify
SMN2 by correcting pre-mRNA splicing (increased incorporation of SMN exon7), either by
promotion of binding of splicing factors (bifunctional ASO's) or blocking hnRNPA1 binding
at splice suppressor sites. We have recently extensively reviewed the use of ASOs in SMA
in particular in preclinical studies88. Here we will briefly indicate the most salient features.
Bifunctional ASO's are thus named due to the presence of both a domain complementary to
a specific RNA and a secondary domain to facilitate splicing factors such as SR proteins.
These ASOs have been used predominantly in cells in culture to induce incorporation of
SMN2 exon7 in vitro and not tested in mice extensively in vivo. Morpholino and 2′-O-
methoxyethyl (MOE) chemistries in particular have been used to block the negative
regulators of the ISS-N1 sequence. Both chemistries result in remarkable rescue of the SMA
mouse. The morpholino gives a rescue of over 100 days in SMA model mice with
cerebrospinal fluid delivery89-91. In contrast MOE gives reduced efficacy with a single
cerebrospinal fluid delivery but an enhanced efficacy when delivered at multiple time points
and at high doses peripherally with a survival benefit of well over 100 days92. There appears
a clear difference here; however it has to be remembered that the blood brain barrier in mice
is relatively open at the stage of development when this ASO is delivered. Therefore it is
difficult to predict exact distribution with peripheral delivery. It is our view, for numerous
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reasons, that motor neurons and neurons are the critical target, but which is the best
chemistry to use in clinical trials for the treatment of SMA will require testing of both
chemistries with rigorous preclinical data in both mice and primates. In essence the ability of
ASOs to increase full-length SMN protein has been demonstrated in vitro and in vivo, and
preclinical studies successfully rescue mouse models of SMA when delivered early90-96.
Recently two early phase trials have been initiated by ISIS Pharmaceuticals to investigate
the safety and pharmacokinetics of intrathecal delivery of MOE ASO in patients with
infantile-onset SMA and in older children with milder disease. The results of these studies
are eagerly anticipated. Initial results indicate that for the MOE chemistry that they are
safe97. The ASOs have clearly shown efficacy in animal models now the question remains
how this translates into human studies. What ASO chemistry works the best with intrathecal
delivery, when it needs to be given, as well as the repeat dosing requirement will all become
important questions. The advantage of an ASO is the relative simple manufacture, the lack
of toxicity, the clear efficacy and the specificity to target which should give minimal
toxicity. The disadvantage is the lack of clear knowledge on the optimal chemistry and the
difficulty of repeat dosing in a simple manner.

Table 2 lists small molecule drugs that have been developed, the associated proposed
mechanism of effect, and the impact on survival in mouse models of SMA. Several histone
deacetylase (HDAC) inhibitors have been investigated in SMA mouse models in vivo with
variable effects on survival, but a major problem is that currently all pan HDAC inhibitors
have shown Ames positive tests and indicate a major issue for a pediatric indication such as
SMA. However a number of other small molecule drugs that increase SMN production from
SMN or alter splicing of SMN2 to increase incorporation of exon7 have been identified with
high throughput screening. Quinazolines are shown to increase SMN2 promoter activity, and
derivatives have been shown to increase SMA mouse survival to a greater or lesser degree
depending on the severity of the model used.98-100 The drug is currently moving to phase
one clinical trials. However drug compounds of a second generation have now been reported
these compounds have been developed by PTC and Roche using HTS screens. They
identified molecules that alter the splicing of SMN2 such that more exon7 is incorporated
and more full length SMN is produced. These molecules have a remarkable impact on the
SMA model mice increasing live span to at least 150 days when drug is removed. Thus
clearly small molecules conventional drugs to alter SMN2 splicing and hence amount of
SMN produced by a gene can be developed, and this offers exciting prospects for the
development of conventional drugs for treatment of SMA. Potential advantages of a drug
compound include straight forward manufacture, easy delivery with a reasonable
expectation that the compound will be distributed to where it is required. Possible
disadvantages include the potential for toxicity of the compound, in particular, with
requirement of sustained use.

Future Parallel Measurements of Treatment Response in Humans and
Mouse

Candidate outcome measures include muscle strength testing, motor function testing, muscle
mass imaging, functional scales, quality of life questionnaires, survival, time to ventilator
dependence, electrophysiology, and others101. Clinical functional scales, vital for measuring
treatment effect in clinical trials, are variably hampered by the wide range of disease
severity, and variably onset and progression, and age dependent factors, an issue highlighted
by a report of a Rasch analysis of SMA motor scales102. Until there is an effective treatment
for SMA, it remains uncertain which outcomes will be sensitive to treatment effect.
Therefore, sensitive and reliable biomarkers with predictive, prognostic, and
pharmacodynamics functionality are needed for effective translation of promising
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therapeutics, and it is ideal if markers can be similarly applied in animal models and humans
to obtain parallel measurements. Proof of concept and correlation of treatment effect in
target tissues using animal models can provide powerful validation of a particular
biomarker's potential. Ideally measures should be tested in preclinical models using
randomized, double blind, placebo intervention study design to predict findings in early
clinical trials. Without accurate biomarkers and surrogate endpoints the risk is that effective
treatments will be deemed ineffective due to incorrect timing or delivery or incorrect patient
selection. Molecular, electrophysiological and imaging tools have been investigated as
potential biomarkers and surrogate endpoints. Currently there are biomarker panels for SMA
that correlate with severity of weakness and function103, 104, but whether these markers are
related to the biology of the disease and will have predictive or surrogate endpoint ability
remain to be determined. SMN transcripts and protein levels can be reliably measured in the
peripheral blood, but these levels do not correlate with function105. Imaging modalities
including ultrasound, dual-energy X-ray absorptiometry, and magnetic resonance have been
investigated but currently have technical limitations that limit utility of the techniques. Due
to the inaccessibility of the motor system and target tissues to endpoint analysis in humans,
electrophysiological markers are particularly promising tools of motor unit assessment in
vivo.

Compound muscle action potential (CMAP) is an electrophysiological measure of the total
output of the motor units supplying a particular muscle. Failure of any portion of the motor
unit (the motor neuron, axon, synapses, or innervated muscle fibers) may result in reduced
CMAP size. CMAP is a simple technique, a distinct advantage, but the indirect nature of
CMAP response does not take into account the process of collateral reinnervation.
Therefore, the CMAP response may be partially or fully recovered with less severe motor
neuron loss. Recording repetitive CMAP responses with trains of nerve stimulation can
quantify failure at the synapse as suggested to occur in animal models and patients106-108.
Motor unit number estimation (MUNE) is a modification of CMAP that allows an
estimation of the functional motor units supplying the muscle being tested. The technique of
MUNE compensates for the process of reinnervation and gives a more direct estimation of
the number of motor units and the average size of individual motor unit potentials within the
CMAP response. Despite this more direct assessment, the technique of MUNE requires
more evaluator skill can be prone to bias, and these factors can potentially limit MUNE's
applicability to multicenter clinical trials.

Clinically, CMAP and MUNE correlate with disease severity, functional status, SMN2 copy
number, and age109-111. CMAP and MUNE have not been fully investigated in preclinical
models of SMA. CMAP and MUNE can be used in mouse models to determine the precise
timing of motor unit loss, and the availability of preclinical treatments with robust effect can
be used to determine if CMAP and MUNE are valid surrogate endpoints of motor unit
rescue. It is expected CMAP and MUNE will have predictive biomarker ability (i.e. if
CMAP and MUNE are severely reduced; a robust response with SMN restoration would be
less likely) and surrogate endpoint potential (measurement of a treatment effect). In SMNΔ7
mice CMAP and MUNE are reduced at onset of SMA phenotype and fully restored with
early SMN restoration (unpublished observation). It is predicted that complete rescue would
lead to normal CMAP and MUNE results. Whereas delayed and incomplete rescue would
lead to partially preserved MUNE and the CMAP would to an extent be normalized
depending on the capacity for remaining motor units for reinnervation. It remains to be
determined whether SMN restoration improves the function of the motor neurons that would
have otherwise survived without intervention. Thus, another possible outcome with late or
delayed treatment could include no change in MUNE (no rescue of motor neurons) but
increased CMAP due to enlargement of the territories of the surviving motor neurons
(increased divergence or output) (figure 1). Another particularly promising technique often
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grouped with electrophysiology is electrical impedance myography. EIM determines
impedance characteristics of muscle tissue but does not assess physiology of muscle or the
motor unit and has shown significant promise as a longitudinal measure in SMA, in
particular due to ease of application and non-invasive nature of the technique112.

Unmet Needs and New Directions for Research
The downstream targets of SMN remain a central and important unanswered question. The
effect of SMN deficiency on splicing changes remains the most likely pathway affected but
the downstream targets remain to be identified. Therefore it is critical to define all the
splicing changes that occur in motor neurons when SMN is deficient, and because of non-
autonomous function of motor neurons, this determination should occur with motor neuron
in situ in the spinal cord. Once candidate genes are identified it is important to confirm
whether identified targets can suppress the SMA phenotype. To date no such large impact
genes have been found. Importantly, the expression profile of identified targets would
indicate fundamental biology of the disease which can influence the development of
biomarkers, understanding of the timing of the disease, and design of future therapies.

Why SMN deficiency results in motor neuron dysfunction remains uncertain. Furthermore,
the specificity of the effects of SMN deficiency on motor the system has been questioned.
The extra-motor phenotypic features in mouse models have prompted a closer assessment of
the phenotype in human SMA. Distal extremity necrosis in mild mouse models lacking an
overt phenotype of weakness and aged rescued severe mouse models have prompted the
consideration of a vascular role of SMN.21, 76, 92, 96 Additionally, cardiac defects, possibly
related to autonomic involvement, are described and have been corrected with SMN
targeting therapies in mouse models.46, 85, 113 Other features of disordered autonomic
function has been reported in aged rescued animals including priapism, bowel obstruction,
and bladder distention.96 In mice, where Smn is specifically reduced and there is no
dependence on the human SMN promoter, extra-motor features are lacking8. This suggests
that these features may be phenomena of the human SMN promoter in the mouse rather than
a true reflection of disease state. Rarely features outside the motor system have been
reported, typically in patients with more severe disease, and features of autonomic
involvement are incompletely defined in patients with SMA and need additional
investigation. It remains an important consideration that partial restoration of SMN levels in
human trials could unmask other tissues that are susceptible to low levels of SMN.

Preclinical treatments are positioned to have dramatic effects in early clinical trials provided
treatments sufficiently restore SMN at the correct time and in the required target tissues.
SMA natural history data, albeit limited, suggest that motor function and
electrophysiological measures such as CMAP and MUNE are preserved prior to symptoms
onset, even in infants with severe disease (type 1)109, 114. It is expected that treatment prior
to onset of clinical and electrophysiological features of motor dysfunction will be required
for optimal effects. It will be ideal to design early trials for treatment either prior to overt
symptoms or as early as possible after symptom onset. The majority of clinical and
electrophysiological natural history are derived from patients at later time points in the
course of the disease. Additional work is required to fully define the natural history of SMA
at the onset of disease, particularly in mild cases, and the determination is required regarding
how long after symptom onset SMN restoration will have significant effect. Therefore we do
not have a clear picture of the events that occur at the start of the disease and the timing of
these events, particularly in different severities of SMA. Natural history work is ongoing
using motor function measures and molecular and electrophysiological biomarkers in early
symptomatic infants with SMA to further define these outcome markers in patients
(ClinicalTrials.org ID: NCT01736553). This work will provide the foundation for early
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trials investigating SMN restoring therapies. Despite these hurdles the positive development
of strong therapeutics with clear targets brings the hope that SMA can be treated or
prevented if the therapeutic is provided at the correct time.
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Figure 1.
Timing of SMN Restoration and Predicted Outcomes: SMA is caused by reduced levels of
SMN protein. Therapies that provide early restoration of SMN are anticipated to fully rescue
motor neurons and the motor unit. When SMN restoration is delayed it is anticipated that
rescue will be reduced in a time-dependent fashion. CMAP: compound muscle action
potential; MUNE: motor unit number estimation. *Following delayed treatment, CMAP size
may be fully corrected if there is sufficient collateral reinnervation from the remaining
motor neurons.
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Table 2
Preclinical small molecule drugs that can successfully extend survival in mouse models of
SMA

Strategy Delivery/Timing Mouse Survival (days) (treated/untreated) Authors

DcpS Inhibitor

RG3039 IP on P4 Smn 2B/- 6 (112/18) Gogliotti et al.
2013005058 1.4 (10/13.8)

RG3039
IP on P1

005025 1.3 (23/18) Van Meerbeke et al
2013ChATCreSmnRes 1.7 (41.5/25)

2,4-diaminoquinazoline Oral on P4 005025 1.3 (17/14) Butchbach et al.
2010

Histone Deacetylase Inhibitor

Suberoylanilide Hydroxamic Acid
Oral on E15 005024 Rescue of embryonic lethality Riessland et al.

2010Oral on P1 005058 1.3 (12.9/9.9)

Trichostatin A IP on P5 005025 1.2 (19/16) Avila et al. 2007

Trichostatin A + Nutrition IP on P1 + nutrition
P8 005025 1.7 (38/14) Narver et al. 2008

P38 and HuR Protein Activator

Celecoxib IP on P1-P6 005025 1.4 (18/13) Farooq et al. 2013

Proteasome Inhibitor

Bortezomib IP on P5 005025 No effect alone 1.4 (20/14) with TSA Kwon et al. 2011

Read-through Inducing Compound

TC007 ICV P3,5,7 005025 1.3(16/12.6) Mattis et al. 2009

Rho-kinase Inhibitor

(Y-27632)
Oral on P3 Smn 2B/- ∼14-33 wks/∼4 wks Bowerman et al.

2010E14 +P3 005024 No effect

Fasudil Oral P3 Smn 2B/- 9.8 (300/30.5) Bowerman et al.
2012

STAT5 Activator

Prolactin IP on P1 005025 1.6 (21/14) Farooq et al. 2011

Mechanism Undefined

PTC compounds IP on P3 005025 11 (150/14) Naryshkin et al.
2012

LDN-76070 IP on P2 005025 1.4 (17/11.5) Cherry et al. 2013

Mouse models (Jackson Lab Catalog number, if available): 005024 (SMN2;Smn-/-); 005025 (SMN2;Smn-/-; SMNΔ7+/+); 005058 ((SMN2)2Hung

Smn1tm1Hung/J); Smn 2B- (Bowerman et al. 2012). ChATCreSmnRes:5025 line with SMN restored in motor neurons but not other cell types See
table 1 legend for mouse model genetics and characteristics. IP: intraperitoneal; P: postnatal day with first day of life starting at P1; E: gestational
day; TSA: trichostatin A
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